CACTVS Tel and Python Scripting Language Reference

CACTVS Tcl and Python Scripting Language Reference

The atom Command

The atom command is the generic command used to manipulate atoms. The TcL syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel. For
PYTHON, most commands are object methods.

The pseudo atom labels first or », last or end or $ and random are special values, which select the
first atom in the atom list, the last, or a random atom.

Atoms can also be selected via atom indices (# prefix), atom mappings (" prefix), previous labels
(suffix %) or specific property values.

Examples:

atom get Sehandle 1 A SYMBOL

atom get Sehandle ~1 A SYMBOL

atom get Sehandle #0 A SYMBOL

atom get Sehandle {A LABEL = 1} A SYMBOL
atom hadd $ehandle 2

This is the list of officially supported subcommands:

atom anchormatch

atom anchormatch ehandle label ss ehandle ?ss label? ?matchflags? ?ignoreflags?
?atommatchvar? ?bondmatchvar? ?molmatchvar?

a.anchormatch (substructure=, ?substructureatom=?, ?matchflags=?, ?ignoreflags="?,
?atommatchvariable=?, ?bondmatchvariable=?, ?molmatchvariable=?)

This command is a variant of the atom match command. The difference is that the full substructure

is matched, and not just its first or selected atom. A substructure match anchor between the

command atom and the first or selected substructure atom is enforced (see -anchor option of the

match ss command).

Example:
set eh [ens create CCO]

echo [atom match $eh 3 0O(C) (C)]
echo [atom anchormatch $Seh 3 0(C)C]

The first command matches, because only the first substructure atom is checked. The second fails,
even though the first substructure atom is a match - but then its environment does not fit.

atom angle

atom angle ehandle label label2 label3 ?property?
a.angle (atom2=, atom3=, ?coordinateproperty="7?)

Compute the angle between 3D atomic coordinates stored in a property between the three atom
arguments, which are considered linked in the specified sequence. The source property for atomic
coordinates is by default o_xvz, but another property can be set, which also needs to be an atomic
float vector.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 127

CACTVS Tel and Python Scripting Language Reference

128

The return value is the angle in degrees between the vectors implicitly constructed from the 3D
atomic coordinate of the second atom pointing to that of the first, and from the second atom to the
third. No bonds need to exist between the atoms. All atoms used in a statement must be different,
and possess 3D coordinates initially, or after an automatically started computation of the source

property.

atom append

atom append ehandle label ?property value?...
a.append ({?property:value,?...})

a.append(?property,value, ?...)
Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
atom append $ehandle 1 A SUPERATOMSTRING “ linker”

atom atom

atom atom ehandle identifier

Atom.Ref (eref, identifier)

Standard cross-referencing command to obtain the label (or reference object, for Python) of the
atom as stored in property A _LaBEL. This is explained in more detail in the section about object
cross-references.

Example:
atom atom $ehandle #0

returns the label of the first atom of the ensemble atom list.

atom bondangles
atom bondangles ehandle label ?filterset? ?filtermode?
a.bondangles (?filterset?, ?mode?)

Standard cross-referencing command to obtain the labels or references of the bond angle objects the
atom is participating in. This is explained in more detail in the section about object cross-references.

atom bonds

atom bonds ehandle label ?filterset? ?filtermode?

a.bonds (?filterset?, ?mode?)
Standard cross-referencing command to obtain the labels or references of the bonds the atom is
participating in. This is explained in more detail in the section about object cross-references.

Examples:

atom bonds $ehandle 1
atom bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds atom 1 is participating in. The second example
returns the number of double or triple bonds the atom is a part of.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

atom change

atom change ehandle label element ?linkatom? ?removeh?

a.change (replacement=, ?linkatom=?, ?removeh=?)

This command is very similar to the command atom replace. The important difference is that the
element parameter is always interpreted as an element symbol encoding, and not primarily as an
ensemble handle, ensemble handle/molecule label pair or SMILES string.

The rest of the command is explained in the paragraph on atom replace.

Example:

atom change $eh 1 C
atom change $eh 2 Z

The first example changes the atom with label 1 to a neutral carbon atom. Bonds of the old atom 1
are inherited if possible. If this is not possible due to valence violations, an error is raised. The
second example changes an atom to a query specification for an electro-negative element.

atom charge

atom charge ehandle label chargedelta

a.charge (chargedelta=)

Try to change the formal charge A _ForvAL_cHARGE of the atom by the specified amount. The free
electron count A FREE_ELECTRONS is also adjusted, and other charge- or free-electron-dependent
properties on the ensemble are recursively invalidated. Impossible final charge values are rejected.
Ifthe desired charge state can only be reached by deprotonation, this is automatically attempted, and
a bond change property invalidation event is processed.

The command returns the atom label (for TcL) or reference (for PYTHON).

atom create

atom create ehandle ?symbol? ?bondtype atomlabel?...
aref?...)

Atom.Create (eref, ?symbol?, ?bondtype,aref?...)

Atom(eref, ?symbol?, ?bondtype

Create a new atom in the ensemble. By default, the atom is added without any bonds or charge and
the standard set of free electrons. The symbol parameter is usually an element symbol, which is
decoded in a case-sensitive fashion. If it is omitted, an unspecified atom is created. The isotopic
element symbols D and T are recognized and decoded to the corresponding hydrogen isotopes,
setting the o TSOTOPE property.

This command may also be used to add various pseudo and query atoms. Allowable symbols for this
purpose are

° 3DPOINT or DU or BQ for points in 3D space
* poLy for polymers

° EPAIR, EP or LP for lone pairs

* * or ov for an open valence pseudo atom

* ~ for a superatom with a yet undefined identifier string

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 129

CACTVS Tel and Python Scripting Language Reference

130

* Ha for a generic hydrogen acceptor

* HD for a generic hydrogen donor

* a for a query atom which is not hydrogen

* o for a query atom which is a hetero atom (not C or H)

* M for a query atom which is a metal

» 2 for a query atom which can be any atom

* x for a query element list with the halogens

* v for a query element list with the electro-negative elements N,O,Cl,Br
* z for a query element list with the electro-negative elements N,O,F,S,CI,Br,I
* L for a query element list with a yet undefined set of elements

e @ for a delocalization anchor

* R for a query atom of type insulator.

Instead of an element symbol, the periodic system number of an element may also be used,
optionally prefixed with a hash character (#) in SMILES style. Additionally, the standard BEILSTEIN
query atoms, such as ‘[alk]’, as well as CCDC element groups, such as ‘[3a]°, are supported.

If the superatom symbol ~ is followed by more characters, these are copied to the superatom
identifier string (A_SUPERATOMSTRING property). If a known fragment is specified this way, it may
be expanded later.

The command returns the automatically assigned label of the new atom, or the atom reference for
PyTHoN. Note that this command does not require a label parameter, since it creates new atoms.

This command updates the ensemble information and recursively purges information which is
susceptible to atom changes. For atom properties which survive this step, a default value is added,
if the property is not part of the set of properties managed actively by this command, such as the free
electron count and the atom label.

After the atom symbol, an additional sequence of (non-nested) bond type and atom label parameters
may be specified. The recognized bond types are the same as in bond create. Bonds of the
requested type are created and link the new atom to existing atoms in one step. This bond creation
process is limited by the valence restrictions of the involved atoms. Successful bond creation
triggers a bond change property data invalidation event.

The atom create command can also be accessed, for historical reasons, as atom add. This alias is
deprecated.

The return value is the label of the new atom.

Examples:

atom create $ehandle C

atom add $ehandle ?

atom expand $ehandle [atom add $ehandle ~FMOC]
atom create $ehandle N = $al single $a2

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The first example adds a carbon atom to the ensemble. The second line adds an any query pseudo
atom, which, in the context of a substructure search, matches any atom. The third example adds a
superatom named FMOC in the inner command. Since this is a fragment name the library
understands by default, it may be expanded to the full FMOC fragment with the outer command.
Finally, a nitrogen atom is added and immediately bonded via a double bond to the atom identified
by the label in variable a1, and via a single bond to the atom in a2.

atom defined
atom defined ehandle label property

a.defined (property)

This command checks whether a property is defined for the atom. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The ens valid command is used for this purpose.

Example:

atom defined Sehandle 1 A XYZ

checks whether atom 1 is of a type for which o xvz is defined.

The command returns a boolean status value.

atom delete

atom delete ehandle ?label?...
atom delete ehandle all

a.delete ()

Atom.Delete (eref, ?alabel/aref/arefsequence?, ...)
Atom.Delete (aref, ...)
Atom.Delete (eref, Mall”)

Delete zero or more atoms. All bonds which the atoms participate in are also deleted. The electron
counts of surviving atoms participating in deleted bonds are automatically updated. Molecule and
ring information, and other minor object classes under the control of the ensemble major object
which depend on an unchanged atom set are deleted. Any property data which depends on an
unchanged atom set is also invalidated, or, if the property is set up to do so, re-computed.

Note that this command does not delete hydrogen atoms the deleted atoms were bonded to. These
remain in the ensemble as isolated, now unbonded atoms. The atom xdelete subcommand also
deletes these hydrogen atoms.

The special atom label al/ requests deletion of all atoms. Usually, this is equivalent to ens clear.
The return value of the command is the number of deleted atoms.

Example:
atom delete S$ehandle 1

This command is one of few atom subcommands which do not require an atom label. If no label is
given, the command does nothing. This is useful for list expansions where the list might be empty:

eval atom delete $ehandle S$delatomlist
atom delete $ehandle {*}S$Sdelatomlist

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 131

CACTVS Tel and Python Scripting Language Reference

132

atom dget
atom dget ehandle label propertylist ?filterset? P?parameterdict?

a.dget (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom dget is
that the latter does not attempt computation of property data, but rather initializes the property values
to the default and return that default if the data is not yet available. For data already present, atom
get and atom dget are equivalent.

atom deprotonate
atom deprotonate ehandle label ?count?

a.deprotonate (?count=?)

Attempt to remove one ore more protons from the atom, with adjustment of formal atom charge and
processing of appropriate structure change property data invalidation events.

The command returns the atom label (for TcL) or atom reference (for PYTHON).

atom distance
atom distance ehandle label ?labell2? ?property?

a.distance (?atom2=7?, ?coordinateproperty=2?)

Compute the 3D distance between two atoms based on the values of a coordinate property. The
source property for atomic coordinates is by default 2 xvz, but another property can be specified,
which also needs to be an atom float vector.

The command returns the value as a floating point number in the unit of the source property
(Angstrom in case the default A_xvz is used). An equivalent explicit vector arithmetic script is

vec len [vec subtract [ens get $Seh $label A XYZ] [ens get $eh S$label2 A XYZ]]
If a second atom identifier is not specified, or given as an empty string, the result is a nested list of

the distances to all bonded neighbor atoms, regardless of the bond types. Each sublist consists of the
partner atom label and the bond length from the current atom to that neighbor.

In order to obtain the topological distance between atoms, use the atom topodistance command,
or compute property A TOPO DISTANCE.

atom dup

atom dup ehandle ?label list? ?datasethandle? ?position?
a.dup (?dataset=?, ?position="?)

Atom.Dup (eref,aref tuple, ?dataset=?, ?position=7?)

Duplicate zero or more atoms, plus all the bonds existing between them, into a new ensemble. This
command is very similar to ens fragment, and the same caveats about preserved and destroyed data
in the duplicate apply.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed,
the duplicate is not made a dataset member, even if the input ensemble is in a dataset.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The command returns the handle of the new ensemble object for TcL, or an ensemble reference for
PYTHON.

Example:
set ehfrag [atom dup $eh {*}S$alist]

atom ens
a.ens()

PytHON-only method to get the ensemble reference from an atom reference.

atom exists

atom exists ehandle label ?filterlist?

a.exists(?filters=?)

Atom.Exists (eref, label,?filters="?)

Check whether this atom exists. Optionally, a filter list can be supplied to check for the presence of
specific features. The command returns O if the atom does not exist, or fails the filter, and 1 in case
of successful testing.

Example:

atom exists S$ehandle 99

atom expand

atom expand ehandle label ?Pallowambiguous? ?noimplicith?
a.expand(?allowambiguous=?, ?noimplicith="?)

This command attempts to expand a superatom. A superatom is either an atom for which the atom
type property A_TYPE is set to super (the preferred method), or a standard atom (a_TYPE normal)
with certain property data.

For a successful expansion, the first class of explicit superatoms must have a valid

A SUPERATOMSTRING property value which can be located in the table of known superatom
identifiers. The second class of normal atoms needs a valid A TEXTLABEL property data with a
known superatom identifier in its /abel text field. The use of normal atoms as superatom surrogates
is deprecated.

If the allowambiguous flag parameter is set, superatoms of uncertain status are expanded. Some
superatom names are ambiguous, for example 4/, which may both refer to the element and alanine.
The superatom table protects against unchecked expansion of such atoms by containing an
ambiguity flag which is set in such cases.

By default, the fragments from the superatom table are imported with a full set of hydrogens. If the
optional noimplicith flag is set, only hydrogens which are explicitly spelled out in the superatom
definition are included. For example, superatoms COO and COOH are expanded to the same form
with an acidic hydrogen by default, but if the flag is set, only the second form has it.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 133

CACTVS Tel and Python Scripting Language Reference

134

The command returns 1 if the atom was a superatom and expansion was successful, 0 otherwise. It
may also raise an error if a superatom was found, but expansion failed, for example because of an
illegal bonding situation which does not allow the creation of the required normal bonds to the
expanded fragments.

The expanded superatom and all other atoms in the original ensemble retain their labels.

Only a single level of superatoms is expanded - if the expanded fragment contains another
superatom, it remains in its original form.

Examples:

atom expand $ehandle [atom create $ehandle ~BOC]

This command immediately expands the freshly created BOC fragment. A command sequence like

atom set $ehandle [ens create C 0] A TEXTLABEL (label) COOMe
atom expand $ehandle 1

also works, but is deprecated.

atom expr

atom expr ehandle label expression

a.expr (expression)

Compute a standard SQL-style property expression for the atom. This is explained in detail in the
chapter on property expressions.

atom fill

atom fill ehandle label ?property value?...
a.fill ({property:value,...})
a.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

Example:
atom fill Sehandle 1 B COLOR red

sets the color of the first bond atom 1 participates in to red.

The command returns the first fill value.

atom filter

atom filter ehandle label filterlist
a.filter(filters)

Check whether an atom passes a filter list. The return value is boolean 1 for success and 0 for failure.

Example:

atom filter $ehandle 1 [list carbon doublebond]

checks whether the atom is a carbon atom with a double bond.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

atom get

atom get ehandle label propertylist ?filterset? P?Pparameterdict?

a.get (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
atom get Sehandle 1 {A SYMBOL A ELEMENT}

yields the atomic symbol and the element number of atom 1 as a list. If the information is not yet
available, an attempt is made to compute it. If the computation fails, an error results.

atom get S$ehandle 1 B ORDER ringbond

will give the bond orders of all bonds of the atom which are ring bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the atom get command are atom new, atom dget, atom nget, atom show, atom
sqldget, atom sqlget, atom sqlnew and atom sqlshow.

Further examples:

atom get Sehandle 1 A SYMBOL

atom get $ehandle 1 A FLAGS (boxed)

In the Python case, the first variant accepts property lists/tuples containing string property names
and/or property references, or a string property list in addition to a single property. Property
references can be used instead of strings only in the first variant, both as single arguments or as part
of lists/tuples. Direct indexed access to property fields also requires the first version, as does the use
of filters or specific computation parameters.

atom groups

atom groups ehandle label ?filterset? ?filtermode?

a.groups (?filters=?, ?mode="?)
Standard cross-referencing command to obtain the labels or references of the groups the atom is a
member of. This is explained in more detail in the section about object cross-references.

Example:

atom groups $ehandle 1

atom hadd
atom hadd ehandle label ?filterset? ?flags? ?chargedelta?
a.hadd (?filters=?,?flags=?, ?chargedelta="?)

Add a standard set of hydrogens to the atom. If the filterset parameter is specified, the atom needs
to pass the filter set in order to be processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 135

CACTVS Tel and Python Scripting Language Reference

empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

* no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

* no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

* noanions
Do not add hydrogen to atoms with a negative formal charge.

° noatoms
Do not add hydrogen to atoms without any bonds.

* nocations
Do not add hydrogen to atoms with a positive formal charge.

* noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

° noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

° nofixatomtext
Do not adjust property A_TExTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOQOELt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

* nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

° nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

° nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

* nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B TYPE not normal).

° keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

136 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* protonate
Add a single proton to the atom. The charge of the atom is increased, only a single hydrogen
is added regardless of the standard number of missing hydrogens, and this command wi//
issue the standard property invalidation event for atom and bond changes.

* resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

If a charge delta parameter is specified, the atomic charge and free electrons of the atom are adapted
accordingly before the hydrogens are added. The manipulation of the charge usually changes the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative.

Adding hydrogens with this command, except if the protonate flag is set, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

The command returns the number of hydrogens which were added.

Example:
set ehandle [ens create FC(F) (F) (F)]

atom delete S$ehandle 1
atom hadd $ehandle 2

transforms tetrafluoromethane to trifluoromethane.

atom hdelete

atom hdelete ehandle ?label?...
atom hdelete ehandle all
a.hdelete ()

Delete zero or more atoms. All bonds which the atoms participate in are also deleted. The electron
counts of surviving atoms participating in deleted bonds are automatically updated. Molecule and
ring information, and other minor object classes under the control of the ensemble major object
which depend on an unchanged atom set are deleted. Any property data which depends on an
unchanged atom set is also invalidated, or, if the property is set up to do so, re-computed.

Additionally, and different from the simple atom delete command, all cut VB valences on the
neighbor atoms which will not be deleted with the same statement are saturated with added
hydrogen atoms. Only the cut valences are treated, this is not necessarily equivalent to a atom hadd
command on the neighbors.

Otherwise, the command performs the same actions as the simple atom delete command.

The all command variants are identical to that of the simple atom delete command since no
neighbor atoms for hydrogenation remain.

The command returns the number of deleted atoms.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 137

CACTVS Tel and Python Scripting Language Reference

138

atom hdup

atom hdup ehandle ?label list? ?datasethandle? ?position?
a.hdup (?dataset=?, ?position=7?)

Atom.Hdup (eref, aref tuple, ?dataset=?, ?position=?)

Duplicate zero or more atoms, plus all the bonds existing between them, into a new ensemble, and
plug all open valences by adding standard hydrogens. This command is similar to ens hfragment,
and the same caveats about preserved and destroyed data in the duplicate apply.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed,
the duplicate is not made a dataset member, even if the input ensemble is in a dataset.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The command returns the handle of the new ensemble object for TcL, or an ensemble reference for
PYTHON.

atom hstrip

atom hstrip ehandle label ?flags? ?chargedelta?

a.hstrip(?flags=?, ?chargedelta=?)

This command removes hydrogens from the selected atom. By default, all hydrogen atoms are
removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

* deprotonate
Ifthis flag is set, a single proton is removed from the atom. This command variant does issue
a standard atom and bond change property invalidation event, and it always ends processing
after removing the first proton. Proton removal decreases the charge of the atom by one.

* keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

* keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

* keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note that these commands can be run in a mode which does not leave information
about automatic addition - hydrogens added this way do not survive.

* keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

* keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

* normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

° wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

If a charge delta parameter is specified, the atomic charge and free electrons of the atom are adapted
accordingly before the hydrogens are added. The manipulation of the charge will usually change the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative.

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
in case the deprotonate flag is set. The system assumes that this operation is done as part of some
file output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that the structure may contain implicit hydrogens.

The return value of the command is the number of hydrogens removed.

Example:

atom hstrip $ehandle 1 [list keeporiginal wedgetransfer]

atom hydrogenate

atom hydrogenate ehandle label ?filterset? ?changeset?

a.hydrogenate (?filters=?, ?changeset="?)

Reduce all bonds the atom participates in to single bonds except those excluded by the filter set.
If a change set is supplied, its interpretation is the same as in atom hadd.
The command returns the number of added hydrogens.

Example:

atom hydrogenate $eh 1 {!arobond !ccbond}
This reduces all non-aromatic hetero bonds atom 1 participates in to single bonds.

atom index

atom index ehandle label

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 139

CACTVS Tel and Python Scripting Language Reference

140

a.index ()

Get the index of the atom. The index is the position in the atom list of the ensemble. The first position
is index 0.

Example:

atom index S$ehandle 99

atom invert

atom invert ehandle label

a.ilnvert ()

Invert the stereochemistry at the atom, provided it is an sp3-type atomic stereo center, which
includes those which use an electron pair as pseudo ligand and allenes with an odd number of atoms.
This command updates any atomic stereo descriptors and bond wedges to the ligands if set, but only
compute 2_LaBEL_ STEREO. No check it made whether the atom can physically be a stereo center, but
if the A 1ABEL STEREO descriptor is zero, or describes non-sp3 types of stereochemistry such as
square planar, the command does nothing and returns 0, but will not raise an error. For odd allenes,
bond wedges at the terminal atoms are updated, not those at the center atom.

If stereochemistry was inverted, this command issues a stereo change property invalidation event
and additionally invalidates the A STEREOGENIC and B_STEREOGENIC properties, because the stereo
potential of centers which possess two ligand groups which only differ in stereochemistry may have
changed.

If the command finds a defined stereo center and succeeds in inverting it, it returns 1, 0 otherwise.

atom isotopecheck
atom isotopecheck ehandle label ?extended?

a.isotopecheck (extended=)

Test whether the isotope label of the atom, if it exists, is physically reasonable. The command
returns boolean true if the label is OK, or is not set. If no isotope is set in o 1soToPE, the command
always reports no problems.

By default, a smaller isotope table is used which contains only isotopes which are sufficiently
long-lived to perform chemistry on. These include naturally occurring isotopes as well as isotopes
used for experimental labeling, such as 'T or '4C. If the extended boolean flag is set, a larger table
containing all known isotopes of the elements is used.

The isocheck command is an alias.

atom jget

atom jget ehandle label propertylist ?filterset? ?parameterdict?
a.jget (property=,?filters=?, ?parameters=?)

This is a variant of atom get which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

atom jnew

atom jnew ehandle label propertylist ?filterset? ?parameterdict?

a.jnew (property=,?filters=?, ?parameters=?)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

This is a variant of atom new which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

atom jshow

atom jshow ehandle label propertylist ?filterset? ?parameterdict?

a.jshow (property=,?filters=?, ?parameters=?)

This is a variant of atom show which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

atom local

atom local ehandle label propertylist ?filterset? ?parameterdict?

a.local (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
atom local $ehandle 1 A LABEL STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to in a global re-computation.

atom match

atom match ehandle label ss ehandle ?ss label? ?matchflags? ?ignoreflags?
Patommatchvar? ?bondmatchvar? ?molmatchvar?

a.match (substructure=, ?substructureatom=?, ?matchflags=?, ?ignoreflags=>?,

?atommatchvariable=?, ?bondmatchvariable=?, ?molmatchvariable=?)

Check whether the selected atom matches a substructure. Only the first substructure atom, or the
atom selected by the substructure label parameter, is tested. The substructure may be part of any
structure ensemble, and even be in the same ensemble as the primary command atom.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,

atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset the flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels (references for PyTHon). If no match can be found, the variable is set to an empty
list. In case only a bond or molecule match variable is needed, an empty string can be used to skip
the unused match variable argument positions.

Example:

set ss [ens create {[F,Cl,Br,I]} smarts]
set a _1s halogen [atom match $Sehandle $label S$ss 1]

atom mol
atom mol ehandle label ?filterset? ?filtermode?
a.mol (?filters=?, ?mode=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 141

CACTVS Tel and Python Scripting Language Reference

142

Standard cross-referencing command to obtain the label (for TcL) or reference (for PyTHoN) of the
molecule the atom is a member of. This is explained in more detail in the section about object
cross-references.

Examples:

atom mol $ehandle 1
atom mol $ehandle 1 heterocycle

The first example returns the label of the molecule. Note that it is possible for pseudo atoms to be
outside of any molecule. In this case, an empty string is returned. The second example returns the
molecule label if the atom is part of a molecule which contains one or more heterocycles. If the
molecule does not contain a heterocycle, an empty string is returned. Note the use of mo!/ in singular
- an atom can only be a member of one molecule, or of none.

atom neighbors

atom neighbors ehandle label ?filterset? ?filtermode? ?sphere? ?allowduplicates?

a.neighbors (?filters=?, ?mode=?, ?sphere=?, ?allowduplicates=?)

This command (which can also be invoked as subcommand neighbours, or ligands) is a
cross-referencing command with some extra options and, in some filter modes, slightly different
behavior than the standard object cross-reference subcommands.

In the simplest case, it returns the labels (for TcL) or references (for PyTHoN) of the immediate
neighbor atoms. A neighbor atom is an atom which is bonded via a standard (covalent, BTYPE VB)
or complex (BTYPE coMPLEX) bond to the originating atom. In case the filter list contains bond
filters, the bond leading to the originating atom must pass the check, not just any bond of the
neighbor atom.

Example:

atom neighbors $ehandle 1 doublebond

returns all neighbor atom labels which are bonded via a double bond. Neighbor atoms which
participate in a double bond with other atoms, but not the originating atom, are not returned.

This command supports special filtermode parameters in addition to the standard set (exists, count,
exclude, include). The notraverse parameter, followed by a list of atom labels in any of the standard
atom specification styles is a list of atoms which are not traversed during sphere expansion. The
bonds parameter, followed by a bit set combination from the allowed values ring, sidechain or
bridge can be used for topological filtering of the traversable bonds. By default, no topological bond
filtering is applied.

Example:

atom neighbors [ens create CC(C)C] 2 {} {notraverse {3 4}} 2

only returns the hydrogen atoms 5, 6, 7 on atom 1, since carbon atoms 3 and 4 are blocked. If the
atoms in the traversal block list are part of the requested sphere, they are listed.

By default atoms in the immediate neighborhood are examined, but this change be changed by the
sphere parameter. The immediate neighbors are in sphere 1 (the default for this parameter), the next
group of atom is in sphere 2, and so on. If the sphere is not 1, the special filtering of bonds is no
longer active and the normal object substitution mechanism for cross referencing is used. When
going beyond the first sphere, it is also possible that an atom may be reached by multiple paths of
the selected length. By default, these atoms are returned only once, but with the last optional

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

parameter this behavior may be changed. A positive sphere value only selects atoms in that sphere.
A negative sphere parameter value returns a list of all neighbors up to and including the sphere
identified by the absolute sphere value.

Example:
atom neighbors $ehandle 1 {carbon aroatom} count 2

counts the number of aromatic carbon atoms in a distance of two bonds.

atom new

atom new ehandle label propertylist ?filterset? P?Pparameterdict?

a.new (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom new is
that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

atom nget

atom nget ehandle label propertylist ?filterset? ?parameterdict?

a.nget (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom nget is
that the latter always returns numeric data, even if symbolic names for the values are available.

atom paths

atom paths ehandle label targetlabel ?minlength? ?maxlength? ?filterset?
?atomproperty? P?maxpathcount? ?flags?

a.paths (target, ?minlength=?, ?maxlength=?,?filters=?, 2atomproperty="7?,
?maxpathcount=?, ?flags="?)

This command finds all paths between a pair of atoms, walking along bonds of the types which

define molecules. By default, these are bond types normal, complex and 3center, but this can be

changed by modifying the control variable ::cactvs(molecule _bond set).

The return value of the command is a nested list, even it only a single path is found. Every sublist
contains all the labels (for TcL) or references (for PYTHoN) of the atoms in a single path, including
those of the start and end atoms. Every bond is used only once in any path, and no path crossings
through an atom are allowed. Every atom, with the possible exception of path end points, appear
only once in any single path. Paths from an atom via some bonds back to itself are allowed. The atom
must be a ring member for such paths to exist.

If the destination atom is specified as an empty string, all possible paths emerging from the source
atom and not violating any other specified constraints are returned. This includes shorter sub-paths
which are contained in a longer paths - these are reported as separate result items.

By default, all paths of length greater than zero are returned. The lengths of acceptable paths may
be specified by the optional parameters. If only the minimum length is set, this value is also used

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 143

CACTVS Tel and Python Scripting Language Reference

144

for the maximum length, resulting in only paths of a specific length to be reported. The maximum
path count parameter can be used to limit the number of paths found. However, the order of the
found paths does depend on the arrangement of the atoms in the bonds, so it is generally not canonic.
Omitting this parameter or setting it to a negative value disabled the maximum path count check.

A non-empty filter set can be used to restrict the atoms that are eligible to be part of the path.
Normally, these are atom filters, such as /hydrogen, but other types may be used in special
circumstances. Bond filters are however applied to the union of all bonds of an atom, not just the
specific bond traversed in a path. For example, a doublebond filter lets an atom pass if it participates
in any double bond, and does not necessarily mean the bond the atom was reached over in the path.
Filters are not applied to the start atom of the path.

The default report value for an atom is its label, i.e. property o 1aBEL. However, any other present
or computable atom property may be specified instead with the optional atom property parameter.
The parameter may also refer to a property field in case the property is indexible.

The final optional flag parameter is a list of additional keywords which further modify the path atom
selection and result reporting. Currently, the following keywords are recognized:

* noringchaincrossing
The path may not jump from a chain atom to a ring atom, or vice versa

° concatenate
The report format for each individual path is not a Tcl list, but a string where the report atom
property values are directly concatenated

e printbondorder
Every report value after that of the first path atom is prefixed with a character indicating the
bond order from the set “-=#& ~ for bond orders one to four, with a colon for aromatic
bonds, and a question mark for non-VB bonds. Additionally, a @ is added if the bond closes
a ring to the first path atom.

Example:

atom paths [ens create CI1CCCl] 1 1

reports the paths {1 234 1} and {1 4 3 2 1}, which correspond to walking the ring clockwise and
counter clockwise, respectively.

atom paths [ens create CC=C] 1 3 3 3 {} A ELEMENT -1 {printbondorder concatenate}
returns {6-6=6}.

atom pis

atom pis ehandle label ?filterset? ?filtermode?

a.pis(?filters=?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the 1 systems the atom is
a member of. This is explained in more detail in the section about object cross-references.
Examples:

atom pis $ehandle 1

Get the labels of the & systems the atom is participating in. T systems are a rather exotic feature and
not commonly used. These are essentially descriptions of bonding interactions which use p or d

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

orbitals, such as in standard covalent multiple bonds. A simple double bond is described with one
o system and one 7 system in this representation.

atom protonate

atom protonate ehandle label ?count?

a.protonate (?count=?)

Attempt to add one ore more protons to the atom, with adjustment of formal atom charge and
processing of appropriate structure change property data invalidation events.

The command returns the label (for TcL) or reference (for PyTHoN) of the atom.

atom purge
atom purge ehandle label propertylist/stereo/isotope/query

a.purge (propertylist/stereo/isotope/query)

Reset existing property data on an atom. In case the argument is a list of property names, the value
on that atom only is reset to the default value of the property. In case the property is not present on
the ensemble, the command is ignored. The reset via a property list does not trigger a property
dependency update. If that is desired, an ens taint command must be explicitly scripted.In case
a reset property is a bond property instead of an atom property, the reset is executed for all bond
atoms. Other property object class mismatches are currently not supported.

In addition to standard properties, several special pseudo property names are recognized.

The stereo code resets all atom-centered stereo information on the atom, including wedges in
property B_FLAGS that point to the atom, and will trigger a stereo change event on the ensemble
which may invalidate additional data.

The isotope code resets property 2 1s0TOPE on the atom, marks the isotope data as tainted and runs
a data dependency check.

The query code resets property o QUERY, marks the query data as tainted and runs a data dependency
check.

The command returns the label (for TcL) or reference (for PyTHoN) of the atom.

atom ref
Atom.Ref (eref,identifier)

PyTHoN only method to get an atom reference. See atom atom command.

atom replace

atom replace ehandle label fragment/element ?fragmentlabel? ?removeh?
a.replace(replacement=, ?linkatom=?, ?removeh=?)

Replace an atom by a fragment. The fragment may be an atom, a molecule, or even a multi-molecule
ensemble. The fragment parameter is either an ensemble handle, a SMILES string, or a list of an
ensemble handle and a molecule label, identifying one molecule within that ensemble. For Python,
it may also be a molecule reference. Ensembles or molecules identified by handles will not be
destroyed, because the command works on a duplicate.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 145

CACTVS Tel and Python Scripting Language Reference

146

If the fragment parameter cannot be decoded as any of those fragment definition styles, an attempt
is made to interpret is as an element or pseudo-element symbol. Deuterium and tritium isotopes may
be specified as D and T, and standard query atom and superatom specifications are also understood
with a syntax identical to the atom create command. For standard element modifications, such as
by a molecule editor, the atom change variant of this command is preferred, because that command
does not attempt to decode the fragment parameter in the other styles first and thus avoids problems
with element symbols that are at the same time valid SMILES strings.

The first atom in the atom list of the selected fragment structure (which does not necessarily
correspond to the lowest label in that structure) is the default link atom on the fragment. The link
atom is the fragment atom which replaces the original atom in the input ensemble. A different link
atom can be selected by providing a valid label (not an index) of a fragment atom as optional
parameter.

All valence bonds (B_TYPE normal), ionic (B_TYPE ionic) and complex bonds (B_TYPE complex) to
the original atom are preserved with their bond order, as are standard bond attributes (property
B_FLAGS). It is possible to replace atoms with more than one neighbor, or with multiple or aromatic
bonds. In the atom change variant of this command, it is an error if the fragment link atom cannot
provide sufficient electrons to satisfy the VB bonds of the replaced atom. In atom replace mode,
existing bonds that cannot be recreated are silently ignored. If the removeh flag is set, the program
will attempt to find required valence electrons by removing hydrogen atoms from the link atom. If
no more hydrogens can be found, electron pairs are used as a last resort, but without trying to adjust
formal charges. The 2D coordinates of the link atom (property a_xv), if present, are set to the old
coordinates of the replaced atom. Other properties are lost or adapted according to the merge
functions of the underlying property definitions.

The return value of this command is the label (for TeL) or reference (for PytHoN) of the fragment link
atom, which is the same as the label of the replaced atom. All atom and bond labels in the base
fragment are guaranteed to be preserved, with the exception of the labels of the bonds around the
replaced atom. The labels of the added fragment are generally changed, but are copied to properties
A LABEL%, B LABEL% etc. before the merge.

Examples:

set ehandle [ens create CCBr]

set newlabel [atom replace S$ehandle 3 [ens create Cl 0]]
set newlabel [atom change $ehandle 3 Cl1]

atom replace S$ehandle S$newlabel {FC(F)F} 2 1

The second line replaces atom 3 (bromine) with a chlorine atom. The chlorine ensemble was
generated without hydrogens, to Cl has a bonding electron. Also, the default link atom of the
fragment is the only atom, so there cannot be any question about the fragment link location. The new
label of the CI atom is stored - but this is not really required, since it is always 3, the label of the
replaced atom. Line three is the same exchange expressed in the more efficient syntax of the atom
change command variant.

The fourth example code line replaces the chlorine atom with a CF5 group. That group is set up by

an in-line SMILES string. The fragment link atom is set to 2 (the carbon atom - labels from SMILES
decoding follow the atom order). Since this fragment was generated with an extra hydrogen atom
on carbon, the final parameter makes sure that this atom is removed before the replacement
operation, yielding an electron on the CF5 carbon atom for bonding to the main structure. If the

hydrogen removal flag is not set, the operation will fail with this fragment. Without automatic

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

hydrogen removal, the fragment needs to be written as r[c] (F) F for successful replacement, with
explicitly suppressed hydrogen addition at the carbon atom.

atom rings
atom rings ehandle label ?filterset? ?filtermode?

a.rings(?filters=?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the atom is a
member of. This is explained in more detail in the section about object cross-references.

Examples:

atom rings $ehandle 1
atom rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the atom is a member of. If the atom is not in any
ring, an empty list is returned. Only labels of rings in the SSSR or ESSSR ring set are returned, even
if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

atom ringsystems

atom ringsystems ehandle label ?filterset? ?filtermode?

a.ringsystems (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the ring systems the atom
is a member of. This is explained in more detail in the section about object cross-references.

Examples:

atom ringsystems $ehandle 1
atom ringsystems Sehandle 1 [list heterocycle aroring]

The first example returns the labels of the ring system the atom is a member of. If the atom is not
in any ring, an empty list is returned. The second example filters the ring systems - a ring system
label is obtained only if that ring system contains one or more hetero aromats.

atom set

atom set ehandle label ?property value?...
.set (?property,value?,...)
.set ({property:value,...})

O

= value

[SVR OV R AT 0]

= value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
atom set $ehandle 1 A COLOR “blue”

The direct change of critical atom type data, such as the element A_ELEMENT, element symbol

A _SYMBOL, or atom type A_TvPE should be avoided. It is safer to create a new atom, delete the old

atom, and establish new bonds if an atom needs to be changed in its type, or to use the atom replace

command. The dedicated creation, deletion and replacement commands will automatically take care
of bookkeeping tasks such as electron counting for valence bonds. Also, direct setting of the element
data will render most structure information invalid, since most properties depend directly or

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 147

CACTVS Tel and Python Scripting Language Reference

148

indirectly on the element composition. Careful manual locking and updating of property data is
required if direct element manipulation is attempted.

The command returns the first data value.

atom show
atom show ehandle label propertylist ?filterset? ?parameterdict?

a.show (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom show is
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, atom get and atom show are equivalent.

atom sigmas
atom sigmas ehandle label ?filterset? ?filtermode?

a.sigmas (?filters=7?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the o systems the atom is
a member of. This is explained in more detail in the section about object cross-references.

Examples:

atom sigmas $ehandle 1

o systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond

in multiple bonds. A simple double bond is described with one ¢ system and one 7 system in this
representation.

atom sqldget
atom sqgldget ehandle label propertylist ?filterset? ?parameterdict?

a.sqgldget (property=, ?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The differences between atom get and atom sqldget
are that the latter does not attempt computation of property data, but initializes the property value
to the default and returns that default, if the data is not present and valid; and that the SQL command
variant formats the data as SQL values rather than for TcL or PYTHON script processing.

atom sqlget

atom sqglget ehandle label propertylist ?filterset? ?parameterdict?

a.sqglget (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

For examples, see the atom get command. The difference between atom get and atom sqlget
is that the SQL command variant formats the data as SQL values rather than for TcL or PYTHON script
processing.

atom sqglnew

atom sqglnew ehandle label propertylist ?filterset? ?parameterdict?

a.sqglnew (property=, ?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The differences between atom get and atom sqglnew
are that the latter forces re-computation of the property data, and that the SQL command variant
formats the data as SQL values rather than for TcL or PYTHON script processing.

atom sqlshow

atom sglshow ehandle label propertylist ?filterset? ?parameterdict?

a.sqglshow (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The differences between atom get and atom sqlshow
are that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TcL or PYTHON script processing.

atom stereoligands

atom stereoligands ehandle label
a.stereoligands ()

Get the set of ligands which define the stereochemistry of an atom. If the atom is not stereogenic,
the result is a list of four empty strings for TcL or None values for PyTHON. If the atom is the center
atom of an odd allene, the list contains the substituents at either end of the allene, independently
sorted by atom label in ascending order for each side. If the atom is a normal tetrahedral or square
planar center, the direct ligands in sorted ascending label order are returned. If one of the ligands is
an electron pair, it is returned as an an empty or None list element in last position. If the atom is a
pyramidal or octahedral stereo center, the normal 4-element list is expanded to include the extra
atoms.

atom subcommands

atom subcommands

dir (Atom)

Lists all subcommands of the atom command. Note that this command does not require an ensemble
handle, or an atom label.

atom surfaces

atom surfaces ehandle label ?filterset? ?filtermode?

a.surfaces (?filters=7?, ?mode=7?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 149

CACTVS Tel and Python Scripting Language Reference

150

Standard cross-referencing command to obtain the labels or references of surface patches the atom
is associated with. This is explained in more detail in the section about object cross-references.

Example:

atom surfaces S$ehandle $label

Note that individual surface patches are not required to be associated with any atom.

atom topodistance

atom topodistance ehandle label targetlabel ?bondclasses?

Compute the minimum topological distance to the second atom. By default, only VB bonds are
traversed, but the optional argument allows the specification of a custom bit set of traversed bond
classes.

If there is no path between the atoms, the result is -1. The distance of an atom to itself is zero.

In case many topological distances within a structure are needed, it is faster to compute property
A TOPO_DISTANCE once.

atom torsion
atom torsion ehandle label label2 label3 labeld ?property?

a.torsion (atom2=, atom3=,atomé4=, ?coordinateproperty=?)

Compute the torsion angle in degrees between the four atoms, which are considered to be linked in
the specified sequence, i.e. the first three atoms defined the first plane, and the last three atoms the
second plane. The torsion angle is the vector angle of the normals of the two implicitly defined
planes and is always in the +/-180 degrees range.

The source property for atomic coordinates is by default a_xyz, but another property can be set,
which also needs to be an atomic float vector. All atoms used in a statement must be different, and
possess 3D coordinates initially, or after an automatically initiated attempt to compute 3D atomic
coordinate property. No bonds need to exist between the atoms.

atom uncharge
atom uncharge ehandle label
a.uncharge ()

Perform a chemistry-smart transformation of the atom to remove or at least minimize its formal
charge. Depending on the atom charge, type and element, this involves addition or removal of
hydrogen atoms, or, if these are not available or the element has no clear hydrogen count/formal
charge rules, direct editing of the formal charge and modification of the free electron count.

The command returns the number of change operations on the atom. These are either hydrogen
additions and deletions, or direct formal charge changes.

atom valencecheck

atom valencecheck ehandle label ?nitrogenmode?

a.valencecheck (?nitrogenmode=?)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Perform a valence check on the atom, comparing the current bonding situation at the atom to the list
of element-specific valence states in the system element table. This command is intentionally quite
picky, discouraging for example the use of pentavalent nitrogen by default. For the calculation of
valence, only bonds of type normal are taken into account. Complex bonds and pseudo bond types
thus do not interfere in the calculation. Some more exotic metals with many different valence states,
or few well-defined covalent compounds, such as vanadium or rhodium, always pass.

The handling of nitrogen in pentavalent or ionic form can be controlled by setting the optional
nitrogenmode argument, or modifying the global ::cactvs (nitrogen_valence check)
variable.Possible values are xionic, ionic (the default), asis, pentavalent and xpentavalent. These are
the same values as with the ens nitrostyle command - please refer to that command for more
information. In asis mode, both ionic and pentavalent forms pass.

The return value of this command is 0 for failure, 1 for pass.

Note that this command assumes that all hydrogen atoms are in place. Processing structures with
Implicit hydrogen atoms is not supported.

Example:

atom valencecheck [ens create {CN(=0)=0}] 2
atom valencecheck [ens create {C[N+] (=0) [0-]1}] 2

These sample commands check the valence state of atom 2, the nitrogen atom in two different
encodings of nitromethane. The first encoding returns 0, the second 1.

atom valcheck is a short alias.

atom vicinity

atom vicinity ehandle label maxdistance ?mindistance? ?filterset? ?property?
a.vicinity(maxdistance=, ?mindistance=?,?filters=?, ?coordinateproperty="?)

Get a list of the labels of atoms located in a 3D distance range from a query atom. The distance is
computed from the atomic coordinates in property A_xyz, or another float-vector atomic property
explicitly specified. Query distances are specified in Angstrom, or whatever the default unit of a
custom property is. If no minimum distance is given, it is assumed to be zero. Nevertheless, the
query atom itself is never part of the returned set.

The reported atoms do not need to be bonded to the query atom directly or indirectly. If no atoms
are found in the distance range, or none pass the optional filter set, an empty list results. If there are
no atomic 3D coordinates, and these cannot be computed, an error is raised.

atom xdelete

atom xdelete ehandle ?label?...

atom xdelete ehandle all

a.xdelete ()

ete (eref,?alabel/aref/arefsequence?, ...)
elete(aref,...)

Atom.Xdelete (eref,“Nall”)

This command is a variation of the atom delete command. The only difference is that it also deletes
all hydrogen atoms the deleted atoms were bonded to.

The special atom label al/ requests deletion of all atoms. Usually, this is equivalent to ens clear.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 151

CACTVS Tel and Python Scripting Language Reference

152

The return value of the command is the number of deleted atoms.

Example:
atom xdelete S$ehandle 1

This command is one of few atom subcommands which do not require an atom label. If no label is
given, the command does nothing. This is useful for list expansions where the list might be empty:

atom xdelete $ehandle {*}Sdelatomlist

atom xhdelete

atom xhdelete ehandle ?label?...
atom xhdelete ehandle all

a.xhdelete ()

Atom.Xhdelete (eref, ?alabel/aref/arefsequence?, ...)
Atom.Xhdelete (aref, ...)
Atom.Xhdelete (eref, “all”)

This command is a variation of the atom delete command. The difference is that it also deletes all
hydrogen atoms the deleted atoms were bonded to, and the cut bond valences to atoms which are
not hydrogen, and not deleted by the same statement, are saturated with added hydrogen atoms.

The special atom label all requests deletion of all atoms. Usually, this is equivalent to ens clear.

The return value of the command is the number of deleted atoms.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The bioitem Command

Bioitems are node components of biologics objects and similar to atoms, which are the node
components of structure ensembles.

Bioitems are minor objects. Their associated properties start with an I prefix.

bioitem append

bioitem append bhandle label ?property value?...
i.append ({?property:value,?...})
i.append (?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

bioitem defined

bioitem defined bhandle label property
i.defined (property)

This command checks whether a property is defined for the bioitem. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The biologics valid command is used for this purpose.

The command returns a boolean status value.

bioitem delete

bioitem delete bhandle ?label?...

bioitem delete bhandle all

i.delete ()
Bioitem.Delete (eref, ?ilabel/iref/irefsequence?,...)
Biooitem.Delete (iref, ...)
Bioitem.Delete (bref, “all”)

Delete zero or more bioitems. All biolinks which the bioitems participate in are also deleted.
The special bioitem label all requests deletion of all bioitems.
The return value of the command is the number of deleted bioitems.

Example:
bioitem delete S$bhandle 1

This command is one of few bioitem subcommands which do not require an bioitem label. If no label
is given, the command does nothing. This is useful for list expansions where the list might be empty:

eval bioitem delete S$bhandle $delitemlist
bioitem delete $bhandle {*}Sdelitemlist
bioitem dget

bioitem dget bhandle label propertylist ?filterset? ?parameterdict?
i.dget (property=,?filters=?, ?parameters=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 153

CACTVS Tel and Python Scripting Language Reference

154

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, biooitem get and bioitem dget are equivalent.

bioitem exists

bioitem exists bhandle label ?filterlist?

i.exists(?filters=?)

Bioitem.Exists (bref, label, ?filters="?)

Check whether this bioitem exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the bioitem does not exist, or fails the filter, and 1 in
case of successful testing.

Example:

bioitem exists S$bhandle 99

bioitem fill

bioitem fill bhandle label ?property value?...
i.fi11 ({property:value,...})

i.fil1l (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

bioitem filter

bioitem filter bhandle label filterlist
i.filter(filters)

Check whether a bioitem passes a filter list. The return value is boolean 1 for success and 0 for
failure.

bioitem get
bioitem get bhandle label propertylist ?filterset? ?parameterdict?
i.get (property=,?filters=?, ?parameters="?)

i[property]

i.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the bioitem get command are bioitem new, bioitem dget, bioitem nget,
bioitem show, bioitem sqldget,bioitem sqlget, bioitem sqglnew and bioitem sqlshow.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

bioitem index
bioitem index bhandle label

i.index ()

Get the index of the bioitem. The index is the position in the bioitem list of the biologics object. The
first position is index 0.

bioitem jget
bioitem jget bhandle label propertylist ?filterset? ?parameterdict?
i.jget (property=,?filters=?, ?parameters=?)

This is a variant of bioitem get which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

bioitem jnew

bioitem jnew bhandle label propertylist ?filterset? ?parameterdict?
i.Jjnew (property=,?filters=?, ?parameters="?)

This is a variant of bioitem new which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

bioitem jshow

bioitem jshow bhandle label propertylist ?filterset? ?parameterdict?

i.jshow (property=,?filters=?, ?parameters=?)

This is a variant of bioitem show which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

bioitem item

bioitem item bhandle label
Bioitem.Ref (bref,identifier)

Return the bioitem label stored in property 1 1ABEL (TcL), or a minor object reference (PYTHON).
This is useful in case the label used in the command is not a straightforward numerical label or
reference but some other item identification format.

bioitem bioitem is an alias.

bioitem links

bioitem links bhandle label ?filterset? ?filtermode?

i.links (?filters=?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the biolinks which connect
this bioitem fragment. This is explained in more detail in the section about object cross-references.

bioitem biolinks is a command alias.

bioitem new

bioitem new bhandle label propertylist ?filterset? ?parameterdict?
i.new (property=,?filters=?, ?parameters=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 155

CACTVS Tel and Python Scripting Language Reference

156

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

bioitem nget

bioitem nget bhandle label propertylist ?filterset? ?parameterdict?

i.nget (property=,?filters=7?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

bioitem ref
Bioitem.Ref (bref,identifier)

PyTHON only method to get a bioitem reference. See bioitem item command.

bioitem set
bioitem set bhandle label ?property value?...
i.set (?property,value?,...)

i.set ({property:value,...})

i.pro y = value

i[pro; y] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

bioitem show
bioitem show bhandle label propertylist ?filterset? ?parameterdict?

i.show (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, bioitem get and bioitem show are equivalent.

bioitem sqldget

bioitem sqgldget bhandle label propertylist ?filterset? ?Pparameterdict?

i.sqgldget (property=,?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

For examples, see the atom get command. The differences between bioitem get and bioitem
sqgldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

bioitem sqlget

bioitem sqglget bhandle label propertylist ?filterset? P?Pparameterdict?

i.sglget (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference betweenbioitem get and bioitem
sqlget is that the SQL command variant formats the data as SQL values rather than for TcL or
PYTHON script processing.

bioitem sqlnew
bioitem sglnew bhandle label propertylist ?filterset? ?parameterdict?

i.sglnew (property=, ?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The differences betweenbioitem get andbioitem
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TcL or PYTHON script processing.

bioitem sqlshow
bioitem sglshow bhandle label propertylist ?filterset? Pparameterdict?
i.sglshow (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The differences between bioitem get and bioitem
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TcL or PYTHON script processing.

bioitem subcommands

bioitem subcommands

dir (Bioitem)

Lists all subcommands of the bioitem command. Note that this command does not require a
biologics handle, or a bioitem label.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 157

CACTVS Tel and Python Scripting Language Reference

The biolink Command

Biolinks connect bioitems in biologics objects. Their role is similar to bonds connecting atoms in
structure ensembles.

Biolinks are minor objects. Their associated properties use a J_ prefix (mnemonical hint: these are
bioitem joins).

biolink append

biolink append bhandle label ?property value?...
j.append ({?property:value,?...})
j.append (?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

biolink defined

biolink defined bhandle label property
j.defined (property)

This command checks whether a property is defined for the biolink. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The biologics valid command is used for this purpose.

The command returns a boolean status value.

biolink delete

biolink delete bhandle ?label?...

biolink delete bhandle all

j.delete()
Biolink.Delete (bref, ?jlabel/jref/jrefsequence?, ...)
Biolink.Delete (jref,...)

Biolink.Delete (bref,“all”)

Delete zero or more biolinks. The bioitems the links connect remain intact.
The special biolink label all requests deletion of all links.
The return value of the command is the number of deleted biolinks.

Example:
biolink delete S$bhandle 1

This command is one of few biolink subcommands which do not require an biolink label. If no label
is given, the command does nothing. This is useful for list expansions where the list might be empty:

eval biolink delete $bhandle $dellinklist
biolink delete $bhandle {*}Sdellinklist
biolink dget

biolink dget bhandle label propertylist ?filterset? ?parameterdict?
j.dget (property=,?filters=?, ?parameters=?)

158

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get andbiolink
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, biolink get and biolink dget are equivalent.

biolink exists

biolink exists bhandle label ?filterlist?
b.exists (?filters="?)
Biolink.Exists (bref, label, ?filters="?)

Check whether this biolink exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the biolink does not exist, or fails the filter, and 1 in
case of successful testing.

Example:

biolink exists S$bhandle 99

biolink fill

biolink fill bhandle label ?property value?...

J.f111 ({property:value,...})

J.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

biolink filter

biolink filter bhandle label filterlist
j.filter (filters)

Check whether a biolink passes a filter list. The return value is boolean 1 for success and 0 for
failure.

biolink get

biolink get bhandle label propertylist ?filterset? ?parameterdict?
j.get (property=,?filters=?, ?parameters="?)

J [prope

j.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the biolink get command are biolink new, biolink dget, biolink nget,
biolink show, biolink sqldget,biolink sqlget, biolink sqlnew and biolink sqlshow.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 159

CACTVS Tel and Python Scripting Language Reference

biolink index
biolink index bhandle label
j.index ()

Get the index of the bioitem. The index is the position in the biolink list of the biologics object. The
first position is index 0.

biolink items
biolink items bhandle label ?filterset? ?filtermode?

Jj.items (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the bioitems which are
connected by the biolink. This is explained in more detail in the section about object
cross-references.

biolink bioitems is a command alias.

biolink jget

biolink jget bhandle label propertylist ?filterset? ?parameterdict?
j.Jjget (property=,?filters=?, ?parameters=?)

This is a variant of biolink get which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

biolink jnew

biolink jnew bhandle label propertylist ?filterset? ?parameterdict?
j.Jjnew (property=, ?filters=?, ?parameters=?)

This is a variant of biolink new which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

biolink jshow

biolink jshow bhandle label propertylist ?filterset? ?parameterdict?
j.Jjshow (property=, ?filters=?, ?parameters=?)

This is a variant of biolink show which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

biolink link
biolink link bhandle label

Biolink.Ref (bref,identifier)

Return the biolink label stored in property J LaBEL (TcL), or a minor object reference (PYTHON).
This is useful in case the label used in the command is not a straightforward numerical label or
reference but some other item identification format.

biolink biolink is an alias.

biolink new

biolink new bhandle label propertylist ?filterset? ?parameterdict?

j.new (property=,?filters=?, ?parameters="?)

160

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

biolink nget

biolink nget ehandle label propertylist ?filterset? ?parameterdict?

j.nget (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

biolink ref
Biolink.Ref (bref,identifier)

PytHoN only method to get a biolink reference. See biolink link command.

biolink set

biolink set bhandle label ?property value?...
set (?property,value?, ...)
set ({property:value,...})

= value

j

j
Jj.pr
j[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

biolink show
biolink show bhandle label propertylist ?filterset? ?parameterdict?

j.show (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, biolink get and biolink show are equivalent.

biolink sqgldget

biolink sgldget bhandle label propertylist ?filterset? Pparameterdict?
j.sgldget (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 161

CACTVS Tel and Python Scripting Language Reference

For examples, see the biolink get command. The differences betweenbiolink get andbiolink
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

biolink sqlget

biolink sglget bhandle label propertylist ?filterset? P?parameterdict?
j.sglget (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
sqlget is that the SQL command variant formats the data as SQL values rather than for TcL or
PYTHON script processing.

biolink sqglnew
biolink sglnew bhandle label propertylist ?filterset? ?parameterdict?

j.sqlnew (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The differences betweenbiolink get andbiolink
sqglnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TcL or PYTHON script processing.

biolink sqlshow
biolink sqglshow bhandle label propertylist ?filterset? ?Pparameterdict?

j.sqglshow (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The differences betweenbiolink get andbiolink
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TcL or PYTHON script processing.

biolink subcommands

biolink subcommands
dir (Biolink)

Lists all subcommands of the biolink command. Note that this command does not require a
biologics handle, or a biolink label.

162 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The biologics command

Biologics objects are a high-level representation of biological macromolecules. Internally, they are
anetwork of items, connected by links. Items usually are superatoms, and links a more intricate type
of bond which do not just link the superatom items, but additionally contain information about
where and how the links connect to the superatoms in expanded form. Biologics can usually be
expanded into normal structure ensembles with standard atoms and bonds.

Biologics are major objects. Associated properties start with a Q prefix.

biologics append

biologics append bhandle ?property value?...

b.append ({?property:value,?...})

b.append (?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

biologics assign

biologics assign bhandle srcproperty dstproperty

b.assign (srcproperty=,dstproperty=)

Assign property data to another property on the same biologics object. Both properties must be
associated with the biologics object class. This process is more efficient than going through a pair

ofbiologics get/biologics set commands, because in most cases no string or TCL/IPYTHON script
object representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant biolgics rename directly
exchanges the property name without any data duplication or conversion, if that is possible. In any
case, the original property data is no longer present after the execution of this command variant.

If the properties are not associated with biologics (prefix Q), the operation is performed on all
bioitem nodes or biolinks if appropriate.

The command returns the object handle for TcL, or object reference for PyTHON.

Examples

biologics assign $bh I IDENT I NAME

biologics create

biologics create ?data?

biologics create attribute value...
Biologics (?data?)

Biologics (dict)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 163

CACTVS Tel and Python Scripting Language Reference

Biologics (attribute,value,...)
Biologics.Create (?data?)
Biologics.Create (dict)
Biologics.Create (attribute,value, ...)

Create a new biologics object. There are three basic styles.

Biologics items can be created as empty shells if no arguments are used. Alternatively, if a single
argument is used, they can be initialized by decoding a line notation. Supported notations currently
include pack strings (see biologics pack), and 1- or 3-letter amino acid codes. The third option is
to use an attribute dictionary - either as a single argument, or as a series or key-value pairs.

The command returns the new object handle or reference.

biologics dataset
biologics dataset bhandle ?filterlist?

b.dataset (?filters=?)

Return the dataset handle or reference of the dataset the biologics item is a member of. It the
biologics item is not member of a dataset, or does not pass all of the optional filters, an empty string
or None for PYTHON is returned.

Example:
biologics dataset S$bhandle

biologics defined

biologics defined bhandle property
b.defined (property)

This command checks whether a property is defined for the biologics item. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The biologics valid command is used for this purpose.

biologics delete
biologics delete ?bhandle/bhandlelist/all?...

b.delete()
Biologics.Delete (“all”)
Biologics.Delete (?bref/brefsequence/bhandle?, ...)

Delete biologics objects and all their associated bioitems and biolinks. The special parameter all
may be used to delete all biologics currently registered in the application. Alternatively, any number
of biologics handles may be specified for specific object deletions.

The command returns the number of deleted biologics.

Example:

biologics delete all
biologics delete $bhandle

biologics dget

biologics dget bhandle propertylist ?filterset? ?parameterdict?
b.dget (property=, ?filters=?, ?parameters=?)

164

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics dget is that the latter does not attempt computation of property data, but rather
initializes the property values to the default and return that default if the data is not yet available.
For data already present, biologics get and bioologics dget are equivalent.

biologics dup
biologics dup bhandle ?dataset? ?position?

b.dup (?target=7?, ?position=7?)

Duplicate a biologics object with all minor objects and all attached data on the biologics object
proper and its minor objects.

The duplicate biologics object is placed into the same dataset as the source, if it is a member of a
dataset. Specifying an explicitly empty dataset argument (or None for PYTHON) places the duplicate
outside any dataset, regardless of the dataset membership of the source biologics object.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the biologics
object is inserted at the given position, starting with 0. If the requested position is larger than the
current size of the dataset, the biologics item is appended.

Example:

biologics dup $hhandle

The command returns a new biologics handle or reference.

biologics exists

biologics exists bhandle ?filterlist?
b.exists (?filters="?)

Biologics.Exists (bref,?filters=?)

Check whether a biologics handle is valid. The command returns boolean 0 or 1. Optionally, the
biologics item may be filtered by a standard filter list, and if it does not pass the filter, it is reported
as not valid.

Example:

biologics exists $bhandle

biologics expr

biologics expr bhandle expression

b.expr (expression)

Compute a standard sQL-style property expression for the biologics item. This is explained in detail
in the chapter on property expressions.

biologics fill

biologics fill bhandle ?property value?...
b.fill ({?property:value,...})
b.fill (?property,value?,...)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 165

CACTVS Tel and Python Scripting Language Reference

166

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

biologics filter

biologics filter bhandle filterlist
n.filter (filters=)

Check whether the biologics object passes a filter list. The return value is boolean 1 for success and
0 for failure.

biologics get

biologics get bhandle propertylist ?filterset? ?parameterdict?

biologics get bhandle attribute

b.get (property=,?filters=?, ?parameters=?)

b.get (attribute)

b[property/attribute]

b.property/attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
biologics get $hhandle {B_IDENT B NAME}

yields the ID and name of the biologics object as a list. If the information is not available, an attempt
is made to compute it. If the computation fails, an error results.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the biologics get command are biologics new, biologics dget, biologics
jget, biologics jnew, biologics jshow, biologics nget, biologics show, biologics
sqldget, biolgics sqlget, biologics sqlnew, and biologics sqlshow.

In addition to property data, a biologics object possesses a few attributes, which can be retrieved
with the get command (but not by its related sister subcommands like dget, sqlget, etc.). Some of
them are also modifiable via biologics set.These attributes are:

* coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

* deletable
Flag indicating whether the object can be deleted with a standard biolgics delete
command. This attribute is read-only. Objects which are, for example, property data values
cannot be deleted by standard means.

* failures
If the property computation failure cache is active, return a list of all properties which have
failed computation for this object after the last structural change. This attribute is read-only.

* footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

* header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

° hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

* incomplete
Boolean status flag indicating an aborted input operation during the read of the object from
file, which returned the structure intact but without the complete set of associated data. An
aborted input may be either be the result of an explicitly set input control flag, or by
encountering property data which could not be decoded. This attribute is read-only.

* invisible
Flag indicating whether the object is invisible. This is not the same as the Aidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

* javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

* modcount
Object data modification count. This attribute is read-only.

° mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

* pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

° pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

* refcount
If the Tev interpreter is using native CAcTvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TcL object references active for this object. This attribute is read-only.

* scoped
A boolean object visibility control flag. If set, and global control flag
: :cactvs (object_scope) is also set, the object is visible only in theTev interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

o selected
Flag indicating whether the object is selected. This attribute can be changed.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 167

CACTVS Tel and Python Scripting Language Reference

168

* tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

° uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

° X
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

°y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

biologics getparam

biologics getparam hhandle property ?key? ?default?
b.getparam(property=, ?key=?, ?2default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PyTHoN). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

biologics hierarchy
biologics hierarchy bhandle ?filterlist? ?root?

b.hierarchy(?filters=7?, ?root="?)

Return the hierarchy handle or reference of the hierarchy the biologics object is part of. If the object
is not member of a hierarchy, or does not pass all of the optional filters, an empty string or None for
PyTHON is returned. By default, the hierarchy object which directly contains the object is returned.
If the root flag is set, the root hierarchy object is reported instead, which is the same only if the
hierarchy has only a single level.

Example:

biologics hierarchy $ehandle

biologics index

biologics index bhandle

b.index ()

Get the position of the biologics object in the object list of its dataset. If the object is not member
of a dataset, -1 is returned.

biologics items

biologics items bhandle ?filterset? ?filtermode?

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

b.items (?filters=?, ?mode="?
14

Standard cross-referencing command to obtain the labels or references of the bioitems the biologics
object contains as minor objects. This is explained in more detail in the section about object
cross-references.

biologics bioitems is an alias for this command.

Example:

biologics items S$bhandle

biologics jget

biologics jget bhandle propertylist ?filterset? ?parameterdict?
b.jget (property=,?filters=?, ?parameters="?)

This is a variant of biologics get which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

biologics jnew

biologics jnew bhandle propertylist ?filterset? ?parameterdict?

b.jnew (property=,?filters=?, ?parameters=?)

This is a variant of biologics new which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

biologics jshow

biologics jshow bhandle propertylist ?filterset? ?parameterdict?
b.jshow (property=,?filters=?, ?parameters="?)

This is a variant of biologics show which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

biologics links

biologics links bhandle ?filterset? ?filtermode?

b.links (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the biolinks the biologics
object contains as minor objects. This is explained in more detail in the section about object
cross-references.

biologics biolinks is an alias for this command.
Example:
biologics links $bhandle

biologics list

biologics list ?filterlist?
Biologics.List (?filters=?)

This command returns a list of the biologics object handles currently registered in the application.
This list may optionally be filtered by a standard filter list.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 169

CACTVS Tel and Python Scripting Language Reference

170

biologics lock
biologics lock bhandle propertylist/biologics/bioitem/biolink/all ?compute?

b.lock (property=, ?compute=?)

Lock property data of the biologics object, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the biologics object or its minor object components which would invalidate the
information. Property data remains locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

* Property names
Valid property instances on the biologics object or biologics minor objects are locked. If the
boolean compute flag is set, an attempt is made to compute the property if it is not yet
present. Otherwise, a request to lock non-existent data is silently ignored. It is not possible
to lock individual property fields.

e all
All valid biologics, bioitems and biolinks properties are locked. The compute flag is
ignored.

* bioitem

All valid bioitems properties are locked. The compute flag is ignored.
* biolink

All valid biolink properties are locked. The compute flag is ignored.

* biologics
All valid biologics properties are locked. The compute flag is ignored.

The lock can be released by a biologics unlock command.

The return value is the original biologics handle or reference.

biologics max
biologics max bhandle propertylist ?filterset?

b.max (property=, ?2filters=?)

Get the maximum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values.

While it is possible to work with biologics object properties, this is pointless since there is only a
single instance of a biologics property per biologics object. Usually, bioitem or biolink minor object
properties are tested. The objects whose property values are used for the determination of the
maximum values may optionally be filtered by a standard filter set. If no objects pass the filter, the
result is an empty list.

biologics metadata

biologics metadata bhandle property ?field ?value??
b.metadata (property=, ?2field=?, ?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands biologics setparam and

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

biologics getparam can be used for convenient manipulation of specific keys in the computation
parameter field. Metadata can only be read from or set on valid property data.

biologics min

biologics min bhandle propertylist ?filterset?

b.min (property=,?2filters=?)

Get the minimum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values.

While it is possible to work with biologics object properties, this is pointless since there is only a
single instance of a biologics property per biologics object. Usually, bioitem or biolink minor object
properties are tested. The objects whose property values are used for the determination of the
minimum values may optionally be filtered by a standard filter set. If no objects pass the filter, the
result is an empty list.

biologics move

biologics move bhandle ?datasethandle|remotehandle? ?position?

b.move (?target=7?, ?position=?)

Make the biologics object a member of a dataset, or remove it from a dataset. If the dataset handle
or reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed
from its current dataset. The dataset handle or reference may be the name of a remote dataset for
moving objects over a network connection.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of
dataset objects minus one, the object is appended as per the default. It is legal to use this command
for moving objects within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset. Using this mode with remote datasets is currently not supported.

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TcL) or None (PYTHON) if it was not member of a
dataset.

biologics mutex

biologics mutex bhandle mode

b.mutex (mode)

Manipulate the object mutex. During the execution of a script command, the mutex of the major
object(s) associated with the command are automatically locked and unlocked, so that the operation
of the command is thread-safe. This applies to builds that support multi-threading, either by
allowing multiple parallel script interpreters in separate threads or by supporting helper threads for
the acceleration of command execution or background information processing.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 171

CACTVS Tel and Python Scripting Language Reference

172

This command locks major objects for a period of time that exceeds a single command. A lock on
the object can only be released from the same interpreter thread that set the lock. Any other threaded
interpreters, or auxiliary threads, block until a mutex release command has been executed when
accessing a locked command object. This command supports the following modes:

* lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

* reset
Release all persistent locks on the object, if they exist.

° test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

* unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

biologics need

biologics need bhandle propertylist ?mode? ?parameterdict?

b.need (property=, ?mode=7?, ?parameters=?)
Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original biologics object handle or reference.

biologics new

biologics new bhandle propertylist ?filterset? ?parameterdict?

b.new (property=, ?mode=?, ?parameters=?)
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

biologics nget

biologics nget bhandle propertylist ?filterset? ?parameterdict?

b.nget (property=, ?mode=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

For examples, see the biologics get command. The difference between biologics get and
biologics nget isthat the latter always returns numeric data, even if symbolic names for the values
are available.

biologics nnew

biologics nnew bhandle propertylist ?filterset? ?parameterdict?

b.nnew (property=, ?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics nnew is that the latter always returns numeric data, even if symbolic names for the
values are available, and that property data re-computation is enforced.

biologics pack

biologics pack bhandle ?maxsize? ?requestprops? ?suppressedprops?
?compressionlib?

b.pack (?maxsize=?, ?requestprops=?, ?suppressedprops=?, 2compressionlib="?)

Pack the biologics object and all its bioitem and biolink components into a base64-encoded
compressed serialized object string. This string does not contain any non-printable characters and
is a full dump of the internal state of the object, omitting only property data that was declared to be
so easily re-computed that a dump is not worthwhile. Further object relationships, such as datasets
the object might be a member in are not saved.

The maximum size of the object string (default -1, meaning unlimited size) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The other optional property parameter lists allow to request a specific property set to be part of the
package, even if it normally would not be included, and to explicitly omit properties from the dump.
No property computation is performed, and suppressed properties are not purged from the biologics
object.

Hierarchies can be restored from a packed object string by the biologics unpack or biologics
create commands.

The biologics object and its minor objects remain in existence after using this command.

The default compression library is z/ib. Other useful variants include /zo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with z/ib.

The return value of this command is the packed string.
In PyTHON, biologics objects support the standard pickle/unpickle protocol.

Example:

set dbstring [biologics pack $hhandle]

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 173

CACTVS Tel and Python Scripting Language Reference

174

biologics properties
biologics properties filehandle P?Ppattern? ?noempty?

b.properties (?pattern=?, ?noempty="?)

Generate a list of the names of all properties attached to the biologics object. This includes properties
of bioitem and biolink minor objects which are part of the biologics object. Optionally, the list may
be filtered by a string match pattern.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The command may be abbreviated to props instead of the full name properties.

biologics purge

biologics purge bhandle propertylist/biologics/bioitem/biolink ?emptyonly?
b.purge (?properties=?, ?emptyonly="?)

Delete property data from the biologics object. The properties may be biologics properties (prefix
Q), or properties of the biologics minor objects, i.e. bioitems (prefix 1_) and biolinks (prefix J).
If a property marked for deletion is not found on the associated objects, it is silently ignored.

The optional boolean flag emptyonly allows to restrict the deletion to those properties where all the
values of a property associated with a biologics object (such as on all bioitems in a network for
bioitem properties, or just the single biologics property value for biologics properties) are set to the
default property value.

In addition to property names, the object class names biologics, bioitem Or biolink may be
used. These delete all property data of that class from the biologics item. They do not delete the
objects proper, e.g. all bioitems are still present after a biologics purge $bh bioitem, though
without any data that was not locked.

The return value is the original object handle or reference.

biologics ref
Biologics.Ref (identifier)
PytHON only method to get a biologics reference from a handle or another identifier. For biologics,

other recognized identifiers are biologics references, integers encoding the numeric part of the
handle string, or the vub of the biologics object.

biologics rename
biologics rename bhandle srcproperty dstproperty

b.rename (srcproperty=,dstproperty=)

This is a variant of the biologics assign command. Please refer the command description in that
paragraph.

biologics set

biologics set bhandle ?property value?...
b.set (property,value,...)

b.set ({property:value,...})

b.property = value

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

b[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

biologics setparam

biologics setparam bhandle property ?key value?...

biologics setparam bhandle property dictionary

b.setparam(property, ?key,value?...)

b.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

biologics show

biologics show bhandle propertylist ?filterset? ?parameterdict?

b.show (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, biologics get and biologics show
are equivalent.

biologics sqldget

biologics sqgldget bhandle propertylist ?filterset? ?parameterdict?

b.sgldget (property=, ?mode=7?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The differences between biologics get and
biologics sqgldget are that the latter does not attempt computation of property data, but initializes
the property value to the default and returns that default, if the data is not present and valid; and that
the SQL command variant formats the data as SQL values rather than for TcL or PYTHON script
processing.

biologics sqlget

biologics sqglget bhandle propertylist ?filterset? ?parameterdict?
b.sgldget (property=, ?mode=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics sqlget is that the SQL command variant formats the data as SQL values rather than for
TcL or PYTHON script processing.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 175

CACTVS Tel and Python Scripting Language Reference

176

biologics sqglnew

biologics sqglnew bhandle propertylist ?filterset? ?parameterdict?

b.sglnew (property=, ?mode=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The differences between biologics get and
biologics sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

biologics sqlshow

biologics sglshow bhandle propertylist ?filterset? ?parameterdict?

b.sglshow (property=, ?mode=7?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The differences between biologics get and
biologics sglshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TcL or PYTHON script processing.

biologics subcommands

biologics subcommands

dir (Biologics)

Lists all subcommands of the biologics command. Note that this command does not require a
biologics handle.

biologics transfer

biologics transfer bhandle propertylist ?targethandle? ?targetpropertylist?
b.transfer (properties=, ?target=?, ?targetproperties=?)

Copy property data from one biologics object to another biologics object or other major object,
without going through an intermediate scripting language object representation, or dissociate
property data from the network. If a property in the argument property list is not already valid on
the source network, an attempt is made to compute it.

If a target object is specified, the return value is the handle or reference of the target object. The
source and target object cannot be the same object. In case a property associated with biologics
minor objects (bioitems and biolinks), the behavior is the same as described for ensemble minor
objects in the documentation of ens transfer.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple biologics get, i.€. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only
unlinked from the source object, but not destroyed. This means that the object handles returned by
the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

biologics unlock

biologics unlock bhandle propertylist/biologics/bioitem/biolink/all
b.unlock (property=)

Unlock property data for the biologics item, meaning that they are again under the control of the
standard data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

* Property names or references
Valid property instances on the biologics or its minor objects are unlocked. Non-existent
data is silently ignored. It is not possible to unlock individual property fields.

° all
All valid biologics object and associated minor object properties are unlocked.

* biologics
This is an object class identifier. All property data which is controlled by the biologics major
object and attached to the specified object class is unlocked.

* bioitem
This is an object class identifier. All property data which is controlled by the biologics major
object and attached to its bioitem minor objects is unlocked.

* biologics
This is an object class identifier. All property data which is controlled by the biologics major
object and attached to it biolink minor objects is unlocked.

Property data locks are obtained by the biologics lock command.
The return value is the original biologics object handle or reference.

biologics unpack

biologics unpack packstring ?compressionlib?

Biologics.Unpack (data=, ?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by a biologics pack
command. The return value of this function is the handle or reference of the newly created biologics
object, which is an exact duplicate of the packed original biologics object.

Biologics objects may also be unpacked by a biologics create command.
The default compression library is z/ib. For more options, see biologics pack.

Example:

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 177

CACTVS Tel and Python Scripting Language Reference

178

set packdata [biologics pack $bhandle]
set bhandle [biologics unpack $packdata]

biologics valid

biologics valid bhandle propertylist

b.valid (property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the biologics object or its minor objects. No attempt at computation is made. For PyTHoN, where
single-item lists are syntactically not the same as a single value, the return value is a single boolean
if the argument was a string or a property reference, and only a single property was decoded.

biologics verify
biologics verify bhandle property
b.verify (property)

Verify the values of the specified property on the biologics object. The property data must be valid,
and a biologics object or biologics minor sub-object property. If the data can be found, it is checked
against all constraints defined for the property, and, if such a function has been defined, is tested with
the value verification function of the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The bond Command

The bond command is the generic command used to manipulate bond. The syntax of this command
follows the standard schema of command/subcommand/majorhandle/minoriabel.

Examples:

bond get Sehandle 1 B ORDER
bond atoms S$ehandle 2

This is the list of officially supported subcommands:

bond align3d

bond align3d ehandle label pointl point2 ?property?

b.align3d(pointl=,point2=, ?coordinateproperty="?)

Align the 3D atomic coordinates (by default in property 2 xvz) of the molecule the first specified
atom of the bond is a member of in such a fashion that the first bond atom is positioned on the first
point argument, and the vector to the second bond atom points into the same direction as the vector
from the first to the second point argument.The bond lengths are not changed in this process.

The syntax of the point arguments is the generic vector syntax as documented in the vec command.
If the bond is selected with an identifier different than an atom pair, the first bond atom is the atom
moved to the first point argument. If the atom pair specification syntax is used, the first atom in the
specification list is the anchor, which may or may not be the first bond atom.

The command fails if property 2_xvz (or is explicitly specified alternative) is not present on the
ensemble and cannot be computed.

Example:
bond align3d $eh {2 1} 0 x

Atom 2 is moved to the origin, and the bond from atom 2 to atom 1 points in x-direction, i.e. it has
a 3D coordinate triple like {0.0,0.0,1.5}, with the bond length as z component. The other atomic
coordinates in the molecule are adjusted accordingly.

The command does not check for coordinate overlap with atoms in other molecules in the ensemble.

In case of special bonds, the second atom may not be in the same molecule as the first. This is legal
- its coordinates are only needed to compute the axis and degree of rotation - though the second atom
is then not moved by the command.

The command returns the label (for TcL) or reference (for PyTHoN) of the bond.

The command name can be shortened to align.

bond append

bond append ehandle label ?property value?...
b.append ({?property:value,?...})

b.append (?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 179

CACTVS Tel and Python Scripting Language Reference

180

Example:
bond append S$Sehandle 1 B LABELCOLOR “00”

bond atoms
bond atoms ehandle label ?filterset? ?filtermode?

b.atoms (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the atoms which form the
bond. This is explained in more detail in the section about object cross-references.

Examples:

bond atoms $ehandle 1
bond atoms $ehandle 1 {!carbon !hydrogen} count

The first example returns all labels of the atoms in bond 1. The second example will compute the
number of atoms in the bond which are neither carbon nor hydrogen.

bond bond
bond bond ehandle label
Bond.Ref (eref,identifier)

Standard cross-referencing command to obtain the label (for TcL) or reference (for PyTHoN) of the
bond as stored in property B_LABEL from a bond label, or another bond identifier, such as an atom
label pair. This is explained in more detail in the section about object cross-references.

Example:
bond bond $ehandle [list 1 2]

returns the label of the bond between atoms 1 and 2, or an empty string if the bond does not exist.

bond change
bond change ehandle label deltabondorder/type ?deltacharge?

b.change (deltabondorder=, ?deltacharge="?)

Bond.Change (eref=, atoms=,deltabondorder=, ?deltacharge=?)

This command changes the order of a bond. It may also be used to create bonds, or to delete bonds.

As in all bond commands, the bond may either be identified by its label or equivalent descriptor, or
a set of atom identifiers. In case a new bond is made, a list or tuple of atom labels or other atom
identifiers is provided as parameter instead of a single bond identifier. The distinction between atom
and bond references is performed via the list length of the label parameter. Anything with more than
one list element is interpreted as an atom-based specification. The order of atoms in an atom-based
specification is arbitrary.

The parameter deltabondorder is usually a signed integer which defines the bond order change. If
it is 0, the command does nothing, if the deltacharge parameter is also zero or omitted. If it is less
than zero, the bond order is reduced. For VB bonds, the free electron count on the atoms (property
A FREE ELECTRONS) is adjusted. If the bond is not a valence bond, or the change in bond order is
larger than the existing bond order, the bond is deleted. If the change in bond order is positive, and
the bond type a normal VB bond, the bond order is increased, provided that the atoms have sufficient
free electrons for bonding (again property A FREE_ELECTRONS). A positive change in bond order for
a non-VB bond has no effect.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If a bond type is specified in string form instead of a numerical bond order, the type of the bond is
changed in B_TyPE. If it originally was a VB bond, the bond electrons are added to the atom free
electron count in A FREE_ELECTRONS. If the bond type is changed to a VB bond from another type,
an attempt to create a single bond is made and the electron count adjusted. If the count would
become negative, the operation fails. The Python interface uses the de/tabondorder named argument
also for this bond type change operation, which is slightly misleading.

If the optional chargedelta parameter is used, electrons which imply formal charge (property

A FORMAIL CHARGE) are transferred between the atoms before the bond operation. The charge
difference is applied to the first atom in the specification, and implicitly the second atom is affected
inversely. If the bond was specified by a bond label instead of an atom list, the internal order of the
atoms in the bond is used.

Examples:

bond change [ens create CC] {1 2} -1

bond change [ens create CC] {2 1} -1 1

set ehandle [ens create C=0]; bond change $ehandle {1 2} -1; ens hadd $ehandle
bond change [ens create {[H+].[OH-]}] {1 2} 1 -1

The first example line performs a radical dissociation between the carbon atom (atoms 1 and 2 -
when decoding a SMILES string, the atom labels correspond to the sequence in the SMILES string).
The bond order change is -1, which cuts the bond because it is only a single bond. Since no charge
modification was specified, both atoms end up with a radical electron.

The second line shows the same process as a heterolytic dissociation. The second carbon atom is the
recipient of a positive charge, because it was listed first, and the charge delta is +1. The first carbon
atom receives the counter-charge and bears a formal charge of -1.

The third example performs a bond order reduction on the C=O double bond, and then saturates the
molecule with hydrogen. The result is a reduction of formaldehyde to methanol.

The final example is a recombination reaction of a proton and a hydroxide anion. Because the proton
cannot provide any electrons for the new bond, the first step is a formal transfer of one electron
(charge -1) to this atom. Implicitly, it is removed from the other atom of the newly formed bond,
which is the negatively charged oxygen atom of the hydroxyl anion. The result is a neutral water
molecule.

The command returns the new or old bond label for TcL, or a bond reference for PytHoN. If the bond
was deleted, the return value is zero for TcL, or None for PYTHON.

bond create

bond create ehandle label ?type/order? ?order?

Bond (eref=, atoms=atomsequence/bond, ?type=type/order?, 2order="?)

Bond.Create (eref=, atoms=atomsequence/bond, ?type=type/order?, ?order=?)

b.create (?type/order?)

This command creates a new bond, or changes the bond order or bond type of an existing bond. In
case a new bond is made, a list of atom labels or other atom identifiers is provided as parameter
instead of a single bond identifier. The distinction between atom and bond references is performed
via the list length of the label parameter. Anything with more than one list element is interpreted as
an atom-based specification. The order of atoms in an atom-based specification is arbitrary. In case

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 181

CACTVS Tel and Python Scripting Language Reference

182

a new bond is created, the atoms are entered into the bond in that order. Atom orders in existing
bonds are not changed.

The default bond type is a valence bond (8_TyPE property value is vb) of bond order 1. If this type
of' bond is created, the bond type identifier may be omitted and a bond order directly specified as an
integer. Valence bonds are electron-counted. In order to succeed, the participating atoms must
provide sufficient electrons (property 2 FREE ELECTRONS) for the bond. Both atoms must provide
the same number of electrons. Charge recombination in bond formation is not supported by this
command, but can be achieved with the bond change command. The free electron counts of the
bond atoms are automatically updated. The toolkit does not try to generate more free electrons by
deleting hydrogen atoms bonded to the bond atoms or similar operations. If this kind of intelligence
is required, it must be explicitly scripted, or the bond hcreate command used.

Setting the bond order of an existing bond to 0 deletes the bond.

Besides normal valence bonds, this command can be used to create or manipulate any other bond
type which is known to the toolkit. The names of bond classes understood by this command are
parsed from the enumeration value of property B_TvyPE and may be changed at runtime.

Non-VB bonds do not involve electron counting. It is possible to change the type of a bond with this
command, and in case a VB bond is changed to a non-VB bond, the electrons which were used in
the VB bond are assigned to the A FREE_ELECTRONS properties of the atoms. In the reverse case the
command only succeeds if sufficient free electrons are present. The bond order (stored in property
B_ORDER) of non-VB bonds is zero and cannot be changed with this command. If the bond type is
changed, the bond label may also change. Changing the bond order of an existing bond without a
type change is guaranteed to preserve the bond label.

The command can be used to directly create VB bonds with attributes. In addition to a numeric bond
order, the following bond types are understood which create (or change to) a VB bond and
simultaneously set bond attributes:

° s/a
Create or set a query bond of type single or aromatic. The VB bond order is one.

o s/d
Create or set a query bond of type single or double. The VB bond order is one.

° d
Create or set a query bond of type double or aro. The VB bond order is one.

L] up
Create or set a single bond with a up wedge from with the tip at the first atom.

* down
Create or set a single bond with a down wedge from with the tip at the first atom.

* crossed
Create or set a double bond with the B_FLAGs attribute crossed (generally interpreted as
double bond of unknown stereochemistry).

e either
This is an alias for crossed.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° any
Create or set a query bond of type any. The VB bond order is one.

* dotted
Create or set a single bond with the B r1.AGs display attribute dotted.

o wiggly
Create a single bond which marks undefined double bond stereochemistry.

° wavy
An alias for wiggly.

It is also possible to spell out the bond order (single, double, etc.) instead of using a numerical value.

The attributes B FLAGS, B_QUERY (flags) and B_QUERY (order) of bonds which are created or
edited with a standard attribute-less bond order are reset.

The atom list which serves as a bond identifier or atom set for a new bond may contain more than
two atoms. There are bond types like 3-center bonds and R-group alternative connection points, or
pseudo bond like bond angles and torsion angles which span three four, or even more atoms.

It is not possible with this command to create bonds which involve the exact same set of atoms as
an existing bond but which are of different type. It is also not possible to create bonds which include
the same atom more than once.

Changing or creating a bond triggers a bondchange invalidation event. All minor object classes
depending on an unchanged bond set (such as rings and molecules) as well as all property data on
the ensemble which is directly or indirectly sensitive to changes in the bond set is invalidated if it
is not explicitly locked.

The return value of this command is the label of the newly created or updated bond for TcL, or a bond
reference for PyTHoN. If the bond was deleted, the return value is zero for TcL, or None for PYTHON.

Examples:
bond create [list 1 2] 2

bond create [list #3 #5]
bond create {3 4} complex

The first line creates a standard valence bond with bond order 2 between the atoms with labels 1 and
2, or changes the bond order to a double bond. In case of insufficient bonding electrons, an error is
raised. The second example create a single bond between atoms with index (not label) 3 and 5. The
final example creates a bond of type complex between atoms 3 and 4, using an abbreviated Tcl list
notation. This bond does not perform valence electron counting.

The simple PyTHoN bond constructor syntax has one special limitation. While it is possible to delete
an existing bond via Bond. Create () with bond order zero (which then returns None), this does not
work due to syntactic reasons with the simple Bond () constructor, which must return a valid bond
reference, or throw an error. In any case, using the create subcommand for bond deletion is
counterintuitive under normal circumstances.

bond cut

bond cut ehandle label ?substituentatoml? ?substituentatom2?
b.cut (?substituent=?, ?substituent2=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 183

CACTVS Tel and Python Scripting Language Reference

184

Cut the specified bond and optionally add real or pseudo atoms to the cut site. If no substituent atoms
are specified, the bond is simply cut and its electrons added to the bond atoms are free electrons. This
is equivalentto abond delete command. If substituents are specified, these are immediately linked,
via a single bond, to the cut site. If the cut bond had a multiple bond order, unused electrons are
added to the free electron count. If the cut bond was not a VB bond, no electrons are freed, and,
depending on the type of the substituents, adding a substituent can fail.

Substituents are specified as element symbols, or pseudo element identifiers. If only a single
substituent is specified, both sites receive the same substituent, otherwise the first substituent
applies to the first bond atom, and the second substituent to the second bond atom. This command
only supports bonds with two atoms.

The command returns the atom labels of the substituents. If no substituents are added to an atom,
the return value for that atom is an empty string.

Example:
bond cut [ens create CC] 1 *

This cuts the C-C bond and adds an open site pseudo atom marker to both carbon atoms. The return
value is the list {9 10} for the atom labels (references for Python) of the new pseudo atoms.

bond defined

bond defined ehandle label property

b.defined (property)

This command checks whether a property is defined for the bond. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The ens valid command is used for this purpose.

Example:
bond defined Sehandle 1 B_ORDER

checks whether bond 1 is of a type for which bond orders are defined. The return value is a boolean
status.

bond delete

bond delete ehandle label ?label?...
bond delete ehandle all

b.delete ()

Bond.Delete (eref,”all”)

Bond.Del)

Bond.Delete (eref, ?blabel/bref/brefsequence?, ...)

Delete one or more bonds. The atoms which participate in the bonds are not deleted, but in case the
bond is a standard valence bond, their free electron count (property A FREE_ELECTRONS) is updated.
Molecule and ring information, and other minor object classes under the control of the ensemble
major object which depend on an unchanged bond set are deleted. Any property data which depends
on an unchanged bond set is also invalidated, or, if the property is set up to do so, re-computed.

Ifthe bond which should be deleted does not exist, the request is silently ignored, as long as the bond
specification is syntactically correct.

The return value of this command is the total of all bonds successfully deleted.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

This command does not try to save stereochemistry by transferring wedge data etc. to an adjacent
bond prior to deletion. The xdelete command variant offers this feature.

Example:
bond delete $ehandle [list 1 2]

bond delfrag

bond delfrag ehandle label ?reverse?

b.delfrag(?reverse=?)

This command deletes the bond and (if the reverse flag is not set) all atoms of the minor substituent
(as defined by property B FRaGMENT DIRECTION) linked by the bond. If the reverse flag is set, the
major substituent is deleted instead. The cut site remains unsubstituted, i.e. no automatic addition
of hydrogen is performed.

The command fails of the bond is a ring bond, or not a valence or complex bond.
The return value is the number of deleted atoms.

Example:
bond delfrag [ens create CCCl] {2 3}]

The command cuts the bond between atoms 2 and 3 (the C-Cl bond), and then deletes the minor
fragment (the Cl atom in this case, because it is the one with a smaller heavy atom count). The
deleted fragment is canonic, other properties besides the fragment heavy atom count are used to
break ties (see property B_FRAGMENT DIRECTION).

The command can also be fully spelled out as bond deletefragment.

bond dget

bond dget ehandle label propertylist ?filterset? ?parameterdict?

b.dget (property=, ?2filters=?, ?parameters=?)
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond dget is
that the latter does not attempt computation of property data, but rather initializes the property values
to the default and return that default if the data is not yet available. For data already present, bond

get and bond dget are equivalent.

bond ens
b.ens ()

PytHON-only method to get the ensemble reference from a bond reference.

bond exists

bond exists ehandle label ?filterlist?
b.exists (?filters="?)

Bond.Exists (eref, label, ?filters=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 185

CACTVS Tel and Python Scripting Language Reference

186

Check whether this bond exists. Optionally, a filter list can be supplied to check for the presence of
specific features, or checking of the bond type. The command returns 0 if the bond does not exist,
or fails the filter, and 1 in case of successful testing.

Examples:

bond exists $ehandle 99
bond exists $ehandle [list 1 2]

The second example checks whether a bond between atoms 1 and 2 exists. Instead of using a single
label, all bond labels may be substituted by a list of the labels of their atoms.

bond expr

bond expr ehandle label expression

b.expr (expression)

Compute a standard SQL-style property expression for the bond. This is explained in detail in the
chapter on property expressions.

bond fill

bond fill ehandle label ?property value?...
b.fill ({property:value,...})
b.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

Example:
bond fill Sehandle 1 A COLOR red

sets the color of the first atom bond 1 participates in to red.

The command returns the first fill value.

bond filter

bond filter ehandle label filterlist
b.filter(filters)

Check whether a bond passes a filter list. The return value is boolean 1 for success and 0 for failure.
Example:
bond filter $ehandle 1 [list carbon doublebond]

checks whether the bond is a double bond with one or more carbon atoms.

bond flip

bond flip ehandle label
b.flip()

This utility command manipulates data of property B_FLAGS and possibly B LABEL STEREO (and
other bond stereo descriptors) plus 2_xy and dependent data. If these property data are not already
present, the command does nothing.

The mode of operation depends on the bond order.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

For single bonds. the command inverts three bit groups in B_FLAGS.

* dashed/dotted
If the bond is a wedge bond (any of the flags highwedge or lowwedge are set), and any of
the bits dashed or dotted are set, both dashed and dotted are reset. The result for structure
display is that a dashed wedge becomes a solid wedge. If the bond is a wedge bond, but
neither dashed or dotted are set, both bits are set. The effect for display is that a solid wedge
becomes a dashed wedge. Dashed/dotted bonds which are not wedge bonds are not affected.

o left/right
If the bond has the left or right bit set (the second line of double bonds is plotted to the left
or right side of a central bond line and slightly shortened, instead of drawing two equivalent
bond lines slightly off left and right of the main axis), the currently set /ef#/right bit is reset,
and the other bit set. Bonds without set /eft or right bits are not affected.

* front/back
If the bond has one of these flags set, it is cleared and replaced by the counterpart.

For double bonds, the command inverts all present bond stereo descriptors (B_LABEL STEREO,

B CIP STEREO, B CISTRANS STEREO, B MAP STEREO, B_HASH STEREO) if they are set to a value
indicating presence of stereochemistry. Stereo-dependent properties such as B STEREOINFO and
B_STEREOGENIC are invalidated if not locked. In addition, if 2D coordinates are valid in 2_xy and
the bond is not a ring bond, the smaller half of the structure is rotated around the bond axis in
pseudo-3D fashion. This involves updating o xy and the bond display flags in B FLAGs, and
invalidation of property data dependent on these. If the stereochemistry of a ring bond is changed,
the 2D coordinates are deleted. Currently, 3D atomic coordinates are not modified.

The command is usually employed in preparation of a pseudo-3D horizontal or vertical flip of a
structure drawing. The bond flags are set in such a way that after mirroring the 2D coordinates, the
wedge orientation and ring interior positioning of the bonds are correct in the sense that they still
describe the same stereo isomer and ring double bonds are plotted with a shortened bond inside the
ring.

The command returns 1 if any bits were changed, 0 otherwise.

Example:
bond flip $handle 1

bond get

bond get ehandle label propertylist ?filterset? ?parameterdict?
b.get (property=,?filters=?, ?parameters="?)

blproperty]

b.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:

bond get S$ehandle 1 {B ISAROMATIC B ORDER}

yields the aromaticity status flag and the (Kekulé) bond order of bond 1 as a list. If the information
is not yet available, an attempt is made to compute it. If the computation fails, an error results.

bond get Sehandle 1 A ELEMENT ringatom

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 187

CACTVS Tel and Python Scripting Language Reference

188

gives the elements of all atoms in the bonds which are in a ring.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the bond get command are bond new, bond dget, bond nget, bond show, bond
sqldget, bond sqlget, bond sqlnew and bond sqlshow.

Further examples:

bond get $ehandle 1 R SIZE
bond get Sehandle 1 B _FLAGS (dashed)

bond groups

bond groups ehandle label ?filterset? ?filtermode?

b.groups (?filters=?, ?mode="7?)

Standard cross-referencing command to obtain the labels or references of the groups the bond is
related to. This is explained in more detail in the section about object cross-references. A bond is
considered to be related to a group if all the atoms in the bond are contained in the group.

Example:

bond groups $ehandle 1

bond hadd
bond hadd ehandle label ?filterset? ?flags? ?chargedelta?
b.hadd(?filters=?,?flags=?, ?chargedelta=?)

Add a standard set of hydrogens to the atoms of the bonds. If the filterset parameter is specified, the
atoms need to pass the filter set in order to be processed.

This command only adds missing implicit hydrogen. It does not reduce the current bond order, or
split the bond.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

* no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

* no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

* noanions
Do not add hydrogen to atoms with a negative formal charge.

* noatoms
Do not add hydrogen to atoms without any bonds.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* nocations
Do not add hydrogen to atoms with a positive formal charge.

* noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

* noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

° nofixatomtext
Do not adjust property A TExTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOQOELt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

* nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

° nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

° nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

* nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B TYPE not normal).

* keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

* protonate
Add a single proton to the atom. The charge of the atom is increased, only a single hydrogen
is added regardless of the standard number of missing hydrogens, and this command wi//
issue the standard property invalidation event for atom and bond changes.

° resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

If a charge delta parameter is specified, the atomic charge and free electrons of the atoms are adapted
accordingly before the hydrogens are added. The manipulation of the charge usually changes the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative. This parameter is included for the sake of
compatibility with the atom hadd command. It is rarely useful for bonds.

Adding hydrogens with this command, except if the protonate flag is set, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 189

CACTVS Tel and Python Scripting Language Reference

190

commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

The command returns the number of hydrogens which were added in total to both atoms.

bond hcreate

bond hcreate ehandle label ?type/order? ?order?

Bond.Hcreate (eref=, atoms=atomsequence/bond, ?type=type/order?, 2order=?)

b.hcreate (?type/order?)

This is a variant of the bond create command. The difference to the normal bond creation
command is that this version attempts to delete hydrogen atoms on the bonded atoms if this prevents
illegal free electron counts or valences.

All parameters and return values are the same as for bond create.

bond hstrip

bond hstrip ehandle label ?flags? ?chargedelta?

b.hstrip(?flags=?, ?chargedelta="?)

This command removes hydrogens from the atoms of the selected by. By default, all hydrogen atoms
are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

* deprotonate
If this flag is set, a single proton is removed from the bond atoms. This command variant
does issue a standard atom and bond change property invalidation event, and it always ends
processing after removing the first proton. Proton removal decreases the charge of the atom
by one.

* keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

* keepisotopes
Keep hydrogen atoms which are isotopically labeled (including enriched/depleted 1H).

* keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note that these commands can be run in a mode which does not leave information
about automatic addition - hydrogens added this way do not survive.

* keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

* keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

* normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

* wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

If a charge delta parameter is specified, the charge and free electrons of the atoms are adapted
accordingly before the hydrogens are added. The manipulation of the charge changes the number of
added hydrogen atoms. It is not possible to change the charge in such a way that the number of free
electrons would become negative. This option is mostly provided for compatibility with the atom
hstrip command. It is rarely useful for bonds.

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
in case the deprotonate flag is set. The system assumes that this operation is done as part of some
file output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that there are implicit hydrogens.

The return value of the command is the total number of hydrogens removed from all bond atoms.

bond hydrogenate

bond hydrogenate ehandle label ?filterset? ?changeset?

b.hydrogenate (?filters=?, ?changeset="?)

Reduce the bond to a single bond except if excluded by the filter set.
If a change set is supplied, its interpretation is the same as in bond hadd.
The command returns the number of added hydrogens.

Example:
bond hydrogenate $eh 1 {!arobond !ccbond}

This reduces the bond to a single bond, provided the bond is not aromatic or a C-C bond.

bond index
bond index ehandle label

b.index ()

Get the index of the bond. The index is the position in the bond list of the ensemble. The first position
is index 0.

Example:

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 191

CACTVS Tel and Python Scripting Language Reference

192

bond index $ehandle 99

bond jget

bond jget ehandle label propertylist ?filterset? ?parameterdict?

b.jget (property=,?filters=7?, ?parameters="?)

This is a variant of bond get which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

bond jnew

bond jnew ehandle label propertylist ?filterset? ?parameterdict?

b.jnew (property=, ?filters=?, ?parameters=?)

This is a variant of bond new which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

bond jshow

bond jshow ehandle label propertylist ?filterset? ?parameterdict?

b.jshow (property=,?2filters=?, ?parameters=?)

This is a variant of bond show which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

bond local

bond local ehandle label propertylist ?filterset? ?parameterdict?

b.local (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
bond local Sehandle 1 B LABEL STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

bond match

bond match ehandle label ss ehandle ?ss label? ?matchflags? ?ignoreflags?
Patommatchvar? ?bondmatchvar? ?molmatchvar?

b.match (substructure=, ?substructurebond=?, ?matchflags=?, ?ignoreflags="?,
?atommatchvariable=?, ?bondmatchvariable=?, ?molmatchvariable=?)

Check whether the selected bond matches a substructure. Only the first substructure bond, or the

bond selected by the substructure bond label parameter, is tested. The substructure may be part of

any structure ensemble, and even be in the same ensemble as the primary command bond. Both the

bond atoms and the bond proper are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,

atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset the flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels (references for PyTHoN). If no match can be found, the variable is set to an empty
list. In case only a bond or molecule match variable is needed, an empty string can be used to skip
the unused match variable argument positions

Example:
set ss [ens create {[F,Cl,Br,I][C,c]} smarts]
set b _is cxbond [bond match $ehandle Slabel S$ss {} {} {} amap]
if {$b_is cxbond} {
set b xatom [lindex [lindex Samap 0] 1]
set b _catom [lindex [lindex $Samap 1] 1]
}

bond mols

bond mols ehandle label ?filterset? ?filtermode?

b.mols (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the label(s) (references in case of PYTHoN) of the
molecule(s) the bond is a member of. This is explained in more detail in the section about object
cross-references.

Examples:

bond mols $ehandle 1
bond mols $ehandle 1 heterocycle

The first example simply returns the label(s) of the molecule the bond is a part of. Note that it is
possible for bonds to span more than one molecule - this is the reason why the command name is
mols, not mol. If a bond spans more than one molecule, a list of the molecule labels is reported.

The second example returns the molecule label(s) if the bond is part of a molecule which contains
one or more heterocycles. If the molecule(s) do not contain a heterocycle, an empty list is returned.

bond neighbors

bond neighbors ehandle label ?filterset? ?filtermode? ?anchoratomlabel?
b.neighbors (?filters=7?, ?mode=?, ?anchoratom="?)

This command retrieves neighbor atoms of the bond. The atoms which participate in the bond are
not included.

By default, a list with the labels (references in case of PyTHoN) of the atoms passing the optional filter
set is the result. The retrieval mode may optionally be changed by supplying a filter mode
specification list as in the standard cross referencing commands, such as count or exclude. Both
parameters may be set to an empty list or entirely omitted if the default function is needed.

This command supports a special filtermode parameter in addition to the standard set (exists, count,
exclude, include). The bonds parameter, followed by a bit set combination from the allowed values
ring, sidechain or bridge can be used for topological filtering of the traversable bonds. By default,
no topological bond filtering is applied.

If the optional anchor atom label (or other atom specification) is provided, only atoms which are
bonded via a VB or complex bond (B TYPE vb or complex) to this atom are listed. If the anchor atom
is one of the bond atoms, the effects is similar to using the atom neighbors command, except that

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 193

CACTVS Tel and Python Scripting Language Reference

194

the other bond atom(s) are excluded. If the anchor atom is not part of the bond, other neighborhood
relationships can be explored.-

The command may also be invoked with the aliases bond neighbours and bond ligands.

Examples:

bond neighbors [ens create C=C] 1
bond neighbors [ens create clncccclclccceccl] 6 carbon {bonds bridge count}

The first example returns the labels of the hydrogen atoms. The second example returns 1, because
the bond has one neighbor atom which is bonded via a bridge bond.

bond new

bond new ehandle label propertylist ?filterset? ?parameterdict?

b.new (property=,?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond new is that
the latter forces the re-computation of the property data, regardless whether it is present and valid,
or not.

bond nget

bond nget ehandle label propertylist ?filterset? ?parameterdict?

b.nget (property=,?filters=?, ?parameters="?)
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond nget is
that the latter always returns numeric data, even if symbolic names for the values are available.

bond partner

bond partner ehandle bondlabel atomlabel

b.partner (aref)

Return the label (reference in case of PyTHoN) of the other atom in the indicated bond. In case the
bond contains more than two atoms, the first atom which is not the specified atom is returned. Using
an atom label which is not participating in the bond results in an error.

Example:

set a2 [bond partner $ehandle $b $al]

bond partners

bond partners ehandle bondlabel atomlabel

b.partners (aref)

Return the label (reference in case of PyTHoN) of the other atom in the indicated bond. In case the
bond contains more than two atoms, a list of the atoms which are not the specified atom is returned.
Using an atom label which is not participating in the bond results in an error.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

bond pis
bond pis ehandle label ?filterset? ?filtermode?
b.pis(?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the © systems the bond is
related to. This is explained in more detail in the section about object cross-references. A bond is
considered to be related to a n system if all atoms of the bond are contained in the = system.

Examples:
bond pis $ehandle 1

Get the labels (references in case of PYTHON) of the 1t systems the bond is related to. 7 systems are
a rather exotic feature and not commonly used. These are essentially descriptions of bonding
interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple double
bond is described with one ¢ system and one & system in this representation.

bond permute

bond permute ehandle label ?targetbondorder?

b.permute (?targetbondorder=?)

Change the bond order by rotating the bond orders of Kekulé-style alternating single/double bond
aromatic rings the bond is a member of. This is a useful function if aromatic systems need to be
manipulated in reaction transforms and similar circumstances. If no target bond order is specified,
an attempt is made to flip the bond between single and double. If a target bond order is set, the
function does nothing if the current bond has already the desired bond order. The operation does not
change atomic charges and does not succeed if any valence violation is encountered. Sydnones and
other exotic aromatic systems can thus fail. In case the bond is a member of more than one eligible
ring, the ring which is modified should be considered arbitrary.

The function returns one if the operation succeeds (which includes doing nothing is the target bond
order is already present) and zero otherwise. An error is raised only if there are problems with the
arguments.

bond purge

bond purge ehandle label propertylist/stereo/isotope/query

b.purge (propertylist/stereo/isotope/query)

Reset existing property data on a bond. In case the argument is a list of property names, the value
on that bond only is reset to the default value of the property. In case the property is not present on
the ensemble, the command is ignored. The reset via a property list does not trigger a property
dependency update. If that is desired, an ens taint command must be explicitly scripted.In case
a reset property is an atom property instead of a bond property, the reset is executed for all bonds
of the atom. Other property object class mismatches are currently not supported.

In addition to standard properties, several special pseudo property names are recognized.

The stereo code resets all bond-centered stereo information on the bond, and will trigger a stereo
change event on the ensemble which may invalidate additional data.

The isotope code resets property o 1sOTOPE on the bond atoms, marks the isotope data as tainted
and runs a data dependency check.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 195

CACTVS Tel and Python Scripting Language Reference

196

The query code resets property B_QUERY, marks the query data as tainted and runs a data dependency
check.

The command returns the label (for TcL) or reference (for PyTHoN) of the bond.

bond ref

Bond.Ref (eref,identifier)

PyTHoN only method to get a bond reference. See bond bond command.

bond rings

bond rings ehandle label ?filterset? ?filtermode?

b.rings (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the rings the bond is
contained in. This is explained in more detail in the section about object cross-references.

Examples:

bond rings $ehandle 1
bond rings S$ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the bond is contained in. If the bond is not in any
ring, an empty list is returned. Only labels of rings in the SSSR or ESSSR ring set are returned, even
if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

bond ringsystem

bond ringsystem ehandle label ?filterset? ?filtermode?

b.ringsystem(?filters=7?, ?mode=?)

Standard cross-referencing command to obtain the label (reference in case of PyTHON) of the ring
system the bonds is contained in. This is explained in more detail in the section about object
cross-references.

Examples:
bond ringsystem S$ehandle 1

bond ringsystem $ehandle 1 [list heterocycle aroring]

The first example returns the labels of the ring system the bond is contained in. If the bond is not in
any ring system, an empty list is returned. The second example filters the ring systems - a ring
system label is obtained only if that ring system contains one or more hetero aromats.

bond rotate

bond rotate ehandle label angle ?property?

b.rotate (angle=, ?coordinateproperty=?)

This command rotates one half of a molecule in 3D in property o xyz or another specified property
around the axis defined by the bond. The rotation angle is specified in degrees.

The section of the molecule which is rotated is not arbitrary and independent of the order of the
atoms in the bond or bond specification. If there is a difference between the centrality of the atoms
of the bond, the part which is less central is rotated. Molecules other than the one containing the
rotation bond are not affected. The static section of the molecule also retains all atomic coordinates.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If any rotation is performed, (which excludes cases where the rotated bond is terminal - this is a
no-op), both the 3dop and 3dglobalop property invalidation events are generated.

The command fails if no 3D coordinates are present or can be computed, or if the bond is a ring bond.

Example:
bond rotate $Sehandle [list 5 4] 15

rotates one half of a molecule around the bond between atoms 4 and 5 by 15 degrees.

The command returns the label (for TcL) or reference (for PyTHoN) of the bond.

bond set

bond set ehandle label ?property value?...

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
bond set Sehandle 1 B _COLOR “blue”

The direct change of critical bond type data, such as the bond order B 0rRDER, or bond type B_TYPE
should be avoided. Instead, the bond manipulation commands bond create and bond change
should be used. The dedicated creation, deletion and modification commands automatically take
care of bookkeeping tasks such as electron counting for valence bonds. Also, direct setting of the
bond data renders most structure information invalid, since most properties depend directly or
indirectly on the bond type and order. Careful manual locking and updating of property data is
required if direct bond manipulation is attempted.

The command returns the first data value.

bond show

bond show ehandle label propertylist ?filterset? ?parameterdict?

b.show (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond show is
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, bond get and bond show are equivalent.

bond sigmas

bond sigmas ehandle label ?filterset? ?filtermode?

b.sigmas (?filters=?, ?mode="7?)

Standard cross-referencing command to obtain the labels or references of the ¢ systems the bond is
participating in. This is explained in more detail in the section about object cross-references. A bond
is considered to be related to a o system if all atoms of the bond are contained in the ¢ system.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 197

CACTVS Tel and Python Scripting Language Reference

198

Examples:

bond sigmas $ehandle 1

o systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond

in multiple bonds. A simple double bond is described with one ¢ system and one 7 system in this
representation.

bond sqldget
bond sgldget ehandle label propertylist ?filterset? ?parameterdict?

b.sglget (?filters=?, ?mode="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The differences between bond get and bond sqldget
are that the latter does not attempt computation of property data, but initializes the property value
to the default and return that default, if the data is not present and valid; and that the SQL command
variant formats the data as SQL values rather than for TcL or PYTHON script processing.

bond sqlget

bond sqglget ehandle label propertylist ?filterset? ?parameterdict?
b.sglget (?filters=?, ?mode="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond sqlget
is that the SQL command variant formats the data as SQL values rather than for TcL or PYTHON script
processing.

bond sqlnew
bond sglnew ehandle label propertylist ?filterset? ?parameterdict?

b.sglnew (?filters=?, ?mode="7?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The differences between bond get and bond sqlnew
are that the latter forces re-computation of the property data, and that the SQL command variant
formats the data as SQL values rather than for TcL or PYTHON script processing.

bond sqlshow

bond sglshow ehandle label propertylist ?filterset? ?parameterdict?

b.sglshow (?filters=?, ?mode=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The differences between bond get and bond sqlshow
are that the latter does not attempt computation of property data, but raises an error if the data is not

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

present and valid, and that the SQL command variant formats the data as SQL values rather than for
TcL or PYTHON script processing.

bond stereoligands

bond stereoligands ehandle label
b.stereoligands ()

Return a list of the bond ligand atoms which define the stereochemistry of the bond. The length of
the list is always four elements. If the bond is not stereogenic, four empty strings for TcL and four
None values for PyTHoN are returned. If the bond is the center bond of an even allene (including cases
where rings substitute for an allene double bond), the allene endpoint ligands are returned, each side
independently sorted by atom labels in ascending order. If the bond is a normal stereobond, the direct
bond ligands are returned, again in independently sorted atom label order for each side. If an electron
pair is part of the stereochemistry, it is included as an empty string or None after the partner ligand
at each bond side.

bond subcommands
bond subcommands
dir (Bond)

Lists all subcommands of the bond command. Note that this command does not require an ensemble
handle, or a bond label.

bond surfaces

bond surfaces ehandle label ?filterset? ?filtermode?
b.surfaces (?filters=?, ?mode=7?)

Standard cross-referencing command to obtain the labels or references of the surface patches a bond
is related to. This is explained in more detail in the section about object cross-references. A bond is
considered to be related to a surface element if it is linked to any of the atoms in the bond.

Example:

bond surfaces $ehandle 1

bond transform

bond transform ehandle label SMIRKS1ist ?direction? ?reactionmode? ?selectionmode?
?flags? ?overlapmode? ?{?exclusionmode? excludesslist}? ?maxstructures? ?timeout?
?maxtransforms? ?niterations?

b.transform(transforms=, ?direction=?, ?reactionmode=?, ?selectionmode=?, ?flags=?,?
overlapmode=?, ?maxstructures=?, ?timeout=7?, ?maxtransforms=?, ?iterations=?)

This command is complex, but nearly identical to the ens transform command. Please refer to that
command for a full description of the command arguments.

The difference to ens transform is that the argument bond must be matched in the transform
pattern. If the transform matches only elsewhere, no operation is performed. It is not required that
the bond is actually modified during the course of the transform - it suffices if it is part of the source
pattern match.

The return value is, just as with the ens transform command, a list of result ensembles.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 199

CACTVS Tel and Python Scripting Language Reference

200

bond uncharge
bond uncharge ehandle label

b.uncharge ()
This command attempts to combine opposing charges on the atoms of the bond by increasing the

bond order. If the bond order was increased, the result is 1, otherwise 0. The result for non-VB bonds
is always 0.

Example:
bond uncharge [ens create {C[N+] ([0-])=0}] {2 3}

This example converts the single bond between the nitrogen cation (atom 2) and the oxygen anion
(atom 3) to a double bond and thus neutralizes the charges on the atoms.

The command returns the label (for TcL) or reference (for PyTHoN) of the bond.

bond xdelete

bond xdelete ehandle label ?label?...

bond xdelete ehandle all

b.xdelete ()

Bond.Xdelete (eref, ?label?, ...)

Bond.Xdelete (bref, ...)

Bond.Xdelete (eref, Yall”)

Delete one or more bonds, while trying to maintain stereochemistry. The atoms which participate

in the bonds are not deleted, but in case the bond is a standard valence bond, their free electron count
(property A _FREE ELECTRONS) is updated. Molecule and ring information, and other minor object

classes under the control of the ensemble major object which depend on an unchanged bond set are
deleted. Any property data which depends on an unchanged bond set is also invalidated, or, if the

property is set up to do so, re-computed. Wedge bonds and other stereochemistry information tied
to a deleted bond is transferred to an adjacent bond prior to deletion, if possible.

If the bond which should be deleted does not exist, the request is silently ignored, as long as the bond
specification is syntactically correct.

The return value of this command is the total of all bonds successfully deleted.

Example:
bond xdelete Sehandle [list 1 2]

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The chemobj command

This is an utility command to help with the generalization of commands applied to the various
explicitly named chemistry objects in the toolkit.

The following subcommands are supported:

chemobj class

chemobj class objecthandle

Returns the class or TcL command name associated with the major object identified by the handle.
This command may also be invoked as chemobj tclcommand.

chemobj eval
chemobj eval subcommandname objecthandle ?args?...

Execute the TcL command associated with the object. The subcommand name, object handle and
optional arguments are all passed to that object-specific command in that order.

This command is intended to make it easier to exploit the regular structure of the chemistry TcL
commands, providing an easy method to invoke the same functionality on different kinds of major
objects without the need to inspect the handles or perform other checks to identify the object type.
This command invokes the original class command. It does not perform error checking on its own.
It is only safe to be used with subcommands which use identical syntax, or at least an identical
syntax with a specific argument set, for all object classes a script is expected to encounter.

Example:

chemobj eval purge $handle S$proplist

Above command purges the properties in the list from the passed object, regardless whether the
object is, for example, an ensemble, a reaction, a dataset or a table.

chemobj get
chemobj get class/handle attribute

Query information on a chemistry object class. The identifier may either be a class name, as returned
by chemobj list, or, for major objects, a valid object handle. The following attributes are
recognized:

* address_city
The city part of the author contact address.

° address_country
The country part of the author contact address, following the ISO3166 standard.

° address_state
The state part of the author contact address. Empty if not applicable.

° address_street
The street address part of the author contact address. Includes floor, house number, etc.

* address_zip
The ZIP code or other applicable postal code of the author contact address.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 201

CACTVS Tel and Python Scripting Language Reference

* affiliation
The institution the author works for.

* affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

* affiliationurl
The URL of the affiliated institution.

° author
The author of the object class.

* aquthorurl
A URL with information on the author, or an empty string if unset.

* class
The class name of the object class, which is also the name of the associated TeL command.
This is the same as the tclcommand attribute.

* classuuid
The base class UUID of this object class.

* comment
A free-form string comment on the object class.

* date
The data the module source was last modified.

* doi
A digital object identifier for the object class, if defined.

° email
The email address of the author of the object class.

* infourl
A URL with information on the object class, or an empty string if unset.

* keywords
A list of keywords associated with the object class.

o labelproperty
The name of the property which is used for set minor object labels, e.g. o 1.ABEL for the atom
class, and an empty string for ensembles.

* license
The license class associated with this object class. Setting the license to a standard type
updates the associated URL with a standard location.

e licenseurl
A URL with details about the object class license.

e literature
A free-form literature reference.

202 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° name
The primary name of the object class.

e orcid
The ORCID code of the author (see www.orcid.org).

* ownerclass
The class name of the major object which controls objects of this class, e.g ens for atom. For
major objects, the class and owner class are the same.

° path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

* phone
A contact phone number of the author.

° propertyprefix
The standard prefix (without the underscore) for the names of properties associated with this
object class.

° references
Cross references of the object class. This is a nested list of class UUIDs and reference type
tags.

° regid
A numerical registration ID assigned to registered object classes.

e tclcommand
The same as the class attribute.

* version
The version of the object class. This is a string in a 1.2.3 (or shortened) style

e versionuuid

The UUID associated with this object class version.

chemobj list

chemobj list ?pattern?

List the currently loaded chemistry object classes with their primary name.

chemobj pythoncommand

chemobj pythoncommand objecthandle

Returns the PyTHON class associated with the major object identified by the handle. This command

may also be invoked as chemobj pythonclass.

chemobj tclcommand

chemobj tclcommand objecthandle

Returns the class or TcL command name associated with the major object identified by the handle.

This command may also be invoked as chemobj class.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference

203

CACTVS Tel and Python Scripting Language Reference

The connection Command

The connection command is used to access information about links in generic network objects (see
network command). In many respects the behavior of connection objects in networks is comparable
to that of bonds in ensembles, and the commands for handling connections are similarly structured.
For example, just like bonds can be identified by a list of the participating atoms, connections can
be selected by a list of the participating vertices.

Pseudo connection labels first, last and random are special values, which select the first connection
in the connection list, the last, or a random connection.

The command edge is an alias for connection, allowing the use of a more standard nomenclature,
but without the benefit of a matching prefix on the names of connection properties.

The following connection commands are supported:

connection append

connection append nhandle label ?property value?...
c.append ({property:value,...})
c.append (?property,value?, ...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:

connection append $nhandle $c C_IDENT “ v2”

connection connection

connection connection nhandle label
Connection.Ref (nref,identifier)

Return the connection label stored in property ¢ 1LaBEL (TcL), or a reference (PyTHoN). This is useful
in case the label is not the straightforward connection label or minor object reference, but some other
specification type, such as a vertex pair.

Example:

connection connection $nh [list $vl $v2]

connection create

connection create nhandle vertex list ?directionality? ?property value?...
Connection (nref, vertexsequence, ?directionality=?, ?property,value?...)
Connection.Create (nref, vertexsequence, ?directionality=?, ?property,value?...)

Create a new connection which links the vertices specified in the vertex list argument. In contrast
to the handling of bonds in ensembles, there can be multiple connections with the same set of
vertices in a network, and self-links (linked the same vertex as source and destination) are allowed.
It is also possible to link more than two vertices by a connection. In some contexts the order of the
vertices registered in a connection matters, i.e. the connections are interpreted as directional.

204

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

By setting the directionality parameter, the presence of a connection duplicate can be detected and
in that case the old label (for TcL) or reference (for PyTHON) of the existing connection is returned,
instead of creating a new connection. The possible values of the directionality parameter are
undefined (or 0, the default, no duplicate checking), undirected (or 1, the vertices are matched
regardless of the order in the specified list) and directed (or 2, the vertices are matched in the same
order as in the argument list).

The magic vertex label value new can be used in the vertex list to automatically create one or more
new vertices with this command instead of referring to existing vertices. The new vertices are added
to the vertex list and have the same properties as vertices created explicitly with a vertex create
command.

An initial set of property values for the new or re-used connection can be set by the optional
property/value arguments.

The command returns the new or old connection label for TcL, or the corresponding reference for
PYTHON.

connection defined

connection defined nhandle label property

c.defined (property)

This command checks whether a property is defined for the connection. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The network valid command is used for this purpose

connection delete

connection delete nhandle ?label?...
connection delete nhandle all
c.delete ()

Connection.Delete (nref, ?label?,...)
Connection.Delete (cref,...)

Connection.Delete (nref,“all”)

Delete specific or all connection from the network. The vertices participating in the deleted
connections remain in the network.

The command returns the number of deleted connections.

connection dget

connection dget nhandle label propertylist ?filterset? ?parameterdict?

c.dget (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection dget is that the latter does not attempt computation of property data, but rather
initializes the property values to the default and return that default if the data is not yet available.
For data already present, connection get and connection dget are equivalent.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 205

CACTVS Tel and Python Scripting Language Reference

206

connection network
c.network ()

PyTHON-only method to get the network reference from a connection reference.

connection exists

connection exists nhandle label ?filterlist?
c.exists (?filters="?)

Connection.Exists (nref=,label=,?filters=?)

Check whether this connection exists. Optionally, a filter list can be supplied to check for the
presence of specific features. The command returns boolean 0 if the connection does not exist, or
fails the filter, and 1 in case of successful testing.

Examples:

connection exists S$nhandle 99
connection exists $nhandle [list 1 2]

The second example checks whether a connection between vertices 1 and 2 exists. Instead of using
a single label, all connection labels may be substituted by a list of the labels of their vertices.

connection filter
connection filter nhandle label filterlist
c.filter (filters)

Check whether a connection passes a filter list. The return value is boolean 1 for success and 0 for
failure.

connection get

connection get nhandle label propertylist ?filterset? ?parameterdict?
c.get (property=, ?2filters=?, ?parameters=?)

cl[property]

c.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Example:

connection get $nhandle [list $v1 $v2] C ONTOLOGY LINK

yields the ontology link type data of connection 1 as a list. If the information is not yet available, an
attempt is made to compute it. If the computation fails, an error results.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the connection get command are connection new, connection dget, connection
nget, connection show, connection sqldget, connection sqlget, connection sglnew
and connection sqlshow.

connection index

connection index nhandle label

c.index ()

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Get the index of the connection. The index is the position in the connection list of the network. The
first position is index 0.

Example:

connection index $nhandle 99

connection jget

connection jget nhandle label propertylist ?filterset? ?parameterdict?
c.jget (property=,?filters=?, ?parameters=?)

This is a variant of connection get which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

connection jnew

connection jnew nhandle label propertylist ?filterset? ?parameterdict?
c.jnew (property=,?filters=?, ?parameters=?)

This is a variant of connection new which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

connection jshow

connection jshow nhandle label propertylist ?filterset? ?parameterdict?

c.jshow (property=, ?filters=?, ?parameters=?)

This is a variant of connection show which returns the result data as a JSON formatted string
instead of TcL or PYTHON interpreter objects.

connection network

c.network ()

PyTHoN-only method to get the network reference from a connection reference.

connection new

connection new nhandle label propertylist ?filterset? ?parameterdict?
c.new (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

connection nget

connection nget nhandle label propertylist ?filterset? ?parameterdict?
c.nget (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 207

CACTVS Tel and Python Scripting Language Reference

208

For examples, see the connection get command. The difference between connection get and
connection nget is that the latter always returns numeric data, even if symbolic names for the
values are available.

connection ref
Connection.Ref (nref,identifier)

PyTHON only method to get a connection reference. See connection connection command.

connection set

connection set nhandle label ?property value?...

c.set (?property,value?,...)

c.set ({property:value,...})

c.property = value

cl[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:

connection set Snhandle 1 C_IDENT “bla”

connection show

connection show nhandle label propertylist ?filterset? ?parameterdict?

c.show (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, connection get and connection
show are equivalent.

connection sqldget
connection sqgldget nhandle label propertylist ?filterset? P?Pparameterdict?

c.sqgldget (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The differences between connection get and
connection sqldget are that the latter does not attempt computation of property data, but
initializes the property value to the default and return that default, if the data is not present and valid;
and that the SQL command variant formats the data as SQL values rather than for TcL or PYTHON script
processing.

connection sqlget

connection sglget nhandle label propertylist ?filterset? ?parameterdict?
c.sqglget (property=,?filters=?, ?parameters=?)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection sqlget is that the SQL command variant formats the data as SQL values rather than
for TcL or PYTHON script processing.

connection sqglnew
connection sglnew nhandle label propertylist ?filterset? ?parameterdict?

c.sglnew (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The differences between connection get and
connection sqglnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

connection sqlshow
connection sglshow nhandle label propertylist ?filterset? P?Pparameterdict?

c.sglshow (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The differences between connection get and
connection sqglshow are that the latter does not attempt computation of property data, but raises
an error if the data is not present and valid, and that the SQL command variant formats the data as
SQL values rather than for TcL or PYTHON script processing.

connection subcommands
connection subcommands
dir (Connection)

Lists all subcommands of the connection command. Note that this command does not require a
network handle, or a connection label.

connection vertices

connection vertices nhandle label ?filterset? ?filtermode?

c.vertices (?filters=?, ?mode=7?)

Standard cross-referencing command to obtain the labels or references of the vertices which are
participating in the connection. This is explained in more detail in the section about object
cross-references.

Examples:

connection vertices $nhandle 1

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 209

CACTVS Tel and Python Scripting Language Reference

210

The dataset Command

The dataset command is the generic command used to manipulate datasets. The syntax of this
command follows the standard schema of command/subcommand/majorhandle. Datasets are major
objects and thus do not need any minor object labels for identification.

Example:
dataset get $dhandle D SIZE

As explained in the introductory section on datasets, a normal persistent dataset handle may be
substituted as third argument of the dataset command by an arbitrary list of dataset, ensemble,
reaction, table and network handles. Substitution is only allowed in that argument position, not in
case where a dataset handle is part of the command arguments of another object command, and not
in a different argument position in the context of a dataset command. Such an object list is
transformed into a transient dataset for the duration of the command execution. After the command
has completed, the elements of the transient dataset are in most cases restored to their original state
with respect to dataset membership and position, except in a few documented exceptional
circumstances.

As a means to access an embedded dataset object, its handle may be replaced by the handle of the
parent object where this is unambiguous, e.g.

ens move S$eh $thandle
moves the ensemble into the embedded dataset of the table, while

dataset count $thandle

treats the table argument as part of a transient dataset as described above.

This is the list of currently officially supported subcommands:

dataset add

dataset add dhandle objhandle ?position?

d.add (object=, ?position=?)

d += object

Add an object to the dataset, relocating it from a current dataset if it exists. If no position is specified,
the object is appended to the rear of the dataset object list. The position can either be a numerical
zero-based index, or any string beginning with ‘e’ to indicate the end position.

If the object handle identifies a (local) dataset, and the target dataset does not accept datasets as
members, all objects in the source dataset are instead moved to the new dataset, and then the source
dataset is destroyed. If ensembles, reactions, tables or networks are moved, they are unlinked from
any current datasets, but these original datasets themselves persist.

This dataset command is equivalent to issuing a move command from the object.

The command returns the dataset handle for TcL, or the dataset reference for PytHoN. The numerical
operator shortcut for PytHoN adds the object to the end of the dataset.

Example:

dataset add $dh $eh end
ens move $eh $dh end

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

These two commands are equivalent.

dataset addthread

dataset addthread dhandle ?body?

dataset addthread dhandle count body

dataset addthread dhandle count substitutiondict body

d.addthread (?count=?, ?dictionary=?, ?script=?)

Add one or more TcL script threads to the dataset. By default, a single thread is added, but by setting
the count parameter to a higher number multiple threads with the same script body can be added
simultaneously, up to a maximum of 32 threads per dataset. It is possible to use this command to add
additional threads to a dataset which already has attached threads. These older threads remain active.

The thread script code is always TcL code, even if the command is issued from a PYTHON interpreter.
This is due to limitations in the PyTHoN thread model and described in more detail in the general
PYTHON scripting introduction.

The optional substitution dictionary contains a set of percent-prefixed keys and replacement values,
following the Tk event procedure model. All such replacements are made before the script is passed
to the thread interpreters. A single default substitution replacing the character sequence D with the
handle of the current dataset is always predefined and cannot be redefined. Replacement token keys
(but not necessarily their values) are single case-depended characters, ignoring an optional percent
prefix character. Within the script, percent signs which should be preserved as such must be doubled,
just like in Tk event substitution commands.

The dataset threads are compatible to those of the standard TcL threads package. Dataset-associated
threads are automatically created in preserved state, and a thread: :wait command is automatically
appended at the end of the script, so they can be sent additional tasks via the thread: : send
commands. If no script body is specified, the initial script consists only of the wait command.
Threads can be canceled or joined only if they are stopped the thread: :wait statement.

When a dataset is deleted, all threads associated with this dataset need first to be joined, and this can
only happen if they have finished processing the main body script and are all in their idle state in
the thread: :wait command. Object deletion is postponed until this condition is met. A global join
on all currently executing dataset threads is automatically performed when the program exits, before
any object clean-up tasks are run. An application where dataset threads are stuck and do not reach
their thread: :wait cancellation points cannot be cleanly exited.

Duplicating datasets does not duplicate any associated threads.

The presence of threads on a dataset has consequences for the behavior of the dataset wait and
dataset pop commands, as well as object insertion commands associated with other major object
classes (e.g. ens move, Ormolfile read). Please refer to the respective paragraphs for details. The
size control mechanism of datasets in the auto mode is also dependent on the presence of absence
of linked dataset threads.

Example:
dataset addthread $dh 1 [dict create %T $th] {
while {1}
set eh [dataset pop %D]
if {$eh==""} break

if {[catch {ens get $eh E CANONIC TAUTOMER} eh canonic]} {

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 211

CACTVS Tel and Python Scripting Language Reference

212

ens delete $eh
continue

if {[catch {ens get $eh canonic E DESCRIPTORS}]} {
ens delete $eh
continue

}
table addens %T S$eh canonic
ens delete $eh

}

This code creates a processing thread on the dataset which computes properties on newly arriving
ensembles, stores the data in a table (note the table handle substitution via the replacement
dictionary) and then deletes the ensemble. The dataset pop command returns an empty string
when it is known no more data will arrive, and otherwise blocks until an object for popping is
available. This is managed by setting the eod dataset attribute from feeder threads.

The return value of the command is a list of the TcL thread IDs of the newly created threads. These
are suitable for use in the dataset jointhreads command or any standard TcL thread package
command.

dataset append
dataset append dhandle ?property value?...
d.append ({?property:value,?...})

d.append (?property,value, ?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:

dataset append $dhandle D NAME “ new”
dataset append $dhandle eod 1

dataset assign

dataset assign dhandle srcproperty dstproperty

d.assign (srcproperty=,dstproperty=)

Assign property data to another property on the same ensemble. Both properties must be associated
with the same object class. This process is more efficient than going through a pair of dataset
get/dataset set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The original property data remains valid. The command variant dataset rename directly exchanges
the property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

If the properties are not associated with datasets (prefix b), the operation is performed on all dataset
member objects.

The command returns the object handle for TcL, or object reference for PYTHON.

Example:
dataset assign $dhandle A XY A XY%

This code snippet creates backup atomic 2D layout coordinates on all dataset ensembles or
reactions.

dataset biologics

dataset biologics dhandle ?filterset? ?filtermode? ?Precursive?

d.tables (?filters=7?, ?mode=?, ?recursive=?)

Return a list of all the handles or references of the biologics in the dataset. Other objects in the
dataset (ensembles, reactions, datasets, networks) are ignored. The object list may optionally be
filtered by the filter list, and the result further modified by a standard filter mode argument.

Ifthe recursive flag is set, and the dataset contains other datasets as objects, biologics in these nested
datasets are also listed.

Example:

set n [dataset biologics $dhandle {} count]

dataset cancelthreads

dataset cancelthreads ?all?

dataset cancelthreads dhandle ?all?
dataset cancelthreads dhandle threadid...
Dataset.Cancelthreads ()
1 ncelthreads (Yall”)

~ancelthreads ()
5

d.cancelthreads (?threadid?, ...)

Cancel (or more precisely, wait for and join) one or more threads associated with the dataset. Dataset
threads can only be canceled when they are idle, executing the implicitly added thread: :wait
command at the end of their script. Therefore, this command is not just used for clean-up, but also
useful for ascertaining that the threads have finished their tasks. The IDs of the threads associated
with a dataset can be retrieved as the threads dataset attribute, or saved from the return value of the
original dataset addthread command. The special all thread ID value can be used to cancel all
threads of the dataset. This can also be achieved by setting an empty thread ID parameter, or omitting
it altogether. If a dataset does not possess threads, this command does nothing. If a thread marked
for cancellation has not yet finished, the cancellation command is suspended until it has.

This command can also be invoked without specifying an explicit or transient dataset argument, or
passing it as a/l. In that case, the thread join cleanup is run on all threads of all currently defined
datasets. This function is also implicitly run when a a script exits, before performing other
application cleanup operations.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 213

CACTVS Tel and Python Scripting Language Reference

214

Thread cancellation for all dataset threads is implicitly invoked when a dataset is deleted, so an
explicit clean-up is not required. However, this also means that a dataset deletion blocks if there are
still active threads. It is not possible to forcefully cancel an thread which has entered an infinite loop,
so careful programming is required.

The command returns the number of canceled threads.
dataset jointhreads is an alias to this command.

Example:
dataset jointhreads $dh

dataset cancelthreads $dh [lindex [dataset get $th threads] 0]
dataset jointhreads

The first example waits for all threads on the specified dataset to finish. The second command waits
for the completion of one specific thread, and the last command waits for all threads on all currently
defined datasets.

dataset cast

dataset cast dhandle dataset/ens/reaction/table ?propertylist?

d.cast (objectclass=, ?properties=?)

Transform the dataset into a different object. Depending on the target object class, the result is as
follows:

* dataset
Only supplied for the sake of completeness. This mode does nothing.

° ens
The first ensemble contained in the dataset, or a newly created empty ensemble if no such
object exists. The dataset and all its other contents are destroyed in the process.

* reaction
The first reaction contained in the dataset, or a newly created empty reaction if no such
object exists. The dataset and all its other contents are destroyed in the process.

* table
A new table with automatically set up columns which are the union of all valid
ensemble-class (E_*) and reaction-class (X _*) properties of the ensembles and reactions in
the dataset, and rows with the data of these objects. In addition, these objects are moved into
the internal table dataset. The input dataset, and its remaining contents which were not
moved to the table, are destroyed.

If the optional property list is specified, an attempt is made to compute the listed properties before
the cast operation, so that they may become a part of the new object. No error is raised if a
computation fails.

The command returns the handle (reference for PytHoN) of the new object, or the input object in case
of mode dataset.

dataset clear

dataset clear dhandle
d.clear ()

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Delete all objects in the dataset, but keep the dataset object. The return value is the number of deleted
objects.

dataset count
dataset count dhandle|remotehandle ?filterlist?
1.count (?filters=?)

set.Count (d set=,?filters=?)

D

Get the number of objects in the dataset. If the filter parameter is specified, only those objects which
pass the filter are counted.

Example:

dataset count $dhandle astereogenic

counts the number of ensembles or reactions in the dataset with one or more potential atom stereo
centers.

dataset size is an alias to this command.

This command can be used with remote datasets. In the case of PYTHON, this requires the use of the
class method.

In case a simple count on a local dataset is required, without any filters, the dataset size can also be
queried as attribute, as in

set n [dataset get $dhandle size]

dataset create

dataset create ?objecthandle/objectlist?...

Jataset (?objectref/objectsequence?, ...)

Jataset.Create (?objectref/objectsequence?, ...)

This command creates a new dataset and returns the handle of the new dataset. If the optional object
handle lists are provided as arguments, the specified objects (in case of ensemble, reaction, network
or table handles), or elements of the object (for a dataset handle, with default accept flags) are moved
to the new dataset. In case the accept flags of the target dataset are configured to allow datasets as
primary dataset objects, the source dataset argument is not implicitly replaced by its content objects
but added as a single object, retaining its objects as content. Otherwise, the source dataset is emptied
but remains a valid object.

Besides handles of ensembles, reactions, networks, tables, molfiles and of other datasets, which are
identified with priority, any string which can be decoded in an ens create statement is also allowed
as member initialization identifier.

If the dataset create statement references objects which are not usually accepted by the default
settings of the accept dataset attribute, that attribute is automatically adjusted to allow for these
objects. The accept flag modification is persistent.

Molfile objects in the object handle list are treated different from other objects. The latter are directly
moved into the dataset. In the case of mo1£ile objects, the file is read from the current position to
the end (or until a termination condition configured on the mol£ile handle is met), and the newly
read objects are moved into the dataset.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 215

CACTVS Tel and Python Scripting Language Reference

216

The command always returns the handle of the new dataset (or a reference for PYTHoN), never the
handles of any objects which may have been placed into the dataset

Examples:
dataset create [list $ehl $eh2] $dhl

creates a new dataset and move the two specified ensembles $ekl and $eh2, as well as everything
contained in the dataset $di 1, into the new dataset.

dataset create [molfile open myfile.sdf r hydrogens add]
creates a dataset from the file contents, with hydrogen addition configured on the mol£ile handle.

dataset create VXPBDCBTMSKCKZ

Above command matches a partial InChl key, and puts all structures from the NCI resolver which
matches the non-stereo/isotope-specific part of their full InChl key, into the new dataset.

set ::cactvs (lookupmode) ,name pattern®
dataset create [list "+morphine +methyl"]

This command performs a name pattern lookup and puts all structures from the NCI resolver which
contain both name fragments in one of their known names into the dataset. The name pattern string
needs to be explicitly packed into a list, because otherwise it would be split into two independent
list elements.

dataset dataset

dataset dataset dhandle ?filterlist?

d.dataset (?filters=?)

Get the handle (or, for PyTHON, a reference) of the container dataset the dataset is a member of. If
the dataset is not itself a dataset member, or does not pass the optional filters, an empty string is
returned, or None for PYTHON.

This command is not equivalent to dataset datasets!

dataset datasets

dataset datasets dhandle ?filterset? ?filtermode? ?recursive?

d.datasets (?filters=?, ?mode=?, ?recursive=?)

Return a list of all the handles or references of the datasets that are members in the dataset identified
by the command argument handle. Other objects (ensembles, reactions, tables, networks) are
ignored. The object list may optionally be filtered by the filter list, and the output further modified
by a standard filter mode.

If the recursive flag is set, and the dataset contains other datasets as objects, datasets in these nested
datasets are also listed.

This command is not equivalent of the dataset dataset command!

Example:

set dlist [dataset datasets $dhandle]

dataset defined
dataset defined dhandle property

d.defined (property)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

This command checks whether a property is defined for the dataset. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The dataset valid command is used for this purpose.

The command returns a boolean result.

dataset delete

dataset delete ?datasethandle/datasethandlelist/all?...
delete ()
>t .Delete (Mall”)

Dataset.Delete (?dref/drefsequence/dhandle?, ...)

Da

This command destroys datasets and everything contained therein. The special handle value a/l may
be used to delete all datasets in the application at once.

The command returns the number of datasets which were successfully deleted.

Transient datasets cannot be used with this command. Neither can be datasets which are a
component of another object, e.g. the internal datasets of tables or factories. These are only and
automatically deleted when their parent object is destroyed. Datasets which are a property value are
also undeletable by this command.

It is a common programming error to delete a dataset, or its parent object if one exists, without
protecting its current member ensembles or reactions. If they are still needed in later processing they
need to be explicitly transferred into another dataset or outside of it.

Examples:
dataset delete all
dataset move $dhandle {}; dataset delete S$dhandle

The first example destroys all datasets defined in the current script and everything contained in
them. The second example shows how to delete a dataset and preserve its contents by moving all
dataset elements out prior to deletion.

dataset dget

dataset dget dhandle propertylist ?filterset? ?parameterdict?
d.dget (property=,?filters=?, ?parameters=?)

Dataset.Dget (items,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, dataset get and dataset dget are equivalent.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset dup

dataset dup dhandle ?targethandle? ?cleartarget?

d.dup (?target=?, ?cleartarget="?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 217

CACTVS Tel and Python Scripting Language Reference

218

If the optional arguments are not supplied, the dataset with all data attached to the dataset and all
objects which are contained in it are duplicated. The command returns a new dataset handle for TeL,
or reference for PytHoN. All duplicated objects in the new datasets also are assigned handles which
can be obtained by commands such as dataset list $dhandle.

It is possible to specify a target dataset as an optional argument. In that case, no new dataset is
created, and dataset-level property data on the source dataset is not copied. All objects in the source
dataset are duplicated and appended to the end of the target dataset. In case the boolean target
clearance flag is set, which is also the default if the parameter is omitted, the target dataset is cleared
before the new objects from the source dataset are added. In this command variant, the return value
of the command is the target dataset handle or reference.

Examples:

dataset dup $dhandle
dataset dup [list $ehl $eh2] $dtarget O

dataset ens

dataset ens dhandle ?filterset? ?filtermode? ?recursive?

d.ens (?filters=?, ?mode=?, ?recursive=?)

Return a list of all the handles or references of the ensembles in the dataset. Other objects (reactions,
tables, datasets, networks) are ignored. The object list may optionally be filtered by the filter list, and
the output further modified by a standard filter mode.

If the optional boolean recursive argument is set, ensembles which are a component of a reaction in
the dataset are also listed. Furthermore, if the dataset contains datasets as elements, these are
recursively traversed, and ensembles in these, as well as ensembles in reactions in these datasets, are
listed. If the output mode of the command is a handle list, items found by recursion are appended
to the result list in a straight fashion, without the creation of nested lists. By default the recursion
flag is off. Regardless of the flag value, ensembles which are associated with rows of a table in the
dataset, but are not themselves dataset members, are not output.

Example:

set elist [dataset ens S$dhandle astereogenic]

lists those ensembles in the dataset which have one or more atoms which are potential atom stereo
centers.

set cnt [dataset ens $dhandle {} count 1]

returns a count of all ensembles which are either directly members of the dataset, or indirectly as
component objects of reactions in the dataset, or which are contained in datasets which are a
themselves a member of the primary dataset.

dataset exists

dataset exists dhandle ?filterlist?

d.exists (?filters=?)

aset.Exists (dref, ?filters=?)

Check whether a dataset handle or reference is valid. The command returns boolean 0 or 1.
Optionally, the dataset may be filtered by a standard filter list, and if it does not pass the filter, it is
reported as not valid. This command cannot be used with transient datasets.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Example:

dataset exists $dhandle

dataset expr

dataset expr dhandle expression

d.expr (expression)

Compute a standard SQL-style property expression for the dataset. This is explained in detail in the
chapter on property expressions.

dataset extract

dataset extract dhandle propertylist ?filterset? ?filterprocs?

d.extract (property=, ?2filters=?,?filterfunctions=?)

This command is rather complex and closely related to the dataset xlabel command. It was
designed for the efficient extraction of major or minor object data for filtered subsets of the dataset.

The property list parameter determines the property data which is extracted. Multiple properties may
be specified, but they can only be associated with major objects and one arbitrary minor object class.
So it is possible to simultaneously extract an ensemble and an atom property, but not an atom and
a bond property.

The return value is a nested list of data items for every object which is encountered while traversing
the dataset on the level of the minor object associated with the extraction property, or just ensembles
or other major objects if no such property is selected. Every list element is itself a list which contains
the extracted property values in the order they are named in the property list parameter.

The objects for which data is returned can further be filtered by a standard filter set, and additionally
by a list of filter procedures (for TcL, specified as procedure names) or functions (for PYTHON,
specified as function names or function references). These procedures or functions are called with
the respective object handles/references and object labels as arguments. For example, a callback
function used in an atom retrieval context would be called for each atom with its ensemble handle
or reference and the atom label as arguments. If major objects without a label are checked, such as
complete ensembles, 1 is passed as the label. The callback procedures are expected to return a
boolean value. If it is false or 0, the object is not added to the returned list, and the other check
procedures are no longer called.

The command currently only works on ensembles in the dataset, ignoring any reactions, tables,
datasets or networks which may be present.

Because this command is primarily intended for numerical data display, the returned values are
formatted as with the nget command, i.e. instead of enumerated values the underlying numerical
values are returned.

Example:

set dhandle [dataset create [ens create CO] [ens create CN]]
dataset extract $dhandle [list E NAME A SYMBOL] !hydrogen

This example first creates a dataset with methanol and methylamine. The second line performs the
actual extraction and returns

{CH40 C} {CH40 O} {CH5N C} {CHS5N N}

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 219

CACTVS Tel and Python Scripting Language Reference

220

This kind of extracted data is useful for the display of filtered atomic (and other minor object’s)
property values.

dataset filter
dataset filter dhandle filterset
d.filter (filters)

Check whether a the dataset passes a filter list. The return value is boolean 1 for success and 0 for
failure. Note that only filters operating on dataset objects are applicable, not any filter for objects
contained in the dataset (such as ensembles or reactions).

dataset find

dataset find dhandle objecthandle

d.find (objectref)

Get the index of the dataset object. If it cannot be found in the dataset, the result is minus one.

dataset forget

dataset forget dhandle ?objectclass?
d.forget (?objectclass=?)

This command is essentially the same as the ens forget (or reaction forget, etc) command.
It is applied to all objects in the dataset.

If the object class is dataset, all dataset-level property data is deleted.
The command returns the dataset handle or reference, or, for Tew only, an empty string if the dataset

was transient.

dataset get

dataset get dhandle propertylist ?filterset? ?parameterdict?
dataset get dhandle attribute

d.get (property=,?filters=?, ?parameters="?)
d.get (attribute)

d[property/attribute]

d.property/at

set.Get (1
set.Get (1

£
£
tribute
tems, property=,?filters=?, ?parameters="?)
£

9 U

at ems, attribute)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

In addition to retrieving property data, it can also be used to query dataset attributes. The set of
supported attributes is detailed in the paragraph on the dataset set command.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

Examples:
dataset get $dhandle {D NAME D SIZE}

yields the name and size of the dataset as a list. If the information is not yet available, an attempt is
made to compute it. If the computation fails, an error results.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

dataset get Sdhandle [list E _FORMULA E WEIGHT]

gives the formula and molecular weight of all dataset ensembles. The result is delivered as a nested
list. The first list are the formulas, the second list contains the weights.

Currently, it is not possible to use filters with this command (and the other retrieval command
variants) which are not operating directly on the dataset object, but on objects lower in the hierarchy
such as ensembles or atoms.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the dataset get command are dataset new, dataset dget, dataset jget,
dataset jnew, dataset jshow, dataset nget, dataset show, dataset sqldget, dataset
sqlget, dataset sqglnew, and dataset sqlshow.

dataset getparam
dataset getparam dhandle property ?key? ?default?

d.getparam(property=, ?key=?, ?default="?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PyTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

Example:
dataset getparam Sdhandle E GIF format

returns the actual format of the image, which could be GIF, PNG, or various bitmap formats.

dataset hadd

dataset hadd dhandle ?filterset? ?flags? ?changeset?

d.hadd (?filters=?,?flags=?, ?changeset="?)

Add a standard set of hydrogens to all ensembles and reactions in the dataset. If the filterset
parameter is specified, only those atoms which pass the filter set are processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

* nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B_TYPE not normal).

* no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 221

CACTVS Tel and Python Scripting Language Reference

222

* no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

° nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

* noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

° nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

° resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

* nocations
Do not add hydrogen to atoms with a positive formal charge.

* noanions
Do not add hydrogen to atoms with a negative formal charge.

* nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

° noatoms
Do not add hydrogen to atoms without any bonds.

Adding hydrogens with this command is less destructive to the property data set of the ensembles
or reactions than adding them with individual atom create/bond create commands, because
many properties are defined to be indifferent to explicit hydrogen status changes, but are invalidated
if the structure is changed in other ways.

If the effects of the hydrogen addition step to the validity of the property data set should not be
handled with this standard procedure, it is possible to explicitly generate additional property
invalidation events by specifying a list as the optional last parameter, for example a list of atom and
bond to trigger both the atom change and bond change events.

The command returns the total number of hydrogens added to all ensembles and reactions in the
dataset.

Example:
dataset hadd $dhandle

dataset hdup

dataset hdup dhandle ?targethandle? ?cleartarget?
d.hdup (?target=?, ?cleartarget="?)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If the optional arguments are not supplied, the dataset with all data attached to the dataset and all

objects which are contained in it are duplicated with hydrogen addition. The command returns a new
dataset handle for TcL, or reference for PytHoN. All duplicated objects in the new datasets also are
assigned handles which can be obtained by commands such as dataset list $dhandle.

It is possible to specify a target dataset as an optional argument. In that case, no new dataset is
created, and dataset-level property data on the source dataset is not copied. All objects in the source
dataset are duplicated with hydrogen addition and appended to the end of the target dataset. In case
the boolean target clearance flag is set, which is also the default if the parameter is omitted, the target
dataset is cleared before the new objects from the source dataset are added. In this command variant,
the return value of the command is the target dataset handle or reference.

Examples:

dataset dup $dhandle
dataset dup [list $ehl $eh2] $dtarget 0

dataset hierarchies

dataset hierarchies dhandle ?filterset? ?filtermode? ?recursive?

d.tables (?filters=?, ?mode=?, ?recursive=?)

Return a list of all the handles or references of the hierarchies in the dataset. Other objects in the
dataset (ensembles, reactions, datasets, networks) are ignored. The object list may optionally be
filtered by the filter list, and the result further modified by a standard filter mode argument.

If the recursive flag is set, and the dataset contains other datasets as objects, hierarchies in these
nested datasets are also listed.

This is not the same as dataset hierarchy - the latter reports the hierarchy the dataset is a member
of. This command lists the hierarchies in the dataset.

Example:

set n [dataset hierarchies $dhandle {} count]

dataset hierarchy
dataset hierarchy dhandle ?filterlist? ?root?

d.hierarchy (?filters=?, ?root="?)

Return the hierarchy handle or reference of the hierarchy the dataset is part of. If the dataset is not
member of a hierarchy, or does not pass all of the optional filters, an empty string or None for PYTHON
is returned. By default, the hierarchy object which directly contains the dataset is returned. If the root
flag is set, the root hierarchy object is reported instead, which is the same only if the hierarchy has
only a single level.

This command is not the same as dataset hierarchies, which reports hierarchies in the dataset.

Example:

dataset hierarchy $dhandle

dataset hread

dataset hread dhandle ?datasethandle|enshandle? ?#recs|batch|all?

d.hread(?target=?,?1limit="?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 223

CACTVS Tel and Python Scripting Language Reference

224

This command provides the same functionality as dataset read, but additionally adds a stand set
of hydrogen atoms to the read duplicate objects.

The command arguments are explained in the section on dataset read.

dataset hstrip

dataset hstrip dhandle ?flags? ?changeset?

d.hstrip(?flags=?, ?changeset=?)

This command removes hydrogens from the dataset ensembles and reactions. By default, all
hydrogen atoms in the dataset ensembles or reactions are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

* keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

* keeporiginal
Hydrogen atoms which were not automatically added via a hadd command are retained.
Note that hydrogen addition commands can be run in a mode which does not leave
information about automatic addition - hydrogens added this way will also survive.

* keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

° wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

* keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

* keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

° normalize
Normalize the wedge pattern for standard cases, removing wedges from hydrogens if the
result is still stereochemically defined. Hydrogens which lose their wedge in this process are
no longer protected by the keepwedge flag.

* keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 'H).

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If the changeset parameter is given, all property change events listed in the parameter are triggered.

Hydrogen stripping is not as disruptive to the ensemble or reaction data content as normal atom
deletion. The system assumes that this operation is done as part of some file output or visualization
preparation. However, if any new data is computed after stripping, the computation functions see the
stripped structure, and proceed to work on that reduced structure without knowledge that there are
implicit hydrogens.

Example:

dataset hstrip $dhandle [list keeporiginal wedgetransfer]

dataset index

dataset index dhandle

dataset index dhandle position

d.index (?position=?)

This command comes in two variants. The tree-word version is the generic command to check
dataset membership, which is the same for all objects which can be dataset members. The second
version is specific to datasets objects and retrieves object references from this dataset.

This first version gets the position of the dataset in the object list of its parent dataset. If the dataset
is not part of a parent dataset, -1 is returned. This is the generic dataset membership test command
variant.

This second command variant obtains the object handle or reference of the object at the specified
position in this dataset. Position counting begins with zero. If the index is outside the object position
range, an empty string is returned. The special value end may be used to address the last object. The
indexed object remains in the dataset.

Note that this index command is not equivalent to the standard index command on minor objects
which is used to obtain the position of the minor object in the minor object list of the controlling
major object. This kind of functionality is not needed for major objects, because they are not
contained in any minor object list.

Example:

dataset index $dhandle end

dataset intersect

dataset intersect dhandlel dhandle2 ?property?...

d.intersect (dref2, ?pref?...)

Perform an intersection check between two datasets. The result is a list of zero-based dataset index
pairs (as in dataset index) of all identical corresponding dataset entries in both datasets, as judged
by the value of the comparison property. The default comparison property is
E_ISoTOoPE_STEREO_HASH for full structural identity check of ensembles.

In case the first dataset contains duplicates, the index of the matching second dataset element is
identical for all duplicates, and, in case the second dataset also contains corresponding duplicates,
a (pseudo-)random element from among these duplicates, and the other duplicates in the second
dataset are reported as not matched in the dataset intersect3 command variant (see below).

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 225

CACTVS Tel and Python Scripting Language Reference

226

The comparison property object class must match the class of the compared dataset objects (i.e. the
default property is only suitable for comparison of ensembles in the datasets, but not for reactions,
etc.). Objects of mismatching classes in the datasets are ignored.

Example:

set dhl [dataset create CC CCC CCCC]
set dh2 [dataset create CCC CCCC CCCCC]
dataset intersect $dhl $dh2

The resultis {1 0} {2 1}, meaning the second (if we start counting with 1) element of the first
dataset corresponds to the first element in the second, and the third element to the second.

dataset intersect3

dataset intersect3 dhandlel dhandle2 ?property?...
d.intersect3 (dref2, ?pref?...)

This command is an extended variant of dataset intersect. The return value is a 3-element list
comprising of a simple list of the element indices in the first dataset which are not matched, the
match pair list as in dataset intersect of the equivalent elements, and a simple list containing the
element indices of the second dataset which are not matched.

Example:
set dhl [dataset create CC CCC CCCC]

set dh2 [dataset create CCC CCCC CCCCC]
dataset intersect3 S$dhl $dh2

Theresultiso {{1 0} {2 1}} 2. The middle element of the result list is the same as in the example
for the dataset intersect command. The first element indicates that the first (starting the count
with 1) element of the first dataset was not matched, and the third element indicates that the third
element of the second dataset was not matched.

dataset jget

dataset jget dhandle propertylist ?filterset? ?parameterdict?
d.jget (property=,?filters=?, ?parameters=?)

Dataset.Jget (items, property=,?filters=?, ?parameters=?)
This is a variant of dataset get which returns the result data as a JSON formatted string instead of

TcL or PyTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset jointhreads

dataset jointhreads ?all?

dataset jointhreads dhandle ?all?
dataset jointhreads dhandle threadid...
Dataset.Jointhreads ()

d.jointhreads (“all”)

d.jointhreads (

)
d.jointhreads (?threadid?, ...)

This is an alias for the dataset cancelthreads command. Please refer to its documentation.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

dataset jnew

dataset jnew dhandle propertylist ?filterset? ?parameterdict?
d.jnew (property=,?filters=?, ?parameters=?)

Dataset.Jnew (items,property=, ?filters=?, ?parameters=?)

This is a variant of dataset new which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset jshow

dataset jshow dhandle propertylist ?filterset? ?parameterdict?
d.jshow (property=, ?filters=?, ?parameters=?)

Dataset.Jshow (items, property=, ?filters=?, ?parameters=?)

This is a variant of dataset show which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset Idup
dataset ldup ?dhandlelist?...

Dataset.Ldup (?dref/drefsequence?, ...)

Duplicate all datasets in the handle list(s) in default mode.

The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TcL) or None (for
PYTHON) at its position, without raising an error.

This command cannot be used with transient datasets.

dataset Ihdup

dataset lhdup ?dhandlelist?...

Dataset.Lhdup (?dref/drefsequence?, ...)

Duplicate all datasets in the handle list(s) in default mode, and add hydrogens.

The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates

a missing object, and the output list also receives an empty string element (for TcL) or None (for
PYTHON) at its position, without raising an error.

This command cannot be used with transient datasets.

dataset list

dataset list ?dhandle?
Dataset.List (?filters="?)
d.list()

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 227

CACTVS Tel and Python Scripting Language Reference

228

Without a handle argument (for TcL), or called as the class method (for PytHoN) the command returns
a list of the handles of all existing datasets.

If (in TcL) a dataset handle or transient dataset is passed as third argument, or the object method is
used (for PYTHoN) the command returns a list of all major objects in the dataset. In the TcL case, this
function is different from the behavior of the /ist subcommand for other major object classes, where
the optional argument is a filter list. In PyTHoN, the filter list variant is supported.

Examples:

dataset list
dataset list $dhandle

dataset lock

dataset lock dhandle propertylist/dataset/all ?compute?

d.lock (property=, ?compute=?)

Lock property data of the dataset handle, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the dataset handle which would invalidate the information. Property data
remains locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

* Property names (or references, in PYTHON)
Valid property instances on the file object are locked. If the boolean compute flag is set, an
attempt is made to compute the property if it is not yet present. Otherwise, a request to lock
non-existent data is silently ignored. It is not possible to lock individual property fields.

e all
All valid dataset properties are locked. The compute flag is ignored.

* dataset
This is an object class identifier. All property data which is controlled by the dataset major
object and attached to the specified object class is locked. Since datasets do not incorporate
minor objects, this identifier is equivalent to a/l.

A lock can be released by a dataset unlock command.
This command does not recurse into the objects contained in the dataset.

The return value is the dataset handle (for TcL) or reference (for PYTHON) or, if the dataset was
transient, an empty string (for TcL only).

dataset loop

dataset loop dhandle objvar ?maxrec? ?Poffset? body

d.loop (function=, ?maxloop="?, ?0ffset=?, ?variable="?)

for obj in d:

Loop over the elements in a dataset. This command is similar to molfile loop. On each iteration,
the variable is set to the handle of the current member object, and then the body code is executed.

The variable refers to the original dataset element, not a duplicate. This is different from dataset
read.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

All operations on the current loop item are allowed, including deletion. However, the next object
after the current item must not be deleted or moved, because it is needed for the iteration process.

If a maximum record count is set, the loop terminates after the specified number of iterations. If the
maximum record argument is set to an empty string, a negative value, or all, the loop covers all
dataset elements. This is also the default.

For TeL scripts, within the loop, the standard TcL break and continue commands work as expected.
If the body script generates an error, the loop is exited.

Ifno offset is specified, the loop starts at the first element. Within the loop body, the dataset attribute
record is continuously updated to indicate the current loop position. Its value starts with one, like
file records in the molfile loop command.

The PyTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TcL construct),
or a function reference. Functions are called with the reference of the current loop object as single
argument, and have their own context frame, so that the specification of a reference variable is not
generally useful in that call style, though is is allowed. For string function blocks the code is
executed in the local call frame, and the variable with the current object reference is visible locally.
Script code blocks must be written with an initial indentation level of zero. Within the PyTHON
functions, the normal break and continue commands cannot be used to to scope limitations. Instead,
the custom exceptions BreakLoop and ContinueLoop can be raised. These are automatically caught
and processed in the loop body handler code.

In PyTHON, there is also an object iterator so that simple loops over dataset elements can be written
with a for statement. The dataset object iterator is of the self style (i.e. there is one per dataset, these
are not independent objects), so nesting them is not possible on the same dataset.

PyTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PyTHON scripting.
Example:

dataset loop $dh eh {
puts ,[ens get Seh E NAME] at position[ens index $eh]™
}

dataset match

dataset match dhandle ss ehandle ?matchflags? ?ignoreflags?

d.match (substructure=, ?matchflags=7?, ?ignoreflags="?)

Perform a substructure match on all eligible objects in the dataset. The return value is the match
count.

The arguments are the same as with ens match. The specification of variables to capture match
locations is not possible in this command variant.

dataset max

dataset max dhandle propertylist ?filterset?

d.max (property=, 2filters=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 229

CACTVS Tel and Python Scripting Language Reference

230

Get the maximum value of one or more properties in from the elements in the dataset. The property
argument may be any property attached to dataset members, or minor objects thereof. If the filterset
argument is specified, the maximum value is searched only for objects which pass the filter set.

Examples:

dataset max Sdhandle E WEIGHT

dataset max [list $ehandlel Sehandle2] A SIGMA CHARGE carbon

The first example finds the highest molecular weight in the dataset. The second example finds the
largest (most positive) Gasteiger partial charge on any carbon atom in the two argument ensembles,
which form a transient dataset.

dataset metadata

dataset metadata dhandle property ?field ?value??

d.metadata (property=,?2field=7?, ?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands dataset setparamand dataset
getparam can be used for direct manipulation of specific keys in the computation parameter field.
Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

Examples:
array set gifparams [dataset metadata $dhandle D GIF parameters]

dataset metadata Sdhandle D QUALITY comment “This value looks suspicious to me”

The first line retrieves the computation parameters of the property b _GIF as keyword/value pairs.
These are read into the array variable gifparams, and may subsequently be accessed as
$gifparams (format), $gifparams (height), etc. The second example shows how to attach a
comment to a property value.

dataset min
dataset min dhandle propertylist ?filterset?
d.min (property=,?filters=?)

Get the minimum value of one or more properties from the elements in the dataset. The property
argument may be any property attached to dataset sub-elements, or minor objects thereof. If the
filterset argument is specified, the minimum value is searched only for objects which pass the filter
set.

Examples:

dataset min $dhandle E WEIGHT
dataset min [list S$ehandlel Sehandle2] A SIGMA CHARGE carbon

The first example finds the smallest molecular weight in the dataset. The second example finds the
smallest (most negative, or smallest positive) Gasteiger partial charge on any carbon atom in the two
argument ensembles, which form a transient dataset.

dataset molfile

dataset molfile dhandle ?filterset?

d.molfile(?filters=?)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Return the handle or reference of the molfile object associated with the dataset as backing page file.
If no such file object exists, an empty string (for TcL) or None (for PYTHON) is returned.

Example:

set fh [dataset molfile $dh]
set fh [dataset get $dh pagefile]

The two commands are equivalent.

dataset move

dataset move dhandle datasethandle|remotehandle ?position?

d.move (target=, ?position="?)

Move, depending on the acceptance flags of the destination dataset, either the objects in the dataset
or transient dataset into another local or remote dataset, or move the dataset itself. If the destination
dataset handle is an empty string (or None for PYTHON), the dataset objects are removed from the
original dataset, but not moved into any other dataset. If the destination dataset accepts datasets as
members, which is not the default (see the accept attribute in the section on dataset set) the dataset
is directly moved as object. Otherwise, its contained objects are moved, under preservation of the
object order from the source dataset, and the source dataset is emptied, but not deleted.

Optionally, a position in the new dataset for the first moved object may be specified. This parameter
is either an index (beginning with 0), or end, which is the default. If the contents of a dataset are
spliced into another at a specific position, objects after the first element of the source dataset follow
as a block.

Another special position value is random or rnd. This value moves to the dataset, or dataset contents,
to a random position in the target dataset. Use of this mode with remote datasets is currently not
supported.

In case of a transient command dataset the original dataset memberships of the dataset objects are
not restored when the command completes.

The return value of the command is the dataset of the ensemble prior to the move operation. It is
either a dataset handle/reference, or an empty string (TcL) or None (PYTHON) if it was not member of
a dataset.

A dataset cannot be moved into itself.

Examples:

dataset move $dhandle $dhandle2 0
dataset move S$Sdhandle {}
dataset move [ens list] [dataset create]

The first line moves all objects in the source dataset into the first (and following) positions in the
destination dataset. The second example removes all elements from the dataset. This is often useful
in order to avoid dataset member destruction with the dataset delete command. The final
example shows how to move a set of ensembles (here: all ensembles currently defined in the
application) into a newly created dataset via an intermediate, transient dataset.

dataset move $dhandle vioxx@server55:10001

This command moves all objects in the first dataset to the remote dataset on host server55, which
listens on port 10001 and requires the pass phrase vioxx for access.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 231

CACTVS Tel and Python Scripting Language Reference

232

dataset mutex

dataset mutex dhandle mode

d.mutex (mode)
Manipulate the object mutex.

During the execution of a script command, the mutex of the major object(s) associated with the
command are automatically locked and unlocked, so that the operation of the command is
thread-safe. This applies to toolkit builds that support multi-threading, either by allowing multiple
parallel script interpreters in separate threads or by supporting helper threads for the acceleration of
command execution or background information processing.

Going beyond this automatic per-statement protection, this command locks major objects for a
period of time that exceeds a single command. A lock on the object can only be released from the
same interpreter thread that set the lock. Any other threaded interpreters, or auxiliary threads, block
until a mutex release command has been executed when accessing a locked command object. This
command supports the following modes:

* lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

° reset
Release all persistent locks on the object, if they exist.

° test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

* unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

dataset need

dataset need dhandle propertylist ?mode? ?parameterdict?

d.need (property=, ?mode=?, ?parameters="?)

Standard command for the computation of property data, without immediate retrieval of results. In
the common case of threaded computation, this starts a compute thread whose results or error status
can be collected later. This command is explained in more detail in the section about retrieving
property data.

If the dataset is not transient, the return value is the original dataset handle or reference.

Example:
dataset need $dhandle D GIF recalc

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

dataset networks

dataset networks dhandle ?filterset? ?filtermode? ?Precursive?

d.networks (?filters=?, ?mode=?, ?recursive=?)

Return a list of the handles or references of all the networks in the dataset. Other objects (ensembles,
reactions, datasets, tables) are ignored. The object list may optionally be filtered by the filter list, and
the result further modified by a standard filter mode argument.

Ifthe recursive flag is set, and the dataset contains other datasets as objects, networks in these nested
datasets are also listed.

Example:

set n [dataset networks $dhandle {} count]

dataset new

dataset new dhandle propertylist ?filterset? ?parameterdict?
d.new (property=,?filters=?, ?parameters="?)

Dataset.New (items,property=,?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset nget

dataset nget dhandle propertylist ?filterset? ?parameterdict?
d.nget (property=,?filters=?, ?parameters=?)

Dataset.Nget (items,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset nnew

dataset nnew dhandle propertylist ?filterset? ?parameterdict?

d.nnew (property=,?filters=?, ?parameters="?)

Dataset.Nnew (items,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 233

CACTVS Tel and Python Scripting Language Reference

234

For examples, see the dataset get command. The difference between dataset get and dataset
nnew is that the latter always returns numeric data, even if symbolic names for the values are
available, and that property data re-computation is enforced.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset nitrostyle

dataset nitrostyle dhandle style
d.nitrostyle(style=)

Change the internal encoding of nitro groups and similar functional groups in the ensembles and
reactions in the dataset. Possible values for the style parameter are:

° asis No change

* jonic Change to encoding to a positive charge on the center atom, and a negative on one
of the oxygens

e xionic As above, but also change the encoding of azides, etc.

* neutral Change the encoding to the neutral form with extended valence. pentavalent is an
alias.

e xneutral As above, but also change the encoding of azides, etc.

The command returns the dataset handle or reference.

dataset objects
dataset objects dhandle ?pattern?

d.objects (?pattern=?)

This is a non-standard cross-referencing command. The result is a list of all the objects in the dataset,
where each result list element is a list or tuple consisting of the object type (ens, reaction, table,
network, dataset), and the object handle or reference. Optionally, the dataset objects may be filtered
by the pattern argument which applies to the object handle.

Example:

dataset objects $dhandle ens*

is roughly equivalent to

dataset ens $dhandle

except that the latter only lists the ensemble handles, not pairs of object class name and handle.

dataset pack
dataset pack dhandle ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?

d.pack (?maxsize=?, ?requestprops=?, ?suppressedprops=?, ?compressionlib="?)

Pack the dataset and all objects it contains into a base-64 encoded, compressed string as a serialized
object. The string does not contain any non-printing characters, quotation marks or other
problematic characters and is thus well suited for storage in database tables and similar applications.
These packed strings are portable and platform-independent.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The maximum size of the object string (default -1, meaning unlimited) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The two optional parameter lists allow to request a specific property set to be part of the package,
even if it normally would not be included, and to explicitly omit properties from the dump. No
property computation is performed, and suppressed properties are not purged from the source
ensemble.

The default compression library is z/ib. Other useful variants include /zo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.
In PyTHON, datasets support the standard pickle/unpickle protocol.

Example:
dataset pack $dhandle

dataset pop

dataset pop dhandle|remotehandle ?position? ?timeout?
d.pop (?position=?, ?timeout="?)

Nat+ o a

1set.Pop (dref/remotehandle, ?position=?, ?timeout=7?)
IS

Remove an object from a dataset. The handle or reference of the selected object is returned, and the
object is no longer a member of the dataset when the command completes. If a timeout is specified,
it 1s transferred to the dataset attribute of the same name before the command is executed, as with
a dataset set command.

By default the first object in the dataset, at index zero, is returned. A different object can be selected
by means of the optional position argument. It can be a numerical index, end for the last object,
rnd/random for a random selection. If the object index if larger than the maximum index of any
object, it is silently rewritten to end. Random pops are not supported on remote datasets.

This command works with remote datasets. In that case, the object is transferred via an intermediate
serialized object representation over the network. It is unpacked on the local interpreter, and deleted
on the remote interpreter.

If the desired dataset object cannot be found, and a timeout is set, including a negative value for an
unlimited wait time, the command suspends execution until the object appears in the dataset, for
example from a different script thread or as result of a remote object insertion. If a wait would be
executed, but the eod/targeteod parameter pair of the dataset indicate that no further data can be
expected, the command returns an empty string (for TcL) or None (for PYTHON) instead of the object
handle or reference, but does not trigger an error. Otherwise, if the object cannot be delivered
immediately or after the timeout, an error results.

Example:

set eh [dataset pop $eh end]

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 235

CACTVS Tel and Python Scripting Language Reference

236

dataset properties

dataset properties dhandle ?pattern? ?intersectionmode?

d.properties (?pattern=?, ?intersectionmode="7?)

Get a list of valid properties of the dataset proper and the dataset objects. By default, both dataset
properties (prefix p_) as well as the properties of the objects in the dataset (prefix £ for ensembles,
x_ for reactions, T_ for tables, N_ for networks, b for datasets as members) and the properties of
their minor objects (atoms, bonds, etc.) are listed. Property subsets may be selected by specifying a
string filter pattern. In case of dataset element properties which are not present in all dataset
members, the default intersect mode is union, meaning that all properties are reported for which at
least a single instance in any member exists. The alternative mode intersect only lists those dataset
member properties which are present at all dataset members.

This command may also be invoked as dataset props or d.props ().

Example:
dataset properties $dhandle D *
dataset props S$dhandle E_* intersect

The first example returns a list of the currently valid dataset-level properties. The second example
lists ensemble properties which are present in all dataset objects.

dataset purge
dataset purge dhandle propertylist ?emptyonly?

d.purge (?properties=?, ?emptyonly=?)

Delete property data from the dataset. The properties may be both dataset properties (prefix b) or
properties of the dataset members, such as ensemble or atom properties. If a property marked for
deletion is not present on an object, it is silently ignored.

If an object class name, such as ens or atom, is used instead of a property name, all properties of that
class set on the objects in the dataset are deleted, if they are not locked, or filtered out by the optional
empty-only flag.

Besides normal property names, a few convenient alias names for common property deletion tasks
of ensembles in a dataset, or the reaction ensembles of reactions in the dataset, are defined and can
be used as a replacement for the property list. These include:

° atomquery
Delete atom query information.

* atomstereochemistry
Delete all atomic atom stereo descriptors, but keep those for bonds.

* bondquery
Delete bond query information.

* bondstereochemistry
Delete all bond stereo descriptors, but keep those for atoms.

* dataset
Delete all dataset properties (prefix D).

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° ens
Delete all ensemble properties on the dataset objects (prefix E).

* isotopes
Delete isotope information in o 1s0TOPE and other isotope properties which may be defined
in future software versions.

° query
Delete atom and bond query information.

* radicals
Delete atomic radical information in o rRaDICAL and other radical-related properties which
may be defined in future software versions.

* reaction
Delete all reaction properties on the dataset objects (prefix X).

° stereochemistry
Delete all stereochemistry descriptors, including 2D wedges, but not 3D coordinates. The
implicit property list includes A LABEL _STEREO, B LABEL STEREO, A CIP STEREO,
B CIP STEREO, A DL _STEREO, B _CISTRANS STEREO, A HASH STEREO, B HASH STEREO,
A _MAP STEREO, B MAP STEREO, A STEREOINFO, B STEREOINFO, A STEREO GROUP,
M _STEREO_COUNT, E_STEREO COUNT and B_FLAGS (only wedge bits, the property remains
valid if present).

° wedges
Delete wedge bond flags in property B FLAGS. If B FLAGS is not present, the command is
ignored and no computation attempt is made.

The optional boolean flag emptyonly restricts the deletion to those properties where all the values
for a property associated with a major object (such as on all atoms in an ensemble for atom
properties, or just the single ensemble property value for ensemble properties) are set to the default
property value.

The return value is the original dataset handle or reference.

Examples:
dataset purge S$dhandle D GIF

dataset purge [ens list] E IDENT 1
dataset purge $dhandle stereochemistry

The first example deletes the property data b _c1F for the selected dataset if it is present. The second
example deletes property E_TDENT from all ensembles in the current application if their property
value is equal to the default value of £_1DENT. The third examples removes stereochemistry from all
dataset ensembles.

dataset reactions

dataset reactions dhandle ?filterset? ?filtermode? ?recursive?

d.reactions (?filters=?, ?mode=?, ?recursive=?)

Return a list of all the handles or references of the reactions in the dataset. Other objects (ensembles,
tables. datasets, networks) are ignored. The object list may optionally be filtered by the filter list, and
the output further modified by a standard filter mode.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 237

CACTVS Tel and Python Scripting Language Reference

238

If the optional boolean recursive argument is set, reactions of which ensembles in the dataset are a
component are also listed. Furthermore, if the dataset contains datasets as elements, these are
recursively traversed, and reactions in these, as well as reactions as components of ensembles in
these datasets, are listed. If the output mode of the command is a handle list, items found by
recursion are appended in a straight fashion, without the creation of nested lists. By default the
recursion flag is off. Regardless of the flag value, reactions which are associated with rows of a table
in the dataset, but are not themselves dataset members, are not output.

Example:
set xlist [dataset reactions $dhandle]

Return a list of the handles of the reactions in the dataset.

set cnt [dataset reactions $dhandle {} count 1]

returns a count of all reactions which are either directly members of the dataset, or indirectly because
ensembles in the dataset are part of a reaction, or which are contained in datasets which are a
themselves a member of the primary dataset.

dataset read

dataset read dhandle ?datasethandle/enshandle? ?#recs|batchlall?

d.read (?target=?,?1limit="7?)

This command returns handles or references of duplicates of one or more objects from the current
dataset iterator position (record attribute). Its arguments mimic those of the molfile read
command. The iterator record attribute is automatically incremented. When the end of the dataset
is reached, an empty result is returned, but no error is raised.

The return value is usually the handle or reference of the object duplicated from the dataset member
at the current read position. If an optional target dataset has been specified. the object is appended
to that dataset, and the return value is the target dataset handle. It is also possible to use the magic
dataset handles new or #auto, which create a new receptor dataset.

If instead of a target dataset an existing target ensemble is specified, the recipient ensemble is
cleared, and the read dataset object placed into its hull without changing its handle. This requires that
the read object is an ensemble, and not a reaction, table, dataset or network, and that only a single
item is read. It is also possible to use an empty argument to skip these options.

By default, a single object is duplicated and the iterator record attribute of the dataset incremented
by one. With the optional third argument, a different number of objects can be selected for reading
as a block. The special value all reads all remaining objects, and batch copies a number of objects
corresponding to the batchsize dataset attribute. If there are insufficient objects in the dataset to read
all requested records, only the available set is returned, and no error results.

The dataset contents are not changed by this command. All extracted items are object duplicates. In
order to fetch original objects from the dataset, use the dataset pop command, or the various
object move commands.

The command variant dataset hread provides the same functionality as this command, but
additionally adds a standard set of hydrogen atoms to the duplicates.

dataset ref

Dataset.Ref (identifier)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

PyTHON only method to get a dataset reference from a handle or another identifier. For datasets, other
recognized identifiers are dataset references, integers encoding the numeric part of the handle string,
the dataset uuIb or name, or a table handle (which returns the dataset embedded in the table).

dataset remove

dataset remove dhandle ?handle?...

d.remove (?handle/ref?,...)
Remove objects from a dataset. The removal objects must be in the dataset.

If the dataset is not virtual, the command returns the dataset handle or reference.

dataset rename

dataset rename dhandle srcproperty dstproperty

d.rename (srcproperty=,dstproperty=)

This is a variant of the dataset assign command. Please refer the command description in that
paragraph.

dataset request
dataset request dhandle propertylist ?reload? ?modelist?

Request property data for a dataset when the dataset is not maintained locally, but a partial shadow
copy of a remotely managed dataset. It is assumed to have been only partially transferred via RPC
to a slave from a master controller application, for example for display purposes, but without the full
data content, which resides on the master.

If the requested property data is already present on the slave, and the reload flag is not set, this
command is equivalent to a dataset need command and does not invoke communication with the
master. Otherwise, the master is asked to provide the information, which may be calculated on the
master only after receiving the request, or even delegated by the master to another remote server for
computation.

Once the requested data has been received by the slave, it is added to the property data set of the local
dataset copy. The optional modelist parameter is the same as in the dataset need command. This
command is used to guarantee that critical or non-computable property data is obtained from the
master. Local, unsynchronized data may still be computed by the slave using standard property data
access commands. It is currently not possible to send data back to the master.

This command is only available on toolkit versions which have been compiled with RPC support.

In the absence of errors, the command returns a boolean status code. If it is zero, the request failed
in a non-critical way. This for example happens in case the dataset is not under control of a remote
application.

Example:

if {![dataset request S$Sdhandle A XY]} {
dataset need $Sdhandle A XY
}

is a bullet proof method of guaranteeing that correct atomic 2D display coordinates are present for
the dataset structures even if the script is run in a master/slave context.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 239

CACTVS Tel and Python Scripting Language Reference

240

This command is not supported in the PyTHoN interface.

dataset rewind

dataset rewind dhandle

d.rewind ()

Reset the dataset iterator record. This is equivalent to setting the record attribute to one.

dataset scan

dataset scan dhandle expression/queryhandle ?mode? ?parameterdict?

d.scan (query=, ?resultmode=?, ?parameters=?)

Jataset.Scan (items, query=, ?resultmode=?, ?parameters=?)

Perform a query on the dataset or transient dataset. The syntax of the query expression is the same
as that of the mol1file scan command and explained in more detail in its section on query
expressions. Essentially, this command behaves like an in-memory data file version of themolfile
scan command. However, currently queries work on ensembles and reactions as dataset members
only. Any table, network or other object which is a member of a scanned dataset is skipped. Skipped
items still count as records for positioning and query result output. In the absence of a specified scan
record list (order parameter), dataset scans begin at the current position of the iterator record
attribute that is shared with the dataset read/hread commands.

The optional parameter dictionary is the same as for mol1file scan, but not all parameters are
actually used. At this time, only the matchcallback, maxhits, maxscan, order, progresscallback,
progresscallbackfrequency, sscheckcallback, startposition and target parameters have an effect. If
result ensembles or reactions are transferred to a remote dataset via the target parameter, they are
not deleted from the local dataset but duplicates are created instead. This is because the original
objects are members of the dataset which, just like a structure file would, should remain unchanged
as result of a scan. In contrast, in file scans, the transferred ensembles and reactions were read from
file and created as new objects during the scan, and sending these does not change the underlying
file. In case a progress callback function is used, the dataset handle is passed as argument in place
of the molfile handle in molfile scan.

The return value depends on the mode. The default mode is ensl/ist. The following modes are
supported for dataset queries:

* array (or alias tclarray, dict, pythondict)
The mode parameter is a list consisting of the mode selector array and a nested list of
properties and pseudo-properties. Each property item can be a list of one to three elements.
The first element is a property or pseudo-property, the second element a name, and the third
element again a property or pseudo property. The the second property item list element is
omitted, the name is the same as the first element. If the third element is missing, it is
assumed to be the pseudo-property record.

In this mode, the command returns a list of the names of the created arrays. For each name,
a global TcL array variable or PYTHoN dictionary is created, and for each match, a TcL array
element with an element name equal to the value of the first item specification index and an
element value equal to the value of the third item specification is created (or a dictionary
entry with key and value for PyTHoN). For example, the scan mode specification

{array {E_NAME name2rec} {record recZname E NAME}}

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

results in the creation of two global TcL arrays or PyTHoN dictionaries in the current
interpreter, called name2rec and rec2name. The first has array elements (for PYTHON,
dictionary keys) where the element name is the name of the matching structure (property
E_NaME), and the value the pseudo-record number (because it is the default). The second
array has elements where the record number is the array element name, and the
corresponding value the structure name. The return value of the scan statement is the list
(tuple for PYTHON) “name2rec rec2name”, containing the names of the two variables
created.

If array or dictionary elements for a specific key already exist, the new value is appended
as a list or tuple object. The result registration procedure does not overwrite the existing
content. So, for example in above case, if there are multiple records with the same structure
name, the array element indexed by name would contain a list or records, not just a single
record. Since the global arrays or dictionaries are persistent, data is also appended over
multiple scan statements. If this is not desired, a statement like unset -nocomplain
$arrayname should be executed before the scan is started. It is legal to use the same array
or dictionary name for the registration of multiple properties. In this case, each match
appends a new list element for every reported property, though these lists will not be nested.

* bitvector
Return a string-encoded bit vector (series of Os and 1s) indicating the match status for every
visited record.

* boolean
Return a boolean value indicating whether the next record matches or not.

* booleanvector
Return a boolean vector (series of Os and 1s as vector elements) indicating the match status
of every visited record. The difference to the bitvector mode is that in the scripting interface
the vector elements are already isolated elements, for example they appear space-separated
in the string form.

° count
Count the number of hits. The result value is an integer.

e delete
Delete hits from the dataset. This is the only scan command which actually changes the
dataset.

° ens
Return the handle of the first matching ensemble. The query is stopped at that point. If no
hits are found, an empty string is returned. If a local target dataset is specified, a found
ensemble is removed from the scanned dataset.

* enslist
Return the handles of all matching ensembles. If no hits are found, an empty list is the result.
If a local target dataset is specified, the found ensembles are removed from the scanned
dataset.

* exists
A boolean check for the existence of a match. The same as count, except that the scan stops
after the first match.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 241

CACTVS Tel and Python Scripting Language Reference

° index
Return the positional index of the first matching dataset object. This is the same as the
record mode value minus one.

* indexlist
Return the positional indices of the matching dataset objects. This is the same as the
recordlist mode values minus one.

* molfile
The mode parameter is a list consisting of the mode selector molfile and a structure file
handle, which must have been opened for writing, appending, or updating. The first
matching structure is written to the file, and the command stops at that point.The output file
handle attributes determine format, selection of data written, structure encoding
conventions such as hydrogen status, etc. If no matching structure is found, nothing is
written. In this mode, the return value of the command is the matching record number of the
input file, just as in the record mode.

* molfilelist
The mode parameter is a list consisting of the mode selector molfilelist and a structure file
handle, which must have been opened for writing, appending, or updating. Matching
structures are written to that file. The output file handle attributes determine format,
selection of data written, structure encoding conventions such as hydrogen status, etc. If no
matching structures are found, nothing is written. This mode is also implicitly selected if a
structure file handle is directly provided as mode argument. In this mode, the return value
of the command is a list of the matching record numbers of the input file, just as in the
recordlist mode

° property
The mode parameter is a list consisting of the mode selector property and a sequence of
properties and pseudo-properties. The selected properties for the first match are returned as
a list, and the command stops at that point. If there are no hits, an empty string is returned.

o propertylist
The mode parameter is a list consisting of the mode selector propertylist and a sequence of
properties and pseudo-properties. The selected properties for all matches are returned as a
nested list. If there are no hits, an empty string is returned. This mode is also selected if the
mode argument is simply a list of property and pseudo property names without an
identifiable mode keyword as first list element.

* reaction
Return the handle of the first matching reaction. The query is stopped at that point. If no hits
are found, an empty string is returned. If a local target dataset is specified, a found reaction
is removed from the scanned dataset.

* reactionlist
Return the handles of all matching reactions. If no hits are found, an empty list is the result.
If a local target dataset is specified, the found reactions are removed from the scanned
dataset.

* record
Return the object sequence number of the first hit. Sequence numbers begin, for the sake of
comparability with structure file scan record numbers, with one.

242 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* recordlist
Return object sequence numbers of all hits, or an empty list. Sequence numbers begin, for
the sake of comparability with structure file scan record numbers, with one.

* table
The mode parameter is a list consisting of the mode selector table and a sequence of
properties and pseudo-properties. This scan mode returns a table handle. The table is
automatically configured with properly typed columns corresponding to the requested
properties. For each hit, a row is added. If there are no hits, a table handle is still returned,
but the table does not have any rows. This retrieval mode is only available if the toolkit has
been compiled with table support. The individual properties may also be specified each as
a list consisting of the property name, and an arbitrary string. In that case, the string is used
as the column name. By default, the column names are the same as the name of the property
they store. Example:

{table {E NAME name} {E CAS casno} record}

sets up a table with three columns called name, casno and record. The first two columns
contain property data from the matching file records, the last one the record in the file which
matched.

Instead of the keyword table, an existing table handle may also be used. In that case, any
existing matching table columns are automatically re-used to store result data. Additionally
specified properties are added as new columns to the right of the previously existing
columns. New table rows generated by matches are appended to the bottom of the table.

* tablecollection
Since all objects are already in memory, this mode is identical to the table scan mode for
dataset scans. No table reference object duplicates are created. The result table always refers
the dataset objects directly.

e vrecord
For dataset scans, this is the same as record.

e vyrecordlist
For dataset scans, this is the same as recordlist.

If requested property data is not present on the matched dataset objects, an attempt is made to
compute it. If this fails, the table object in retrieval mode table contains NULL cells, and property
retrieval as list data produces empty list elements, but no errors. For minor object properties, the
property list retrieval modes produce lists of all object property values instead of a single value. In
table mode, only the data for the first object is retrieved, which makes this mode less suitable for
direct minor object property retrieval.

The following pseudo properties can be retrieved in addition to normal properties:

* avgscore
The average value of all computed scores, such as Tanimoto, Cosine or Tversky similarity
scores, in the matching query for this result.

* conformerindex
The index of the matching conformer in case of 3D queries with multiple conformations, -1
if no matching conformer index was determined.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 243

CACTVS Tel and Python Scripting Language Reference

* conformer
A list of the atomic coordinates of the matching conformer, if a 3D query was performed.
If this is not the case, an empty vector is the result. The data type of this vector is coorvec
(x,y,z-triples as vector elements).

* filename
This property is only provided for compatibility withmolfile scan. Itis always an empty
string in this command.

* index
The object sequence index of the matching object. For datasets, this is the same as the record
value minus one.

* image
A structure GIF image (property £_GIF) with highlighted matching substructure atoms and
bonds. A normal £_GIF retrieval property would just show the structure, but without
highlighting. The data type of this property is the same as that of E_c1Fr (depending on the
configuration, a diskfile reference or an in-memory blob).

° matchatoms
An integer vector holding the labels of all atoms matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlighatoms is an alias for this pseudo property.

* matchbondatoms
The same as matchbonds, except that each element is a pair of the labels of the matching
atoms in the bonds, not the bond label as a single number.

* matchbonds
An integer vector holding the labels of all bonds matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlightbonds is an alias for this pseudo property.

* matchcount
The first element of the matchcounts array, as described below. If the query does not contain
any substructure match nodes, the result is empty.

* matchcounts
An integer vector holding the number of distinct substructure matches for substructure
query nodes in the query tree. For normal substructure expressions, this value can only be
zero or one because the standard substructure match mode only checks for the presence of
any match (match mode firsf). Additionally, this value can be minus one if the node was
never evaluated, for example because it is part of an or expression. Only if the count
modifier is used together with the substructure query operator, or the substructure operator
is the range operator, the possibility of multiple matches is evaluated and larger values can
be obtained. For these operations the default match mode is distinctinneratoms (see match
ss command).

° matchmask
A bitvector indicating which children of the root query node have matched. The length of
the bitvector is the same as the number of children of the root node. A typical application
of this retrieval item is in combination with a range node as root node.

244 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° maxscore
The maximum value of all computed scores, such as Cosine, Tanimoto or Tversky similarity
scores, in the matching query for this result.

* merit
For queries which use a merit/demerit rating scheme (for example, Bruns/Watson queries)
this retrieves the accumulated merit/demerit sum of the top-level query node. The query
needs to match for this retrieval to work, so in case none of the demerit rules match, you get
an empty result, not a default zero merit/demerit value. Internally, there is no distinction
between merit and demerit scores. The keyword demerit is an alias for this pseudo-property.

* minscore
The minimum value of all computed scores, such as Cosine, Tanimoto or Tversky similarity
scores, in the matching query for this result.

* parent
The parent structure of the matching structure as a packed, base64-encoded serialized object
string. If the dataset ensemble does not already contain it, it is computed from the structure
as property E_PARENT STRUCTURE.

* productmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

e productmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the right side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

e productmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

° queryid
The ID of the search tree query item which was responsible for the principal match. Every
tree element of a query expression possesses an 1D, starting with 1, and then assigned in
incremental sequence from left to right in depth-first manner. For simple property or
structure match expressions, the query ID is the ID of the matching branch, i.e. one for
single-node expressions. For logical expressions with an or, orcontinue or not node, the
overall reported query ID is that of the first matching leaf node. For expressions, where all
leaves need to be checked, the query ID is the ID of the and or eor node where all leaves
matched, not the ID of any individual leaf node.

* reagentmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

* reagentmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the left side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 245

CACTVS Tel and Python Scripting Language Reference

246

* reagentmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

* record
The record number. In the context of in-memory datasets, this is the dataset object list index
of'the matching object plus one. ¢ is an alias for this pseudo property. Use the index attribute
to directly obtain the dataset index.

° rgatoms(rg)
A list of the atom labels in a matching structure which were mapped to an expanded R-group
atom in the query. The property index is the name of the R-group of interest defined in the
substructure, usually something like R/. If there was no expanded R-group of that name, the
result list is empty.

* rgattachments(rg)
A nested list of the atom label pairs of the bonds in a matching structure which connect
between the structure framework and the atoms expanded as the named R-group rg. If there
was no expanded R-group of that name, the result list is empty.

¢ Score
The first element of the scores array, as described below. If the query does not contain any
scoring expressions, the result is empty.

* scores
An integer vector of the results of all query expression branches, in depth-first left-to-right
order, which computed a score, such as structure similarity queries with Cosine, Tanimoto
or Tversky bitvector comparisons. In case a branch was not evaluated when the match was
determined, zero is returned.

° Structure
The dataset structure as a packed, base64-encoded serialized object string.

* vrecord
For dataset scans, this is always the same as record.

These pseudo properties are identical to those available for structure file queries. However, structure
file queries support a couple of additional pseudo properties which are not available for dataset
queries.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

Examples:

dataset scan $dhandle {E WEIGHT < 200} recordlist
dataset scan S$dhandle “structure >= clcccccl” {table E NAME E LOPG record}
dataset scan $dhandle “structure >~ $sshnd 90” {cmpvalue E REACTION ROLE X IDENT}

The first example returns the record numbers (dataset member indices plus one) of all structures in
the dataset which have a molecular weight of less than 200.

The seconds example generates a table with columns for name, logP and record number. The table
is filled with data from all structures which contain a phenyl ring as substructure.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The final example returns a nested list of the properties of all dataset structures which have a
Tanimoto similarity of 90% or more to the structure which is represented by its handle stored in the
variable $sshnd. In this example, the ensembles are expected to be also part of a reaction, which is
possible since reaction and dataset membership are completely unrelated. Each result list element
contains the actual similarity value (which is the only comparison result value with a threshold
evaluated in the query, so there is no ambiguity which comparison result cmpvalue refers to), the role
of the ensemble in the reaction (reagent, product, catalyst, etc.) from property E REACTION ROLE,
and the reaction ID in x_1DENT. The scan mode is here automatically set to propertylist, because the
mode list consists exclusively of names of properties and pseudo properties.

Another example:

set is chno [dataset scan Sehandle {formula = C0-HO-NO-00-} count]

This command checks whether the ensemble (which is, for the duration of the command, embedded
into a transient dataset) contains only elements C, H, N and O.

dataset set

dataset set dhandle ?property value?...
d.set (?property,value?,...)

d.set ({property:value...})

d.property = value

d[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

In addition to property data, the dataset object possesses a few attributes, which can be retrieved with
the get command (but not by its related sister subcommands like dget, sqlget, etc.). Many of them
are also modifiable via dataset set.These attributes are:

° accept
A bit set indicating the object classes the dataset accepts as members. Currently, this can be
any combination of ens, reaction, table, network and dataset. The default acceptance mask
is the union of all ens, reaction and table, excluding datasets and networks as allowed
dataset objects. If an attempt is made to add an unacceptable object to a dataset, the
command (such as ens move, dataset add, etc.) throws an error. If the object added to a
dataset is a dataset, but the dataset does not accept datasets as members, the objects
contained in the source dataset are added instead.

° address_city
The city part of the author contact address.

° address _country
The country part of the author contact address, following the ISO3166 standard.

° address state
The state part of the author contact address. Empty if not applicable.

° address street
The street address part of the author contact address. Includes floor, house number, etc.

* address zip
The zIP code or other applicable postal code of the author contact address.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 247

CACTVS Tel and Python Scripting Language Reference

248

affiliation
The institution the author works for.

affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

affiliationurl
The URL of the affiliated institution.

author
The author of the dataset, as free-form string data.

authorurl
A URL with information on the author of the dataset, or an empty string if unset.

batchsize
The number of objects in the dataset which form a batch. This can for example be used in
the dataset read command. The default batch size is 10.

category

A category string to be used if the dataset is stored in a repository.

classuuid

The base class UUID of this dataset object, as associated with its authorship attributes.

coords
f the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

counter

An integer counter which is automatically incremented every time an object is moved into
the dataset, but not when the object only changes its position within the dataset. It can also
be reset to an arbitrary value, and later dataset additions increment the counter from that
user-specified value. It is not decremented when objects leave the dataset, so this attribute
is not necessarily the same as the dataset size. The initial counter value at dataset object
creation time is zero. Depending on its mode, this attribute may interact with the
insertcontrol attribute.

datasetcount
A read-only attribute reporting the number of dataset objects currently contained in the
dataset.

date
The date the dataset was defined.

deletable

A boolean flag indicating whether the dataset can be deleted at this time or not. This is a
read-only attribute. Under certain circumstances, such as a pending dataset wait
command, or the use of the dataset object as argument to a scripted computation function
expecting to be able to set function result data as property values, the dataset is marked as
undeletable and any destruction command will silently fail.

deselection
The inverse of the selection attribute, i.e. get all unselected object indices, or set the
selection by providing a list of object indices which are not selected.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* doi
A digital object identifier for the dataset object content, if defined.

° email
A contact email of the author of the dataset.

* enscount
A read-only attribute reporting the number of ensemble objects currently contained in the
dataset.

* eod
The value of the end-of-data marker. This attribute is typically used in multi-threaded
applications to indicate that feeder threads have exhausted their data supplies and that no
further dataset objects are expected to arrive in the dataset. This attribute is internally used
by the dataset pop and dataset wait commands to determine whether they should
continue to wait or exit with an empty result. The initial value of this attribute is zero.

* eodcheck
Perform a check whether at least one object is in the dataset, or is expected to arrive later.
If objects are currently in the dataset, or the eod attribute value is less than the targeteod
attribute value, the command returns zero, otherwise one. This check is not reliable for
remote datasets.

. £
failures
A list of properties for which computation failed on this object. This is a read-only attribute.
Depending on configuration settings, this information may be used to block pointless
attempts at re-computation of incomputable data.

* footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

* gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

* header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

* hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

* highwatermark
An integer specifying a high water mark object on the dataset. Some commands use this
attribute for automatic start or cancellation of operations until the object count has decreased
to the low water mark, or for automatic start of processing services until the low watermark
has been reached again. The default high watermark value is one. The dataset wait
command uses this threshold as default command parameter.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 249

CACTVS Tel and Python Scripting Language Reference

* invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

* insertcontrol
This parameter controls what happens when an attempt is made to add another object into
a dataset. The default mode is add, which means that the object is inserted in the database
if there is no size control active, or room can be made by waiting for already inserted objects
to be removed (see sizecontrol parameter). Otherwise, in that mode an error results.

Additional insertion control modes are disabled (all insertions into the dataset are blocked),
discardfirst (if the maximum size has been reached, delete first object in dataset to make
room), discardlast (if the maximum size has been reached, delete last object in dataset to
make room), discardobject (if the maximum size has been reached, delete the object to be
inserted), discardalways (never attempt an actual insertion, always delete the insertion
object), ignore (if insertion cannot be performed, leave the insertion object where it
currently is, with preservation of current dataset membership) and unlink (silently remove
the insertion object from its old dataset, if it is a member of one, but do not insert it into the
target dataset if that would exceed its maximum size).

If the object cannot be inserted and is deleted (but not if it is just unlinked or ignored, and
thus continuing to exist) the dataset counter is still incremented.

The final mode is discardrandom. In this mode, if the maximum size of the dataset has not
yet been reached, the object is simply added. Otherwise, a random number between one and
the counter attribute of the dataset is computed. If the number is larger than the maximum
dataset size, the object to be inserted is deleted, as in the discardnew mode. If the random
number is between one and the dataset size, the object in the dataset at the random position
is deleted. After that, the new object inserted at its designated position, which is not
necessarily the position of the removed object. This mode is intended to support convenient
sampling of object subsets. The random procedure yields the same mathematical results as
directly picking random objects from the total object pool passing through the dataset, but
may be interrupted at any time yielding a random subset of the objects processed so far.

* instanceuuid
The instance UUID of this dataset, as associated with its authorship attributes.
* infourl
A URL with information on the dataset object content, or an empty string if unset.

* keywords
A list of keywords associated with the table object.

* license
The license class associated with this dataset object. Setting the license to a standard type
updates the associated URL with a standard location.

o licenseurl!
A URL with details about the dataset object license.

e literature
A free-form literature reference for the dataset.

250 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* lowwatermark
An integer specifying a low water mark object count on the dataset. Some commands use
this attribute for automatic scheduling or termination of actions. The default low watermark
is zero.

* maxsize
The maximum number of objects the dataset will accept. If it is set to a negative value,
which is the default, the maximum number of objects is unlimited. The effects of an attempt
to overload the dataset depend on the settings of the sizecontrol attribute of the dataset.

* modcount
The content and data modification count on the object. This is a read-only attribute.

° mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

* name
A free-form dataset name as string.

* networkcount
A read-only attribute reporting the number of network objects currently contained in the
dataset.

e orcid
The ORCID code of the author (see www.orcid.org).

* pagefile
The handle of a molfile object. If this is set, the current contents of the dataset are deleted,
the pageoffset attribute set to the current input position of the file, and a number of records
up to the current value of the pagesize attribute are read into the dataset. If this attribute is
set to an empty string, the connection between the dataset and the structure file is abolished.

* pageoffset
The file record offset of the first object in the dataset, if the dataset is linked to a file. If this
value is changed, and a link is active, dataset objects with file records outside the
offset/pagesize window are deleted from the end or beginning, and new objects are added
from the backing file as required.

* pagesize
The number of records to keep in the dataset in case it is linked to a file. If this value is
changed, and a link is active, dataset members are deleted from the dataset, or added from
the backing file as necessary.

* parent
Get the handle of the parent object, if the dataset is an embedded object, e.g. an integral
component of a table, factory or station object. If the dataset is a standalone object, an empty
string is returned. The parent attribute is not the same as dataset membership (see dataset
dataset command), which can be changed (see dataset move command and the accept
dataset attribute). This attribute is read-only. An embedded dataset object cannot be
dissociated from its owner.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 251

CACTVS Tel and Python Scripting Language Reference

* passphrase
A string which needs to be presented by remote interpreters if they connect to the listener
port of the dataset object. An empty string is equivalent to no pass phrase.

* path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

* phone
A contact phone number of the author.

* port
An integer port number at which a listener thread waits for connections from remote
interpreters for the addition or removal of objects. If this attribute is set to an empty string,
an existing listener thread is terminated and remote connections are no longer accepted.

* progress
A user-defined progress value intended to track the state of lengthy operations on the table.
It is an integer between zero and one hundred and is initially set to zero. When the argument
is set, it accepts a floating point value, but the stored value is automatically rounded to the
next integer and forced into the 0..100 range.

* pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

° pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

e reactioncount
A read-only attribute reporting the number of reaction objects currently contained in the
dataset.

* record
The current iterator record position. The first object in the dataset corresponds to record 1.

* refcount
If the Tev interpreter is using native Cactvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TcL object references active for this ensemble. This attribute is read-only.

° references

Cross references of the dataset. This is a nested list of class UUIDs and reference type tags.
° regid

For registered datasets, the registration ID. Zero if this is a private dataset.

° room
A read-only integer attribute which indicates whether the dataset has room for the insertion
of another object. Datasets without size control always return 1, as do datasets which still
have room for more objects. Return value 0 indicates that the maximum size has been
reached, and no alternative action has been configured. Other possible special return values
are -1 (insertion succeeds, but delete the inserted object), -2 (insertion will silently fail, the
object remains in its old dataset membership), -3 (the object will be unlinked from any

252 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

existing dataset, but silently not inserted into the new dataset) and -4 (the object will not be
inserted in the target dataset, instead an application-specific alternative action will be
taken). This attribute only checks the capacity of the dataset, not whether it will reject the
object because it is of an unsuitable class (see accept attribute). In multi-threaded
applications, the status value may become outdated before an insert command on the target
dataset can be executed.

* scoped
A boolean object visibility control flag. If set, and global control flag
: :cactvs (object_scope) is also set, the object is visible only in theTeL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

o selected
Flag indicating whether the object is selected. This attribute can be changed. This attribute
works on the dataset object proper, not its content - see the selection attribute below.

* selection
Upon retrieval, this attribute is a list of the position indices of all objects in the dataset which
have the selected status flag. The index begins with zero, and the result is an empty list if
there are no selected objects.

On setting, dataset set first clears all dataset object selections. The command dataset
append retains it. The argument is then parsed as a list of integer object indices, and the
selection flag is set for all those indices where objects can be found in the dataset. Indices
outside the range between zero and the dataset size minus one or duplicate index
specifications are silently ignored.

To check or set the selection status of the dataset object proper, use the selected attribute.

* size
Get the number of objects in the dataset. This is a read-only attribute. It is equivalent to the
dataset count command without any filters.

e sizecontrol
This attribute operations in tandem with the maxsize attribute. It can be set to auto, none,
error or block. pause and wait are aliases for block. The default setting is auto. In error
mode, any attempt to add an object to a dataset which has already reached its maximum size
raises an error. In block mode, the interpreter halts until the object count has decreased
below the maximum size and then continue to move the object into the dataset. This mode
is useful when the script is multi-threaded or the dataset operates a listener port for remote
commands, because the number of objects in the dataset can change by these methods
without involving the paused interpreter. The none mode disables the maximum size
monitoring. Finally, the auto mode behaves like the error mode if there is only a single
interpreter thread, and the dataset does not listen for remote commands, and like the block
mode, if any of these two criteria are met.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 253

CACTVS Tel and Python Scripting Language Reference

* swapthreshold

The maximum size of a dataset before ensemble and reaction objects in it are automatically
swapped to disk, as they are by the explicit commands ens swapout Or reaction swapout.
The size check is performed at the moment new objects are added, and these new objects

are the first to be swapped. The default value for this attribute can be set in the control array
element:.cactvs(dataset_swap_threshold). Its initial value is 10000. The default value for
the embedded datasets in tables is controlled separately by ::cactvs(table swap_threshold),
which is also initially set to 10000.

If this value is set to a negative value, all dataset elements which are currently swapped out
are loaded back in. If it is set to a positive value, and the number of not currently swapped
out objects of the dataset is more than the new limit, excess objects are swapped beginning
from the end of the dataset queue until the in-memory object count of the dataset satisfies
the new constraint. If the limit is increased, but not set to a negative unlimited value, the
object swap status is not modified.

* tablecount
A read-only attribute reporting the number of table objects currently contained in the
dataset.

° targeteod
The target value of the eod attribute. Once it matches or exceeds this value, the dataset is
not expected to receive any more items. The initial value of this attribute is one.

° threadcount
A read-only attribute returning the number of TcL interpreter threads associated with the
dataset. Normal datasets have no associated threads and return zero. This command is
equivalent to the length of the list returned by the threads attribute, and the threads included
in this count are the same.

° threads
A read-only attribute returning the TcL interpreter thread handles of the threads associated
with the dataset (see dataset addthread command). Datasets without threads return an
empty list. The handles are compatible with the standard TcL thread package. Remote
communication listener threads (see port attribute) are independent of TcL support, do not
have a Tcr handle, and are not listed by this command.

* timeout
A timeout in seconds to use with the dataset wait command. A negative value means an
infinite wait period, and zero no wait period. The default setting is minus one.

* tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

* uuid
The automatically generated object instance UUID. This ID is independent of the UUID triple
(class/instance/version) associated with the authorship attributes and intended for public
dissemination. This attribute is read-only, unique for every dataset object - even duplicates
-, and independent of its contents or pedigree.

* version
A version number of the dataset. This is a string in a 1.2.3 (or shortened) style.

254 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* versionuuid
The version UUID associated with this dataset object as per its authorship attributes.

° X
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

°y
if the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

Examples:

dataset set $dhandle D NAME “New lead structures”
dataset set $dhandle E NAME “Lead (metal)”

The first line is a simple set operation for a dataset property. The second line shows how to set
properties of multiple ensembles in one step. The same property value is assigned to all ensembles.

dataset set $dhandle port 10001 passphrase blockbuster

Set up a listener thread on port 10001 which accepts connections from remote interpreters which
need to present the pass phrase as credential. Remote interpreters can add (ens move, reaction
move, table move) Or remove (dataset pop) objects to or from this dataset, as well as query the
dataset object count (dataset count). Objects are transferred over the network connection as
serialized objects to and from the remote interpreters.

dataset setparam

dataset setparam dhandle property ?key value?...
dataset setparam dhandle property dictionary

>

d.setparam(property, ?key,value?...)

d.setparam(property,dict
Set or update a property computation parameter in the parameter list of a valid property. This
command is described in the section about retrieving property data.

The return value is the updated property computation parameter dictionary.

Example:

dataset setparam Sdhandle D _GIF comment “Top Secret”

dataset show
dataset show dhandle propertylist ?filterset? ?parameterdict?
d.show (property=,?2filters=?, ?parameters=?)

Dataset.St

w(items,property=,?filters=?, ?parameters="?)
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, dataset get and dataset show are equivalent.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 255

CACTVS Tel and Python Scripting Language Reference

256

dataset sort

dataset sort dhandle {property ?direction ?cmpflags ?cmpvalue???}...

d.sort ((property, ?direction, ?cmpflags, ?cmpvalue???),...)

Sort a dataset according to property values of the objects in the dataset. If no sort property set is
specified, the default sort properties are E_NATOMS (number of atoms) and, for breaking ties,
E_WEIGHT (molecular weight) and finally E_sASHISY (stereo isotope hash code).

Every sort item is interpreted as a nested list/tuple and can have from one to four elements. The first,
mandatory element is the sort property, or one of the magic names record (or #record) or random
(#random). The next optional element is the sort direction, specified as up (or ascending) or down
(descending). The default sorting order is ascending. The final optional comparison flags parameter
can be set to a combination of any of the values allowed with the prop compare command. The
default is an empty flag set. Properties in the sort list have precedence in the order they are specified
in. Object property values of comparison list entries to the right in this list are only considered if the
comparison of all data values of list elements to the left results in a tie.

If a comparison value is supplied as fourth argument, the sort utilizes the comparison results of
dataset object property values against this value for ranking, not the direct comparison result
between the dataset object property values. This is for example useful when sorting according to a
bitvector similarity value to an external structure.

The magic property name record sorts by the object index in the dataset. Sorting upwards on this
property does not change the object sequence in the dataset, and sorting downwards reverses it. This
pseudo property is always added as a final implicit criterion, so that the sequence order of objects
tied in all explicit comparisons is preserved. The other magic property name random assigns a
random value to all dataset objects and sorts on this value, yielding a random object sequence.

The command returns a list of the handles of the objects controlled by the dataset in the newly sorted
order. Simultaneously, the objects are physically moved within the dataset, so the sort has a
persistent effect. The same result list may later be obtained by a dataset objects command.

It is possible to sort transient datasets, but this makes sense only if the object list sequence returned
as command result is captured and used later, because the sort effect is not persistent since there
exists no permanent dataset object.

Examples:

dataset sort $dhandle {E NAME up {ignorecase lazy}]

The example sorts the dataset according to the compound name (property £_NaME, data type string)
in alphabetic order, using a lazy (ignoring whitespace and punctuation) and case-insensitive
comparison mode.

dataset sort $dhandle {E_NATOMS down} {E_NRINGS up}

Sort the dataset in such a way that the ensembles with the largest number of atoms, and among these
those with the smallest number of rings, come first.

dataset sort $dhandle random
This command randomizes the object order in the dataset.

dataset sort S$Sdhandle {*}S$sortlist

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

This is the recommended construct when using a sort property list store in a TcL variable as
command argument. Older versions of the dataset sort command used a single sort argument
parameter instead of a variable-size argument set.

dataset sqldget

dataset sgldget dhandle propertylist ?filterset? ?parameterdict?

d.sgldget (property=,?filters=?, ?parameters=?)
Dataset.Sgldget (items, property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The differences between dataset get and dataset
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset sqlget

dataset sqglget dhandle propertylist ?filterset? ?parameterdict?

d.sglget (property=, ?2filters=?, ?parameters=?)

Dataset.Sqglget (items, property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
sqlget is that the SQL command variant formats the data as SQL values rather than for TcL or PYTHON
script processing.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset sqlnew

dataset sglnew dhandle propertylist ?filterset? ?parameterdict?
d.sglnew (property=,?filters=7?, ?parameters=?)

Da

aset.Sglnew (items, property=, ?filters=7?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The differences between dataset get and dataset
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TcL or PYTHON script processing.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset sqlshow

dataset sglshow dhandle propertylist ?filterset? ?parameterdict?

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 257

CACTVS Tel and Python Scripting Language Reference

258

d.sglshow (property=,?filters=?, ?parameters=?)

Dataset.Sglshow (items, property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The differences between dataset get and
dataset sglshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TcL or PYTHON script processing.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset statistics
dataset statistics dhandle property
d.statistics (property)

Get basic statistics on the property values of the objects in the dataset. The property can be a basic
property or a property field, but its element data type needs to be cast-able to a simple numeric type.
In addition, it must be directly attached to any of the objects which can be members of a dataset, e.g.
an ensemble property, but not an atom property.

If the property data is not present on an object, an attempt is made to compute it. In case that fails,
or a dataset member object is not of a type matching the property, these objects are silently skipped.

The return value is a dictionary containing the number of objects in the dataset which were used for
the statistics (key n), the sum of property values (sum), the property value average (avg) and the
property data standard deviation (stddev). The latter three values are floating points, regardless of
the property data type. In case any of these values are not computable, for example because there
were an insufficient number of objects, the reported value is zero.

The command verb can be abbreviated as stats.

Example:

set d [dataset statistics $dh E WEIGHT]
puts ,Avg: [dict get $d avg]l"
dataset subcommands

dataset subcommands

dir (Dataset)

Lists all subcommands of the dataset command. Note that this command does not require a dataset
handle.

dataset tables
dataset tables dhandle ?filterset? ?filtermode? ?recursive?

d.tables (?filters=?, ?mode=?, ?recursive=?)

Return a list of all the handles or references of the tables in the dataset. Other objects in the dataset
(ensembles, reactions, datasets, networks) are ignored. The object list may optionally be filtered by
the filter list, and the result further modified by a standard filter mode argument.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If the recursive flag is set, and the dataset contains other datasets as objects, tables in these nested
datasets are also listed.

Example:

set n [dataset tables $dhandle {} count]

dataset taint
dataset taint dhandle propertylist/changeset ?purge?

d.taint (property=, ?purge="?)

Trigger a property data tainting event which acts on the dataset data, and all objects and their data
contained in the dataset.

The parameters of this command are the same as for ens taint and explained there.

Example:
dataset taint Sdhandle A XYZ

All property data on the dataset and the dataset members is invalidated if it directly or indirectly
depends on the 3D atomic coordinates.

The command returns the original object handle or reference.

dataset threadexec
dataset threadexec ?maxthreads? ?substitutiondict? scriptbody

Execute a script on the objects in the dataset in parallel in multiple threads. The number of threads
is by default the lesser of 16 or the number of objects in the dataset, but this can be configured. If
there are more dataset objects than threads, threads are started in a groupwise fashion. In the function
body, standard TcL/Tk percent substitution is performed. The default substitutions are %D for the
dataset handle, and o for the thread-specific dataset object. Other custom substitutions can be
configured in the optional substitution dictionary, in a letter /value (no percent prefix) format.

There are some limitations on what the object threads can do. They are allowed to delete their own
current object, or move it outside the dataset, but not other objects in the dataset. Additional objects
may be appended to the dataset (they are not subject to processing by the original command), but
not inserted in random positions. Computation in the script body must reach the end of the script,
or be ended by return or break statements. An error in any of the threads stops the command. All
threads of a group must have finished before a new group is started.

The command returns the dataset handle if the dataset is not virtual.

Because of multi-threading issues, there is no PYTHoN version of the command.

dataset transfer

dataset transfer dhandle propertylist ?targethandle? ?targetpropertylist?

d.transfer (properties=, ?target=?, ?targetproperties="?)

Copy property data from one dataset to another dataset or other major object, without going through
an intermediate scripting language object representation, or alternatively dissociate property data
from the dataset. If a property in the argument property list is not already valid on the source dataset,
an attempt is made to compute it.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 259

CACTVS Tel and Python Scripting Language Reference

260

If a target object is specified, the return value is the handle or reference of the target object. The
source dataset and the target object cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple dataset get, i.e. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was that of a major object (i.e. an ensemble, reaction, table, dataset or network), it
is only unlinked from the source object, but not destroyed. This means that the object handles
returned by the command can henceforth the used as independent objects. They can be deleted by
a normal object deletion command, and are no longer managed by the source object.

Example:
dataset transfer $dh D _SVG IMAGE $1h I, 1DPATTERN SVG IMAGE

This command performs a data transfer between different object classes, with change of the property
under which the content is stored.

dataset transform

dataset transform dhandle SMIRKS1ist ?direction? ?reactionmode?
?selectionmode? ?flags? ?overlapmode? ?{?exclusionmode? excludesslist}?
?maxstructures? ?timeout? ?maxtransforms? ?niterations? ?statusvariable?

d.transform(transforms=, ?direction=?, ?reactionmode=?, ?selectionmode=?, ?flags="?,
?overlapmode=?, ?excludess=?, ?maxstructures=?, ?timeout=?, ?maxtransforms="?,
=7

?iteratio

o

orms=, ?direction="?, 7
rerlapmode=?, ?excC
?iterations=?

.Transform(items
lectionmode=?, ?fl
“imeout=7?, ?maxtrans

2t

This command is complex, but very similar to the ens transform command. Please refer to that
command for a full description of the command arguments.

The major difference of dataset transform is that the start structure set is not a single ensemble,
but rather the set of all ensembles in the dataset. Any dataset items which are not ensembles are
ignored. The return value is, just as with the ens transform command, a list of result ensembles.
These do not become part of the input dataset.

Example:
dataset transform [ens get $Sehandle E KEKULESET] S$trafolist bidirectional \

multistep all {preservecharges checkaro setname}

This command first expands an ensemble object into a set of Kekulé structures. The property data
type of the E_KEKULESET property is a dataset, so its handle is returned, and this dataset is then
submitted for further transformation, which in this case involves manipulations of bonds in aromatic
systems and thus is dependent on the Kekulé structures of the input ensembles.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The dataset variant of the transform command does not allow the use of marked or unmarked atom
or bond specifications in the exclusion substructure list. Normal substructures are supported, and are
applied to all start structures.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset unique

dataset unique dhandle {property ?direction? ?cmpflags?}..

d.unique ((property, ?direction, ?cmpflags, ?cmpvalue???),...)

This command removes duplicate objects from the dataset and destroys them. Object equivalence
is determined by pair-wise comparison of one or more properties. If all these properties are identical
for any two objects, one of them is deleted. If no properties are specified, the default is the single
property E_HASHISY, the standard isotope- and stereo-aware ensemble hash code.

The command returns labels or references of the ordered list of objects remaining in the dataset after
deletion. The command is closely related to the dataset sort command, and the same restrictions
on usable sort properties apply. Internally, the command performs a sort first, in order to avoid a
quadratic growth of pair-wise comparisons. This has the side effect that the object order in the
dataset is not preserved. Instead, the surviving objects are listed in ascending (by default) or
descending (if the corresponding optional sort direction argument is set accordingly) values of the
sort properties. The interpretation of the optional comparison flags and sort direction arguments, as
well as the priority of the properties, and the special considerations when working on transient
datasets, are the same as for the command dataset sort.

Example:

molfile read $fh $dh all
dataset unique $dh

This command first reads a complete file into a dataset, and then discard duplicates, using the default
isotope- and stereo-aware structure hash code.

dataset unlock
dataset unlock dhandle propertylist/dataset/all
d.unlock (property=)

Unlock property data for the dataset object, meaning that they are again under the control of the
standard data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

* Property names or references
Valid property instances on the dataset object are unlocked. Non-existent data is silently
ignored. It is not possible to unlock individual property fields.

e all
All valid dataset object properties are unlocked.

* dataset
This is an object class identifier. All property data which is controlled by the dataset major
object and attached to the specified object class is unlocked. Since datasets do not
incorporate minor objects, this identifier is equivalent to a/l.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 261

CACTVS Tel and Python Scripting Language Reference

262

Property data locks are obtained by the dataset lock command.
This command does not recurse into the objects contained in the dataset.

The return value is the original dataset handle or reference. If the argument was a transient dataset
(only possible for TcL), the result is an empty string.

dataset unpack

dataset unpack string ?compressionlib)
Dataset.Unpack (data=, ?compressionlib="?)

Generate a dataset complete with all elements it contains from a packed, base64-encoded serialized
object string, as it is generated by the complementary dataset pack command.

The return value is the handle or reference of the new dataset. All objects in the new dataset also are
assigned standard handles, which can be retrieved with the usual commands such as dataset ens
and dataset reactions.

The default compression library is z/ib. For more options, see dataset pack.
Note that this command does not take a dataset handle as argument, but a pack string.

Example:

dataset unpack [dataset pack $dhandle]

This example is effectively the same as a dataset dup operation, but of course less efficient,
because the objects have to be serialized, compressed, and base64-encoded and the same sequence
of operations run backward again.

dataset valid
dataset valid dhandle propertylist

d.valid (property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the dataset. No attempt at computation is made. For PyTHoN, where single-item lists are
syntactically not the same as a single value, the return value is a single boolean if the argument was
a string or a property reference, and only a single property was decoded.

Example:
dataset valid $dhandle D _NAME

reports whether the dataset is named (has a valid b_NaME property) or not.

dataset has is an alias to this command.

dataset verify

dataset verify dhandle property

d.verify (property)

Verify the values of the specified property on the dataset. The property data must be valid, and a
dataset property. If the data can be found, it is checked against all constraints defined for the
property, and, if such a function has been defined, is tested with the value verification function of
the property.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails a test, and
an error condition otherwise.

dataset wait

dataset wait dhandle ?size|query? ?script?

d.wait (?query=?, ?size=?, ?function=?)

Suspend the interpreter until the number of objects in the dataset has reached a threshold, or an
object which satisfies a query expression can be found. The syntax of query expressions is the same
as in the dataset scan command. Query parsing is attempted if the argument is not a simple
integer. If no explicit size or query expression is specified, or an empty string (or None for Python)
is passed as this parameter, the command uses the value of the highwatermark dataset attribute as
default value for an implicit size threshold condition.

Another dataset attribute which has an influence on the execution of the command is the timeout
attribute. If the dataset size has not grown to the required size, or no object which satisfies the query
expression was added to the dataset after waiting for the timeout number of seconds, an error is
raised. By default, the maximum wait period is indefinite, which corresponds to a negative timeout
value. If the timeout value is set to zero, the wait condition must be met immediately, or an error
results. However, no error is raised if the eod/fargeteod dataset parameter pair indicates that no more
data can be expected to be added in the dataset. In that case, the result is an empty string, or None
for Python.

If no script function parameter is used, the return value of the command is the number of objects the
dataset holds in case of an explicit or implicit size condition, or the handle/reference of the first
matching object in case of a query expression.

If the object count already exceeds the threshold, or a matching object can be found at the moment
the command is executed, the command returns immediately.

In the TcL case, and in the presence of a script body parameter, the script is executed whenever the
wait condition is met. If the script is ended with a continue statement, or simply reaches the end of
the code block, the wait loop is automatically restarted. If the script reports an error, or is left via a
break or return statement, the loop is terminated.

For PyTHON, instead of the script body, a function name or reference can be used. This function is
called in local scope with a single argument, which is either the current dataset item count in case
of'a simple threshold condition, or the reference of the object matching the query expression. Within
the PyTHON functions, the normal break and continue loop control commands cannot be used to to
scope limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can be raised.
These are automatically caught and processed in the loop body handler code.

This command is mostly useful when running multi-threaded scripts, or when the dataset has an
active remote command listener on a port. Under these circumstances, new objects may arrive in the
dataset without participation of the local, waiting and stopped interpreter, which can then be
processed.

While a dataset wait command is pending, the dataset cannot be deleted. Since it is possible that
other threads or port monitors further update the dataset between the time the wait condition is met
and script processing commences, action scripts should be prepared to see more or less items in the
dataset than there were immediately after the trigger event.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 263

CACTVS Tel and Python Scripting Language Reference

264

Example:

loop n 1 $nrecs {
set eh [dataset wait $dh “E FILE (startrec) = $n”]
molfile write $fh S$Seh
ens delete $eh

}

This is a part of a simple write thread which writes back processed ensembles in the same order as
they were read from an input file. In case there are multiple processing threads, it is likely to happen
that the computation on an ensemble read from a higher input file record finishes before another with
a smaller record number and thus the sequence of the ensembles to be written as delivered in the
output queue becomes out of sync. By waiting for ensembles in the input record sequence the
original order is preserved. More robust versions of such a script should handle the case of
ensembles from a specific input record never appearing in the dataset and similar sources of
disruption.

dataset weed

dataset weed dhandle keywords
1.weed (keywordsequence)
weed (?keyword

This command performs standard clean-up operations on all ensembles and reactions in the dataset.
The supported operations are described in more detail in the section on the equivalent ens weed
command.

The return value of this command is the dataset handle or reference.

dataset xlabel

dataset xlabel dhandle propertylist ?filterset? ?filterprocs?

d.xlabel (property=, ?filters=?,?filterfunctions=?)

This command is rather complex and closely related to the dataset extract command. Its purpose
is to extract handle/reference and label information for selected subsets of the dataset. The return

value is a nested list. The sublists consist of the object handle or reference, the object label (if the
object does not have a label, 1 is substituted), and the dataset object index. The dataset object index
starts with zero.

The selection of the class of objects which are extracted is performed indirectly via the property list.
For practical purposes, this list should be a single property. Its object association type determines

the class of objects selected. For example, 2 LABEL or 2 syMBOL returns atom labels, while B OrRDER
returns bond labels and £_NamME select complete ensembles, with 1 as pseudo ensemble label.

The objects for which data is returned can further be filtered by a standard filter set, and additionally
by a list of filter procedures (for TcL, specified as procedure names) or functions (for PYTHON,
specified as function names or function references). These procedures or functions are called with
the respective object handles/references and object labels as arguments. For example, a callback
function used in an atom retrieval context would be called for each atom with its ensemble handle
or reference and the atom label as arguments. If major objects without a label are checked, such as
complete ensembles, 1 is passed as the label. The callback procedures are expected to return a
boolean value. If it is false or 0, the object is not added to the returned list, and the other check
procedures are no longer called.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The command currently only works on ensembles in the dataset, ignoring any reactions, tables,
datasets or networks which may be present.

This command is primarily useful for the display of filtered minor object data from datasets, such
as atom property values for specific types of atoms.

Example:

set dhandle [dataset create [ens create O] [ens create C=C]]

dataset xlabel $dhandle A LABEL !hydrogen

dataset xlabel $dhandle B _ORDER doublebond

First, a dataset with two ensembles (water and ethene) is created. This dataset is then queried. The
first query is for all atoms in it which are not hydrogen. The returned list is

{ensO0 1 0} {ensl 1 1} {ensl 2 1}
In object ens0, which is the first object in the dataset, atom / passes the filter. In object ens/, which
is the second object in the dataset, atoms with label / and 2 pass. The second query asks for the labels

of double bonds in the dataset. The use of property B_ORDER is arbitrary - any other bond property
would do as well. The return value of this command is

{ensl 1 1}

which indicates that only the bond with label 1 in object ens i, which is the second object in the
dataset, fulfills this condition.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 265

CACTVS Tel and Python Scripting Language Reference

266

The ens Command

The ens command is the generic command used to manipulate molecular ensembles. Ensembles are
the most commonly used chemistry major object. Ensembles contain atom, bonds, molecules and
other minor objects.

The syntax of this command follows the standard schema of command/subcommand/majorhandle.
Since molecular ensembles are major objects, they are not addressed via labels.

Similar to the functionality of molfile and dataset objects, ensembles can be persistent, or transient.
Persistent ensembles are those created by the ens create command or similar functions. They
possess a handle and exist until explicitly deleted. Transient ensembles only exist for the duration
of a single command. They are deleted as soon as the command finishes, regardless whether the
command was successful or not.

Examples:

ens get $ehandle E SMILES
ens merge [ens create CCC] [ens create CCC]
ens get lycorine E CID

This is the list of officially supported subcommands:

ens add

ens add ehandle ?ehandle 1ist?...
e.add (?eref/erefsequence?, ...)

e += eref

This command performs the same operation as the ens merge command, but preserves the
ensembles in the merge lists (argument four and onwards in the TcL command variant). The base
ensemble (third argument) is modified.

Please refer to the ens merge command for a more detailed documentation.
The PyTHON arithmetic command returns a reference of the original ensemble, not the new first atom

label or reference of the merged ensemble (see again ens merge).

ens align3d

ens align3d ehandle box/center/masscenter/pmi ?usehydrogens? ?property?

e.align3d(?mode=?, ?usehydrogens=?, ?coordinateproperty="?)

Perform a 3D alignment by modifying standard atom coordinates property o xvz, or an alternative
explicitly specified atomic coordinate property.

The possible alignment modes are

* box
move center of enclosing 3D coordinate box to origin

* center
move average atom coordinates to origin

* masscenter
move mass-weighted atom coordinates to origin

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* pmi
align ensemble to principle moments of inertia (largest on x axis), and move the
mass-weighted center to the origin.

By default all atoms are used to compute the alignment rotation and movement vectors, including
hydrogens. If these should be omitted from computing the movement vectors (but not the
subsequent atom movement), the optional usehydrogens parameter can be set to false.

The command returns the handle or reference of the ensemble.

ens append

ens append ehandle ?property value?...

e.append ({?property:value,?...})

e.append (?property,value, ?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:

ens append $ehandle E NAME “ linker”

ens assign

ens assign ehandle srcproperty dstproperty

e.assign (srcproperty=,dstproperty=)

Assign property data to another property on the same ensemble. Both properties must be associated
with the ensemble object class. This process is more efficient than going through a pair of ens
get/ens set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant ens rename directly exchanges the
property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

The command returns the original object handle for TcL, or object reference for PYTHON.

Examples:

ens assign $ehandle A XY A XY%

ens assign $ehandle E NMRSPECTRUM (spectrometer) E METHOD
ens rename S$ehandle E IDENT E NAME

ens atoms

ens atoms ehandle ?filterset? ?filtermode?

e.atoms (?filters=?, ?mode=7?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 267

CACTVS Tel and Python Scripting Language Reference

268

Standard cross-referencing command to obtain the labels or references of the atoms the ensemble
contains as minor objects. This is explained in more detail in the section about object
cross-references.

Examples:
ens atoms $ehandle

ens atoms $ehandle hydrogen
ens atoms $ehandle !hydrogen count

The first example simply returns a list of the labels of the atoms the ensemble contains as minor
objects. The second example returns the atom label(s) of all hydrogen atoms in the ensemble. If there
are no such atoms, an empty list is returned. The final example counts the number of non-hydrogen
atoms in the ensemble.

ens bondangles

ens bondangles ehandle ?filterset? ?filtermode?

e.bondangles (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the bond angle objects the
ensemble contains as minor objects. This is explained in more detail in the section about object
cross-references.

ens bonds

ens bonds ehandle ?filterset? ?filtermode?

e.bonds (?filters=?, ?mode=7?)

Standard cross-referencing command to obtain the labels or references of the bonds the ensemble
contains as minor objects. This is explained in more detail in the section about object
cross-references.

Examples:

ens bonds $ehandle
ens bonds $ehandle doublebond
ens bonds $ehandle carbon count

The first example simply returns a list of the labels of the bonds the ensemble contains as minor
objects. The second example returns the bonds label(s) of all double bonds in the ensemble. If there
are no such bonds, an empty list is returned. The final example counts the number of bonds which
involve one or more carbon atoms in the ensemble.

ens cast

ens cast ehandle dataset/ens/reaction/table P?propertylist?

e.cast (objectclass=, ?properties=?)

Transform the ensemble into a different object. Depending on the target object class, the result is as
follows:

* dataset
A new dataset which contains which contains the ensemble as first and only object.

° ens
Only supplied for the sake of completeness. This mode does nothing.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* reaction
A new reaction, which contains the original and a duplicate of the ensemble as reagent and
product components, and an auto-generated 1:1 A MAPPING property.

* table
A new table with one row and automatically generated columns for all properties of the
input ensemble of the ens (E_*) object class. The row is filled with the input ensemble data,
and the ensemble is moved to the internal dataset of the table.

If the optional property list is specified, an attempt is made to compute the listed properties before
the cast operation, so that they may become a part of the new object. No error is raised if a
computation fails.

The command returns the handle (reference for PytHoN) of the new object, or the input object in case
of mode ens.

ens clear

ens clear ehandle ?Pkeepensprops?

e.clear (?keepensproperties="?)

This command resets an ensemble to a virgin state. All minor objects and all property data of the
ensemble are deleted. However, the ensemble handle or reference remains valid, representing an
ensemble without any atoms, bonds, rings or other minor objects. If the optional argument is set to
a true value, ensemble-class properties (E_*) are not deleted, but everything else still is.

Ensemble membership in datasets, reactions, etc. is not changed by this command.

The command returns the original handle or reference.

ens compare

ens compare ehandle ehandleZ

e.compare (eref/ehandle)

Compare two ensembles, yielding a stable sort order. The compared attributes are, in this order, the
number of atoms, the number of bonds, the ensemble molecular weight, the number of ESSSR rings
and finally the stereo- and isotope aware 64-bit hashcode (E 1S0TOPE STEREO HASHY). The
command returns 1 if the first ensemble is larger, -1 if the second is larger, and O if they are identical
according to the comparison scheme.

The compared property values, with the exception of the final hashcode tiebreaker, are compatible
with the RDKiT model.

ens copy
ens copy src ehandle dst ehandle
e.copy (eref dst)

Create a copy of the input ensemble into the framework of an existing ensemble. The old data of the
destination ensemble is destroyed, but its handle or reference is reused for the copy. The destination
handle can be an empty string, #new, #auto or None for PyTHON. In that case, the ensemble is
duplicated and a new handle assigned.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 269

CACTVS Tel and Python Scripting Language Reference

270

This command is useful when an ensemble handle or reference is potentially stored in unknown
locations and the ensemble data needs to be updated.

The return value of the command is the handle or reference of the destination ensemble. It is allowed
to copy an ensemble onto itself.

Example:

set ehl [ens create CC]
set eh2?2 [ens create CCC]
ens copy $ehl $eh?2

After the example code sequence, both ensembles represent ethane, the first compound. However,
these are independent ensembles. Any further modifications of the ensemble data on any of the
ensembles will not be seen by the other.

The command returns the handle or reference of the target ensemble.

ens create
ens create ?codestring? ?mode? ?datasethandle? ?macroset?
Ens (?data=?, ?mode=?, ?dataset="?

Ens.Create (?data=?, ?mode=7?, ?da

’macroset="?)

This command creates a new molecular ensemble and returns its handle or reference. If none of the
optional arguments are specified, or the argument string is an empty string (or None for PYTHON), an
empty ensemble without any atoms or bonds is created. These may later be populated with
commands like atom create.

If data string may either begin with an automatically recognized prefix, or an automatic format
detection process is initiated. Recognized prefixes are:

° aa:
Decode a 1-letter or 3-letter case-sensitive amino acid sequence. Stereochemistry is
assumed to be natural (i.e. L amino acids). The first amino acid has the free amino group,
the last the free carboxyl group.

* aldrich:
Decode a Sigma-Aldrich catalog number via the sigmaaldrich.com Website. There are a
couple of alias prefixes: sigma:, sial: milliporesigma:, sigmaaldrich: and ms:

° cas:
Decode CAS number via the NCI resolver, PUBCHEM Or commonchemistry.org. Since
properly formed CAS numbers are distinctive, they are also recognized without a prefix.

* cdx:
Decode base64-encoded ChemDraw CDX data. This is the format sent to Web servers by the
ChemDraw browser plug-in.

e chebi:
Decode CHEBI ID

e chembl:
Decode CHEMBL ID

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

e chemspider:
Decode CHEmsPIDER 1D

e cid:
Decode PusCHEm CID

e drugbank:
Decode DrRucBANK ID

* emol:
* Decode EMoLEcuLEs ID. emolecules: is an equivalent prefix.

e formula:
Decode as formula, i.e. create elemental atoms, but no bonds

e inchi:
Decode an INCHI string. Usually this is not a needed prefix since the standard beginning of
an INCHI string (InChl=) is sufficiently unique to prevent misinterpretation. The prefix can
be useful in case it is not known whether the InChl string has a proper lead-in. If the /nChi=
part has been stripped, the decoder does not automatically recognize the encoding. With the
explicit prefix, InChl strings with and without the lead-in are decodable.

° jme:
Decode as data string of JME Java structure editor

* kegg:
Decode KEGG 1D

e lincs:
Decode a LINCS ID.

e mcule:
Decode MCULE ID

e mesh:
Decode NCBI Mesh ID

* mfcd:
Decode MDL structure ID. The value following the colon can be either a simple number,
or start with the MFCD prefix in upper case.

* name:
Perform name resolution using the NCI resolver, OPSIN, KEGG or ChemSpider, depending
on the system configuration. By default, first the NCI resolver and, if that fails, OPSIN are
contacted.

° patran:
Decode a LHAsA 1D PATRAN query pattern. 2D PATRAN patterns can be decoded with

reaction create.

* pdb:
Decode a PDB ID (4 characters, initial number plus 3 alpha characters)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 271

CACTVS Tel and Python Scripting Language Reference

* querysln:
Decode as QuerySLN string.

e sid:
Decode PuBCHEM SID

° sln:
Decode as SLN string

° smarts:
Decode as SMARTS (explicitly not as SMILES)

* smiles:
Decode as SMILES (explicitly not as SMARTS)

e strictsmiles:
Decode as SMILES (explicitly not as SMARTS), and also use hypervalent hydrogen addition
as per the original Daylight definition (see also the description of the
::cactvs(smiles_hypervalent_hydrogen addition) control Variable).

° unii:
Decode as FDA UNII code. Properly formed UNIIs are also automatically recognized without
a prefix.

e zinc:
Decode ZINC ID

* quoted with > or “
Handled the same way as the name: prefix. These must be explicit quotes that are part of the
string, not string syntax elements of the script. Example: ens create “aspirin” vs. ens
create \”aspirin\” Or ens create ’aspirin’ - the latter two commands work as
expected, the first does not, because the quotes are not an actual part of the string, and
aspirin can be decoded (in a very lenient fashion) as SMILES, which has precedence.

The colon in the prefix may be omitted (except for the name: item), but this is not recommended,
since it may lead to misinterpretation of the data if the prefix is also part of a valid structure
encoding.

In addition, URLSs as structure data argument are automatically detected and handled specially. If the
URL is a data URI, it is unpacked and its payload processed in a second cycle. If it is an HTTP or FTP
URL, the file is downloaded and its contents read a a structure file with automatic format detection.
This is not identical to data URI processing: Data URIs are again interpreted as command arguments
with all prefix and line notation interpretation, while file contents are only interpreted as a record
in a structure data file.

If none of the above special cases are recognized, automatic interpretation is performed next.
Currently, the encoding then may either be

° a SMILES/SMARTS string (see below on how to distinguish these)
* ahex-encoded SMILES/SMARTS string, as used by some Daylight tools

* an INCHI string, with a proper lead-in (/[nChl=)

272 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* aCactvs packed serialized object string, as it is generated by the ens pack command
* a Cactvs Minimol object in binary or base64-encoded form

* aplaintext or base64-encoded blob of the contents of a structure file record, such as an MDL
SDfile. The format must be identifiable by the currently loaded set of structure file I/O
modules. Since the data has no file name, automatic loading of modules is not possible.

* a PuBCHEM CID - any simple integer argument is interpreted as CID

* aCAS number which is looked up on the Internet provided general Internet access is enabled
in the toolkit

* an MDL structure ID, starting with a proper lead-in (MFCD), followed by eight digits, which
is also resolved by Internet access to the chemsynthesis.com site if possible.

* an INCHI key, with or without lead-in (/nChIKey=). This only works for keys which can be
looked up via the NCI resolver over the Internet.

* aproperly formed FDA UNII code.

* astructure file record image as produced by the MysaL database compress () function (i.e.
4 byte binary uncompressed size prefix plus z/ib-compressed content). This is primarily
useful when the command is used in the context of the MysaL database cartridge.

* a compound name as last resort, which is by default looked up via the NCI resolver and the
OPSIN service

In the absence of a prefix, the encoding is automatically detected. With the exception of PUBCHEM
CIDs, the long form of a database ID must be used, not its simple integer value (i.e. a simple 70 is
interpreted as PusCHEM CID, while CHEMBL70 or chembl:70 are decoded as CHEMBL database
IDs).

For the base64-encoded compressed records, the compression algorithm may be raw z/ib, gzip or zip
and its type is automatically detected.

In case one of the SMILES-class encoding schemes is used, the mode argument of the ens create
command provides finer control of the decoding. By default, or when this argument is an empty
string, the string is interpreted as standard SMILES, except when there are elements in the string
which cannot occur in SMILES but in SMARTS. In SMILES mode, query expressions are only
recognized to a very limited degree, and implicit hydrogens are automatically added. This decoding
scheme may also be explicitly selected by specifying hadd as mode.

In order to force a full hydrogen addition to the raw decoded structure even if it would not be done
otherwise, use the mode forcehadd.

Mode strictsmiles decodes SMILES with hydrogen addition but as if the strictsmiles: prefix was set.
This is described above.

Mode nohadd is essentially the same as basic SMILES decoding, but implicit hydrogen addition does
not happen. In any case, explicitly encoded hydrogen is decoded and preserved.

Mode smarts (or query) also skips hydrogen addition, but in addition the decoder now fully parses
SMARTS, including Recursive SMARTS, but it also becomes less lenient in the area of superatom
encodings and similar gray areas, in order to avoid ambiguity. The recognized sMILES dialect may

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 273

CACTVS Tel and Python Scripting Language Reference

274

be switched via the control variable ::cactvs(smiles_version). The default is Daylight release 4.9
with CAcTvs and ELILILLY extensions.

Mode sin forces the interpretation of the input string as Ssybyl Line Notation. If the snN I/O
module has already been loaded, interpretation as SLN is automatically attempted in any case, but
only after sMrLEs decoding has failed. Since there are strings which are both valid sMILES and sLN,
but mean something different, this automatism can lead to misinterpretation, so if you know you are
dealing with sLN, it is a good idea to specify it. The s/n mode attempts to auto-load the s.n I/O
module if it is not yet loaded. In case it cannot be loaded, this mode raises an error. Mode querysin
is similar, but assumes the input is querySLN, not plain SLN.

The 3D decoder mode prefers resolution of identifiers as 3D model instead of 2D connectivity. This
has an effect only with a few select combination of identifiers and resolvers and should be
considered experimental.

Instead of using an explicit decoder mode or a data prefix, it is also possible to supply the name of
a property the structure data is an instance of. Examples are E_SDF_STRING or E_SMILES. Such
properties are expected to provide suitable default decoder configuration data in their fileformat and
fileflags attributes, and these are then used to decode the structure.

In nohadd decoder mode, the structure code is finally, if everything else fails, interpreted as a plain
molecular formula. If the string is parsed successfully as a formula, a collection of atoms of the
specified elements is created, without any bonds.

By default, or if the optional target dataset parameter is an empty string, the new ensemble is not a
member of any dataset. It may be directly made a dataset member if a dataset handle is specified.

If amacro set name is specified, SMILES and SMARTS with macro definitions can be processed. Any
patterns names which belong to the specified set are expanded. Set names, pattern names and
expansion fragments are specified in the system macro table. Macro expansion is not available if the
toolkit was compiled without table support.

Examples:

set eh [ens create]

set eh [ens create CCC]

set sshandle [ens create {[CH3][Cl,Br,I]} smarts]
set eh [ens create [decode -url C%23C] nohadd]

In case a structure is encoded as a string in a format which cannot be directly decoded by the ens
create command (such as a plain string representation of an MpL molfile), the standard method is
to load the appropriate file format decoder (if not built in, this is needed so that automatic format
detection of the memory image record works), open the structure string as a memory-based structure
file, and read from this file. This technique allows the input of multiple records from the in-memory
file and thus is also useful in cases like a multi-record sMILES file encoded as a string.

Example:

filex load cdx

set fh [molfile open [decode -base 64 $cdxstring] s]
set eh [molfile read $fh]

molfile close $fh

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

ens dataset
ens dataset ehandle ?filterlist?

e.dataset (?filters=?)

Return the dataset handle or reference of the dataset the ensemble is part of. It the ensemble is not
member of a dataset, or does not pass all of the optional filters, an empty string or None for PYTHON
is returned.

Example:

ens dataset $ehandle

ens defined

ens defined ehandle property

e.defined (property)

This command checks whether a property is defined for the ensemble. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

The command returns a boolean result.

ens delete

ens delete all

ens delete ?Pehandlelist?...

e.delete ()

Ens.Delete (Mall”)

Ens.Delete (?erefsequence/eref/ehandle?, ...)

Delete ensembles and the minor objects which are part of the deleted ensembles. The special
parameter a/l may be used to delete all ensembles currently registered in the application, including
those which are part of reactions or other major objects. Alternatively, any number of lists of
ensemble handles may be specified for specific deletions.

The command returns the number of deleted ensembles.
For historic reasons, the same command may also be invoked as ens destroy.

Example:

ens delete S$ehandle
ens delete S$ehandlelistl S$ehandlelist2

ens dget

ens dget ehandle propertylist ?filterset? ?parameterdict?

e.dget (property=, ?filters=?, ?parameters="?)

Ens.Dget (data, property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens dget is that
the latter does not attempt computation of property data, but rather initializes the property values to
the default and return that default if the data is not yet available. For data already present, ens get
and ens dget are equivalent.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 275

CACTVS Tel and Python Scripting Language Reference

276

The PyTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes. The data for the creation
of the temporary ensemble is equivalent to the first argument of the standard constructor. Additional
constructor parameters cannot be used.

ens dup
ens dup ehandle ?datasethandle? ?position? ?filterset? ?ctonlyflag?
e.dup (?dataset=?, ?position=?,?filters=?, ?ctonly="?)

Duplicate an ensemble. The return value is the handle or reference of the new ensemble.

The duplicate ensemble is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (including None for PYTHON) places the duplicate
outside any dataset, regardless of the dataset membership of the source ensemble.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The filter parameter allows the selection of only a subset of atoms to be copied. All atoms which do
not pass the filters are discarded, as are all bonds which connect to discarded atoms. If no atoms pass
the filters, the result is an empty ensemble. By default, no atom filtering takes place, and all atoms
and bonds of the original ensemble are part of the duplicate.

The final optional parameter can be used to make the duplicate lightweight. If this boolean
parameter is set, the duplicate is limited to the basic connectivity information with all atom and bond
properties, but it has no copies of properties of other object classes, and no copies of rings,
molecules, groups or other minor object classes.

The ens hdup command is a variant of this command. It automatically adds a hydrogen set to the
duplicate.

Examples:

ens dup $ehandle
ens dup $ehandle [dataset create] end ringatom

The first sample line is a standard use. The second example moves the duplicate into a newly created
dataset, and isolates the ring systems. All other atoms are stripped.

ens exists

ens exists ehandle ?filterset?
e.exists (?filters=?)
Ens.Exists (eref=,?filters=?)

Check whether an ensemble handle or reference is valid. The command returns boolean O or 1.
Optionally, the ensemble may be filtered by a standard filter list and it is reported as not valid if it
does not pass the filters. If filters in the filter list operate on atom, bonds, or other minor objects, it
is sufficient if a single minor object of the ensemble passes the filter.

Example:

ens exists $ehandle chlorine

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Check whether the ensemble with the handle in variable $ehandle exists and, if it exists, whether
it contains one or more chlorine atoms.

ens expand

ens expand ehandle ?allowambiguous? ?noimplicith?

e.expand (?allowambiguous=?, ?noimplicith=?)

This command expands all superatoms in the ensemble. The mechanisms for the expansion of
superatoms are described in detail for the atom expand command. This command is functionally
equivalent, working on all atoms in the ensemble instead a single atom.

Example:

ens expand $ehandle

The command returns the total number of successfully expanded atoms.

ens expr

ens expr ehandle expression

e.expr (expression)

Compute a standard SQL-style property expression for the ensemble. This is explained in detail in
the chapter on property expressions.

ens fill

ens fill ehandle ?property value?...
e.fill ({?property:value,...})
e.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

Example:

ens fill Sehandle B _COLOR red

sets the color of the first bond in the ensemble to red.

ens filter

ens filter ehandle filterlist

e.filter(filters)
Check whether the ensemble passes a filter list. The return value is boolean 1 for success and 0 for
failure.

Example:

ens filter [ens create CCCl] chlorine

checks whether the ensemble contains one or more chlorine atoms. If the filter operates on minor
objects of the ensemble, it is sufficient to have a single ensemble minor object pass the filter
condition.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 277

CACTVS Tel and Python Scripting Language Reference

278

ens forget
ens forget ehandle ?objclass?

e.forget (?objectclass=?)

Delete specific classes of minor objects and their data from the ensemble data structure. If no object
class is specified, all minor object classes except atoms and bonds and the ensemble data are purged.

If the object class ens is specified, all property data attached to the ensemble object class (usually
those properties starting with £_*) are deleted, but not the ensemble itself.

The command returns the original ensemble handle or reference.

ens formulamatch

ens formulamatch ehandle formula expression ?other elements?

e.formulamatch (query=, ?2other elements=?)

Match the ensemble against a formula expression. Its syntax is the same as in formula queries in
molfile scan and other scan commands.

There are several methods to specify whether any elements not mentioned in the formula expression
may or must be present. If the other elements flag is used, it has the highest priority. If may be set
to 0 (no other elements allowed), 1 (allowed) or 2 (required), and if it is set, any prefix in the formula
expression is ignored. If it is not used, a prefix in the formula expression may be used to control the
matching. Supported prefixes are = (no other elements), >= (other elements allowed) and >
(required). If no prefix is used, the default mode is an exact match without other elements.

The return value is the boolean match result.

Example:

ens formulamatch $eh >=C6

Matches any ensemble with has six carbon atoms.
ens formulamatch $eh C5-6(Cl+Br+I)2- 1

Matches an ensemble with five or six carbon atoms, two ore more heavy halogens, and potentially
any other elements.

ens fragment

ens fragment ehandle atomlist ?datasethandle? ?position?

e.fragment (atomsequence=, ?dataset=7?, ?position="?)

Create a new ensemble from a set of atoms in another ensemble. All bonds existing between those
atoms are also preserved. The atoms can be selected with any standard atom selection syntax, with
one selector per list element. Duplicate atom specifications are ignored. Atom specifications which
cannot be resolved generate an error.

By default, the new ensemble becomes a member of the same dataset (if any) as the source

ensemble, but this can be changed with the optional fifth argument. If no explicit position is given,
the ensemble is appended to rear of the target dataset. The new ensemble only inherits the selected
atoms and bonds plus stable atom and bond properties, but not other minor objects or ensemble data.

The command returns the handle or reference of the new ensemble object.

Example:

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

match ss $substructure $eh amap
set ehfrag [ens fragment $ehandle [unzip S$amap 1]]

Above code sequence matches a substructure, and then extracts the matched structure part as a new
ensemble.

ens get

ens get ehandle propertylist ?filterset? ?parameterdict?
ens get ehandle attribute
e.get (property=,?filters=?, ?parameters=?)

e.get (attribute)

e[property/attribute]

e.propert ‘ttribute

Ens.Get (data, property=,?filters=?, ?parameters="?)
Ens.Get (data,attribute)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
ens get $ehandle {M WEIGHT A ELEMENT}

yields a nested list with two elements. The first element is a list of the molecular weights of all
molecules in the ensemble. The second element is a list of the element numbers of all atoms in the
ensemble. If the information is not yet available, an attempt is made to compute it. If the
computation fails, an error results.

ens get $ehandle B ORDER ringbond

gives the bond orders of all bonds of the ensemble which are ring bonds.

The format of the optional parameter list argument is a series of keyword/value pairs, as produced
by the TcL command array get or the standard TeL dictionary commands. If a this parameter list is
present as argument, and the requested property data is already valid for the ensemble, a check if
made if all the specified parameters are the same as the parameters the present property data was

computed with. If this is the case, the values are directly returned as usual. Otherwise, the data is

discarded and re-computed.

If computation of the property data is performed, either because the parameter set was not matched,
or the requested data was not valid, the computation integrates the specified parameter set into the
parameters of the computation function. Parameters from the list temporarily override the global
settings of these parameters in the property definition. Parameters used by the property computation
function but not listed in the local parameter list are neither used for data validity checking, nor their
value changed during the computation request. After the computation finishes, the old global
parameter settings of the property definition are restored.

The use of a parameter list argument is primarily useful only if a single property is requested with
this command, but its use with a multiple-property request is not illegal - the parameter list is simply
applied to all properties in sequence.

The PyTHoN class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes. The data for the creation
of the temporary ensemble is equivalent to the first argument of the standard constructor. Additional
constructor parameters cannot be used.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 279

CACTVS Tel and Python Scripting Language Reference

280

Example:

ens get $ehandle E GIF {} [dict create width 200 height 200 bgcolor white]

Variants of the ens get command are ens new, ens dget, ens jget, ens jnew, ens jshow,

ens nget, ens show, ens sqldget, ens sqlget, ens sqlnew, and ens sglshow.

Further examples:

ens get $ehandle E NAME
ens get $ehandle A FLAGS (boxed)

In addition to property data, the ensemble object possesses a few attributes, which can be retrieved
with the ens get command (but not by its related sister subcommands like ens dget, ens sqlget,
etc.). Some of them are also modifiable via ens set.These attributes are:

coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

deletable

Flag indicating whether this object can be deleted with a standard ens delete command.
This attribute is read-only. Objects which are, for example, property data values or a part of
amolfile loop command cannot be deleted by standard means.

failures

If the property computation failure cache is active, return a list of all properties which have
failed computation for this ensemble after the last structural change. This attribute is
read-only.

footer

If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

gflags

If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

header
f the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

incomplete

Boolean status flag indicating an aborted input operation during the read of the object from
file, which returned the structure intact but without the complete set of associated data. An
aborted input may be either be the result of an explicitly set input control flag, or by
encountering property data which could not be decoded. This attribute is read-only.
invisible

Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

* modcount
Object modification count. This attribute is read-only.

° mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

* pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

° pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

* record
The current iterator record (starting with 1) of the ensemble. It is possible to set the value
and thus skip or revisit ensemble molecules in the iterator.

* refcount
If the Tev interpreter is using native Cactvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TcL object references active for this ensemble. This attribute is read-only.

* scoped
A boolean object visibility control flag. If set, and global control flag
: :cactvs (object_scope) is also set, the object is visible only in theTcL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

o selected
Flag indicating whether the object is selected. This attribute can be changed.

* tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

° uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

° X
f the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

°y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

ens getparam

ens getparam ehandle property ?key? ?default?
e.getparam (property=, ?key=?, ?2default="?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 281

CACTVS Tel and Python Scripting Language Reference

282

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PyTHoN). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.
Example:

ens getparam S$Sehandle E GIF format

returns the actual format of the image, which could be gif, png, or various bitmap formats.

ens groups

ens groups ehandle ?filterset? ?filtermode?

e.groups (?filters=7?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the ensemble
contains. This is explained in more detail in the section about object cross-references.

Example:

ens groups S$ehandle

ens hadd
ens hadd ehandle ?filterset? ?flags? ?changeset?
e.hadd (?filters=?,?flags=?, ?changeset="?)

Add a standard set of hydrogens to the ensemble. If the filterset parameter is specified, only those
atoms which pass the filter set are processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

* keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

* no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

* no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

* noanions
Do not add hydrogen to atoms with a negative formal charge.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° noatoms
Do not add hydrogen to atoms without any bonds.

* nocations
Do not add hydrogen to atoms with a positive formal charge.

* noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

* noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

° nofixatomtext
Do not adjust property A_TExTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOQOELt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

* nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

° nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

° nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

* nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B TYPE not normal).

* protonate
Add a single proton to the first suitable atom. The charge of the atom is increased, and only
a single hydrogen is added regardless of the standard number of missing hydrogens,. This
command does issue the standard property invalidation event for atom and bond changes.
In the ensemble command variant, this option is rarely useful. It is supported for
compatibility with the atom hadd command.

° resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms act
as if they were part of the original atom set.

Adding hydrogens with this command, except wit a set protonate flag, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

If the effects of the hydrogen addition step to the validity of the property data set should not be
handled according to this standard procedure, it is possible to explicitly generate additional property

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 283

CACTVS Tel and Python Scripting Language Reference

284

invalidation events by specifying an event list as the optional last parameter, for example a list of
atom and bond to trigger both the atom change and bond change events.

The command returns the number of hydrogens which were added.

Example:

set ehandle [ens create {[C].[C]}]
ens hadd $ehandle

adds a total of eight hydrogens to the two carbon atoms, transforming them into methane.

ens hdup

ens hdup ehandle ?datasethandle? ?position? ?filterset? ?ctonlyflag?

e.dup (?dataset=?, ?position=?,?2filters=?, ?2ctonly="?)

This command is a convenience variant of the ens dup command. It has the same parameters, but
also adds a full standard hydrogen set (equivalent to executing an ens hadd $eh command) to the
duplicate.

The command arguments are documented in the paragraph on ens dup.

ens hfragment
ens hfragment ehandle atomlist ?datasethandle? ?position?

e.hfragment (atomsequence=, ?dataset=?, ?position=?)

This command has the same arguments as ens fragment. The only difference is that after the
duplication all open valences in the fragment are plugged with hydrogen, as if an ens hadd
command had been executed immediately after the fragment creation command.

The command returns the handle or reference of the new ensemble object.

ens hierarchy
ens hierarchy ehandle ?filterlist? ?root?

e.hierarchy (?filters=?, ?root="?)

Return the hierarchy handle or reference of the hierarchy the ensemble is part of. If the ensemble is
not member of a hierarchy, or does not pass all of the optional filters, an empty string or None for
PyTHON is returned. By default, the hierarchy object which directly contains the ensemble is returned.
If the root flag is set, the root hierarchy object is reported instead, which is the same only if the
hierarchy has only a single level.

Example:

ens hierarchy $ehandle

ens hstrip

ens hstrip ehandle ?flags? ?changeset?
e.hstrip(?flags=?, ?changeset="?)

This command removes hydrogens from the ensemble. By default, all hydrogen atoms in the
ensemble are removed.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

deprotonate

If this flag is set, a single proton is removed from the first suitable atom. This command
variant does issue a standard atom and bond change property invalidation event, and it
always ends processing after removing the first proton. Proton removal decreases the charge
of the atom by one. In the ensemble command variant, this flag is rarely useful - it is
supported for compatibility with the atom hstrip command

keepalphawedge

Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

keeporiginal

Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note that these commands can be run in a mode which does not leave information
about automatic addition - hydrogens added this way are not retained.

keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

normalize

Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

wedgetransfer

If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but this default value is overridden if any flags are set!

If the changeset parameter is specified, the property change events listed in the parameter are
triggered after the command.

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
when the deprotonate flag is set. The system assumes that this operation is done as part of some file

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 285

CACTVS Tel and Python Scripting Language Reference

286

output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that the structure may contain implicit hydrogens.

The command returns the number of stripped hydrogens.

Example:

ens hstrip $ehandle [list keeporiginal wedgetransfer]

ens hydrogenate

ens hydrogenate ehandle ?filterset? ?changeset?

e.hydrogenate (?filters=?, ?changeset="?)

Reduce all bonds in the ensemble to single bonds, except those excluded by the filter set.
If a change set is supplied, its interpretation is the same as in ens hadd.
The command returns the number of added hydrogens.

Example:

ens hydrogenate $eh {!arobond !ccbond}

This reduces all non-aromatic bonds involving hetero atoms to single bonds.

ens image
ens image ehandle ?width? ?height? ?Poptions?

This command generates a Tk image object displaying the ensemble as an icon. The command is
only available in toolkit variants which are linked with the portable Tk GUI toolkit library and which
are either statically linked with the GD image drawing library, or can load it dynamically. It is
currently not support in the PyTHON interface.

The default image size is 64x64 pixels, but this may be overridden by the width and height
parameters. If only width is set, it is also used for the height. The command returns a Tk image
handle. These images may for example be placed on Tk canvases as canvas objects, or used on
buttons and other GUI objects.

Because of the small size of the images, atoms are not displayed as symbols, but small color-coded
squares. This is a command for the implementation of graphical structure-handling applications
with icons. For serious structure visualization, use the E GIF, E EMF IMAGE Or E_EPS IMAGE
properties.

Additional options may be added by an arbitrary sequence of option/value pairs. Color names can
be those registered in the X11 color database, or a numeric specification in the #77ggbb format. These
options are currently supported:

e -background color
Background color. The default is black.

e -border npixels
Thickness of the image border. The default are 5 pixels.

e -bordercolor color
Border color. The default is blue.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* -cmode none/special/all
Display mode for carbon atoms. The default is special, meaning that only carbon atoms
which usually are drawn with a C symbol are displayed as colored rectangle and not just a
bond node. Highlighted atoms are always displayed.

* -highlightatom /abel
Select an atom for highlighting. By default, no atom is highlighted.

 -highlightcolor color
Set the highlighting color. The default is chartreuse.

e -hmode none/special/all
Display mode for hydrogen atoms. The default is special, meaning that only hydrogen
atoms which usually are drawn with an H symbol are displayed as colored rectangle. Other
hydrogen atoms and the bonds leading to them are suppressed. Highlighted atoms are
always displayed.

* -imagename name
Explicitly set a name for the image. By default, a name of the form imagen is automatically
generated. It is possible to specify the name of an existing image, which will then be
overwritten.

* -linecolor color
Color of bond lines and wedges. The default is white.

Images are cached. If an image for the selected ensemble with the same display attributes exists, it
is reused.

Example:

set img [ens image S$ehandle 80 80 -border yellow -linecolor blue]
canvas create .canvaswin image 50 50 -image S$img

ens index
ens index ehandle

e.index ()

Get the position of the ensemble in the object list of its dataset. If the ensemble is not member of a
dataset, -1 is returned.

ens isotopecheck

ens isotopecheck ehandle ?failedatomvariable? ?extended?

e.isotopecheck (variable=, extended=)

Test whether the isotope labels on the atoms of the ensemble, if they exist, are physically reasonable.
The command returns the number of failed atoms. If a capture variable is specified, the atom labels
or references of these atoms are stored therein. If no isotope labels are set in oA_1soTOPE, the
command always reports zero problems.

By default, a smaller isotope table is used which contains only isotopes which are sufficiently
long-lived to perform chemistry on. These include naturally occurring isotopes as well as isotopes

used for experimental labeling, such as *H or '*C. If the extended boolean flag is set, a larger table
containing all known isotopes of the elements is used.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 287

CACTVS Tel and Python Scripting Language Reference

288

The isocheck command is an alias.

ens jget
ens jget ehandle propertylist ?filterset? ?parameterdict?
e.jget (property=,?2filters=?, ?parameters=?)

Ens.Jget (data,property=,?filters=?, ?parameters=?)

This is a variant of ens get which returns the result data as a JSON formatted string instead of TeL
interpreter objects. The command is usable only for property data, not attribute retrieval.

The PyTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens jnew

ens jnew ehandle propertylist ?filterset? ?parameterdict?

e.jnew (property=,?filters=?, ?parameters="?)

Ens.Jnew (data,property=,?filters=?, ?parameters=?)

This is a variant of ens new which returns the result data as a JSON formatted string instead of TeL
interpreter objects.

The PyTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens jshow

ens Jjshow ehandle propertylist ?filterset? ?parameterdict?

e.jshow (property=, ?filters=?, ?parameters=?)

Ens.Jshow (data,property=,?filters=?, ?parameters="?)

This is a variant of ens show which returns the result data as a JSON formatted string instead of TcL
interpreter objects.

The PyTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens ldup

ens ldup ?ehandlelist?...

Ens.Ldup (?eref/erefsequence?, ...)

Duplicate all ensembles in the argument list(s) in default mode.

The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TcL) or None (for
PYTHON) at its position, without raising an error.

ens lhdup
ens lhdup ?ehandlelist?...
Ens.Lhdup (?eref/erefsequence?, ...)

Duplicate all ensembles in the argument list(s) in default mode, and add hydrogens.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TcL) or None (for
PYTHON) at its position, without raising an error.

ens list

ens list ?filterlist?

Ens.List (?filters=?)
This command returns a list of the ensemble handles currently registered in the application. This list
may optionally be filtered by a standard filter list. If the filter operates on ensemble minor objects

such as atoms or bonds and not directly on the ensemble object, it is sufficient if a single minor
object passes the filter.

Example:

ens list halogen

lists the handles of all ensembles in the application which contain one or more halogen atoms.

ens lock

ens lock ehandle propertylist/objclass/all ?compute?

e.lock (property=, ?compute=?)

Lock property data of the ensemble, meaning that it is no longer managed by the standard data
consistency manager. The data consistency manager deletes specific property data if anything is
done to the ensemble which would invalidate the information. Blocking the consistency manager
can be useful when building ensembles from components in a script. Property data remains locked
until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

* Property names
Valid property instances on the ensembles or ensemble minor objects are locked. If the
boolean compute flag is set, an attempt is made to compute the property if it is not yet
present. Otherwise, a request to lock non-existent data is silently ignored. It is not possible
to lock individual property fields.

° all
All valid ensemble and ensemble sub-object properties are locked. The compute flag is
ignored.

e ens,atom,bond,...
These is are object class identifiers. All property data which is controlled by the ensemble
major object and attached to the specified object class is locked.

The lock can be released by an ens unlock command.
The return value is the original ensemble handle or reference.

Example:

set eh [ens create CCC]
ens lock $eh A SYMBOL 1
ens purge Seh A ELEMENT

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 289

CACTVS Tel and Python Scripting Language Reference

290

atom set $eh 1 A query(dsearch) 3
ens unlock $eh A SYMBOL

In this example, an ensemble is created, and the atom symbol information is locked. Next, the
element number property is deleted, and a query attribute is set. Finally, the lock is released. Had
the element symbol information not been locked, the ensemble would have become unusable due
to an overzealous data consistency manager. Setting query information in property 2 _QUERY can
have an influence on the atom symbol. So the default action of invalidating 2 syMBoL when
manipulating o QUERY is correct. However, in case there is no element information A £LEMENT, and
no atom symbol information o _symBotL, the element information is completely lost, and the
ensemble becomes unusable. So in this case, locking o symBoL (or alternatively A ELEMENT) is
required to avoid unexpected side effects of structure editing.

ens loop

ens look ehandle objvariable ?maxmol? ?Poffset? body
e.loop (function=, ?maxloop=?, ?0ffset=7?, ?variable="?)
for m in e:

Loop over all molecules in the ensemble, by providing a temporary ensemble duplicate of each
found molecule. The handle of the duplication is stored in the object variable and visible to the loop
code.

The loop code cannot delete the duplicate ensemble. It is automatically deleted at the end of each
cycle. Changes made to the duplicate molecule are not seen in the base ensemble. It is however
possible to explicitly assign data computed on the duplicate ensemble to the base ensemble.

The optional parameters allow more control over which molecules are processed. By default the
maxmol parameter is -1, meaning an unlimited number of fragments are processed, and the offset is
zero, meaning that processing begins with the first molecule in the molecule list of the base
ensemble.

For TeL scripts, within the loop code, the standard TcL commands break and continue work as
expected.

The PyTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TcL construct),
or a function reference. Functions are called with the reference of the current loop object as single
argument, and have their own context frame, so that the specification of a reference variable is not
generally useful in that call style, though is is allowed. For string function blocks the code is
executed in the local call frame, and the variable with the current object reference is visible locally.
Script code blocks must be written with an initial indentation level of zero. Within the PyTHON
functions, the normal break and continue commands cannot be used to to scope limitations. Instead,
the custom exceptions BreakLoop and ContinueLoop can be raised. These are automatically caught
and processed in the loop body handler code.

In PyTHON, there is also an object iterator so that simple loops over ensemble molecules can be
written with a for statement. The ensemble object iterator is of the self style (i.e. there is one per
ensemble, these are not independent objects), so nesting them is not possible on the same ensemble.

PyTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PYTHON scripting.

The command returns the number of molecule fragments processed.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Example:
set midx 0
ens loop $ehandle ehdup {

mol set Sehandle [mol mol $Sehandle #Smidx] M MYPROP [ens get $ehdup E MYPROP]]
incr midx

}

The example loop assigns a custom property where the compute function is only defined for a
single-fragment ensemble to the equivalent molecule property in a multi-fragment base ensemble.

ens mask

ens mask ehandle labellist/all property onvalue ?offvalue?
e.mask (objects=, property=,onvalue=, ?2offvalue=?)

e.mask (Yall”,property=,onvalue=, 20ffvalue=?)

This command sets property values of a subset of minor objects of one class in the ensemble to a
specific value, and optionally resets the values of the same property for all other minor objects of
the ensemble which are not selected.

The first argument after the ensemble handle is either a list of object identifiers, or the magic value
all. Object identifiers are usually the standard numerical labels, but any construct which identifies
an atom, a bond, etc. can be used. The next argument identifies the property. The object identifiers
in the previous argument must correspond to the object class of the property, i.e. atom label pairs can
only be used it the property is a bond property, but simple numerical labels work for all classes. If
data for that property is not present on the ensemble, it is instantiated with the default value. The
final one or two arguments must be decodable data values for that property.

If the all object subset identifier is used, all values of the property in the ensemble are set to the
onvalue. Any offvalue specification is ignored.

Otherwise, the explicit label list is processed. If an off value is given, all values of the property in
the ensemble are first reset to that value. If no off value was specified is, no reset is performed and
the current values remain valid. Then, all minor objects in the list are looked up from their labels or
other identifiers, and their property value set to the onvalue.

Example:
ens mask Seh [ens atoms Seh carbon] A COLOR green black

This command sets the o coror property value for all carbon atoms in the ensemble to green, and
all other atoms to black. This is shorter and more efficient then explicitly coding a loop of atom set
statements.

The command returns the original ensemble handle or reference.

ens match

ens match ehandle ss ehandle ?matchflags? ?ignoreflags? ?atommatchvar?
?bondmatchvar? ?molmatchvar?

e.match (substructure=, ?matchflags=?, ?ignoreflags=?, ?atommatchvariable="?,
?bondmatchvariable=?, ?molmatchvariable="?)

Check whether the ensemble matches a substructure. The substructure may be any structure
ensemble, and even be in the same ensemble as the primary command ensemble.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 291

CACTVS Tel and Python Scripting Language Reference

292

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,

atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit norne value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

The command returns boolean 1 for a successful match, 0 otherwise. If an optional atom, bond, or
molecule match variable is specified, it is set to a nested list of matching substructure/structure atom,
bond or molecule labels (TcL) or references (PyTHon). If no match can be found, the variable is set
to an empty list. In case only a bond or molecule match variable is needed, an empty string can be
used to skip the unused match variable argument positions.

This is a very simple variant of substructure matching. The match ss command provides many
more advanced match determination and match processing options.

ens max

ens max ehandle propertylist ?filterset?

e.max (property=,?filters=?)

Get the maximum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values. The objects whose property values are used
for the determination of the maximum values may optionally be filtered by a standard filter set. If
no objects pass the filter, the result is an empty string.

Example:
ens max $ehandle A ELEMENT

computes the maximum element number in the ensemble.

ens merge

ens merge ehandle ?ehandle 1ist?...

e.merge (?eref/erefsequence?, ...)

Merge a set of ensembles into one ensemble. All structure information is accumulated in the first

(base) ensemble. Its handle remains unchanged. All other ensembles are destroyed. It is not possible
to name an ensemble more than once in the argument lists, and ensembles cannot be merged with
themselves.

The merged ensemble has a consistent property set for all minor objects. If the information content
of the input ensembles varies, an attempt is made to compute the missing information for ensembles
which do not have valid data for each individual property. If the computation fails, the property data
is discarded for all merged objects. In addition, a merge property invalidation event is issued, which
may lead to additional loss of property data. For surviving properties which have defined a merge
update function, this function is then called and may perform additional data adjustments. For
example, the o_xy 2D plot coordinate property merge function transforms the structure plot
coordinates in the new ensemble to a uniform scale and arrange the coordinates for the atoms from
the merged ensembles as a sequence of plots from left to right.

The return value of this command is a list of the new first atom labels or references for every merged
ensemble, excluding the base ensemble. All minor object labels in the merged ensembles are
re-assigned to avoid collisions. The new labels begin with the highest respective minor object label

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

in use in the base ensemble plus one, and are thereafter assigned in sequence. In case an empty
ensemble was merged, the list contains an empty string (TcL) or None (PYTHON) at its merge position.

The ens add command performs the same operation as the ens merge command, but merges
duplicates of the input ensembles, thus preserving them.

Example:

ens merge [ens create CC] [list [ens create CCC.CCCC] [ens create C]]

Merge three ensembles into one. The new ensemble contains the molecules ethane, propane, butane
and methane in that order.

ens metadata
ens metadata ehandle property ?field ?value??

e.metadata (property=,?2field=?, ?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands ens setparam and ens
getparam can be used for convenient manipulation of specific keys in the computation parameter
field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

Examples:

array set gifparams [ens metadata $ehandle E GIF parameters]

ens metadata $ehandle E NAME comment “This is a CAS name in 1995 revision. The IUPAC
name, or any previous or later CAS revision name, look completely different.”

The first line retrieves the computation parameters of the property £ GIF as keyword/value pairs.
These are read into the array variable gifparams, and may subsequently be accessed as
$gifparams (format), $gifparams (height), etc. The second example shows how to attach a
comment to a property value.

ens min

ens min ehandle propertylist ?filterset?

e.min (property=,?filters=?)

Get the minimum values of the properties named in the propertylist parameter. The return value of
the command is a list of the minimum property values. The objects whose property values are used
for the determination of the minimum values may optionally be filtered by a standard filter set. If
no objects pass the filter, the result is an empty string.

Example:

ens min $ehandle A FORMAL CHARGE xatom

gets the lowest value of the formal charge of a hetero atom in the ensemble.

ens mols

ens mols ehandle ?filterset? ?filtermode?

e.mols (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the label(s) of the molecule the ensemble contains
as minor objects. This is explained in more detail in the section about object cross-references.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 293

CACTVS Tel and Python Scripting Language Reference

294

Examples:

ens mols S$ehandle
ens mols S$ehandle heterocycle

The first example simply returns a list of the labels of the molecules the ensemble contains as minor
objects. Note that it is possible that there is more than one molecule in the ensemble - this is the
reason why the command name is mols, not mol. The second example returns the molecule label(s)
of all the molecules in the ensemble which contain one or more heterocycles. If there are no such
molecules, an empty list is returned.

ens move

ens move ehandle ?datasethandlel|remotehandle? ?position?

e.move (?target=?, ?position="?)

Make the ensemble a member of a dataset, or remove it from a dataset. If the dataset handle or
reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed from
its current dataset. The dataset handle or reference may be the name of a remote dataset for moving
object over a network connection.

If a target dataset handle or reference is specified, the ensemble is added to the dataset, if allowed
by the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the ensemble is added to the end of the dataset object list, but
the final optional parameter allows the specification of an object list index. The first position is index
zero. If the parameter value end is used, or the index is bigger than the current number of dataset
objects minus one, the ensemble is appended as per the default. It is legal to use this command for
moving ensembles within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset. Using this mode with remote datasets is currently not supported.

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TcL) or None (PYTHON) if it was not member of a
dataset.

This command interacts with the insert control mechanism of size-constrained datasets. More
information is provided in the description of the sizecontrol dataset parameter.
Examples:

ens move S$ehandle S$dhandle 0
ens move S$ehandle

In the first example, the ensemble is inserted as the first element in a dataset. The second line reverts
this operation and removes the ensemble from the dataset.

This command can be used with a remote dataset descriptor. In that case, the ensemble is packed into
a serialized object representation, transmitted over the network and restored as member of the
remote dataset at the specified position. The local ensemble is deleted if the transfer succeeds.

Example:

ens move S$ehandle blockbuster@server2:9998 end

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

This command moves the ensemble to the dataset which was set up as listener on port 9998 and pass
phrase blockbuster on host server2. The local ensemble is deleted, and its copy is inserted at the end
of the remote dataset.

ens mutex

ens mutex ehandle mode

e.mutex (mode)

Manipulate the object mutex.

During the execution of a script command, the mutex of the major object(s) associated with the
command are automatically locked and unlocked, so that the operation of the command is
thread-safe. This applies to toolkit builds that support multi-threading, either by allowing multiple
parallel script interpreters in separate threads or by supporting helper threads for the acceleration of
command execution or background information processing.

Going beyond this automatic per-statement protection, this command locks major objects for a
period of time that exceeds a single command. A lock on the object can only be released from the
same interpreter thread that set the lock. Any other threaded interpreters, or auxiliary threads, block
until a mutex release command has been executed when accessing a locked command object. This
command supports the following modes:

* Jlock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

° reset
Release all persistent locks on the object, if they exist.

° fest
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

* unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

ens need

ens need ehandle propertylist ?mode? ?parameterdict?

e.need (property=, ?mode=7?, ?parameters="?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original ensemble handle or reference.

Examples:

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 295

CACTVS Tel and Python Scripting Language Reference

296

ens need $ehandle A XY recalc
ens need $ehandle E EINECS ID threaded

ens new

ens new ehandle propertylist ?filterset? ?parameterdict?

e.new (property=,?filters=?, ?parameters="?)

Ens.New (data,property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens new is that
the latter forces the re-computation of the property data, regardless whether it is present and valid,
or not.

The PyTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens nget

ens nget ehandle propertylist ?filterset? ?parameterdict?

e.nget (property=,?2filters=?, ?parameters=?)

Ens.Nget (data,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens nget is that
the latter returns numeric data, even if symbolic names for the values are available.

The PyTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens nnew

ens nnew ehandle propertylist ?filterset? ?parameterdict?
e.nnew (property=,?filters=?, ?parameters=?)

Ens.Nnew

(data,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens nnew is that
the latter always returns numeric data, even if symbolic names for the values are available, and that
property data re-computation is enforced.

The PyTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens nitrostyle

ens nitrostyle ehandle style
e.nitrostyle (style=)

Change the internal encoding of nitro groups and similar functional groups in the ensemble. Possible
values for the style parameter are:

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° asis No change

* jonic Change to encoding to a positive charge on the center atom, and a negative on one
of the oxygens

* xionic As above, but also change the encoding of azides, etc.

* neutral Change the encoding to the neutral form with extended valence. pentavalent is an
alias.

* xneutral As above, but also change the encoding of azides, etc.

The command returns the original ensemble handle or reference.

ens op2d

ens op2d ehandle mode ?atomfilter bit/degrees?

e.op2d (mode=, ?atomfilter=?)

Perform various operations on the standard 2D layout coordinates of the structure (property o xv).
Properties tightly connected to A_xv are also updated (most notably, B FLAGS to keep wedges in sync
with stereochemistry defined in other properties).

In mode rotate, the optional argument is the rotation angle in degrees. If it is not specified, the
default are 30 degrees.

For alignment and flipping operations, the atoms which are used to determine the orientation can be
filtered by specifying one or more value bits of property 2 rLags. Only atoms where one or more
of these bits are set in o FLAGS are used for computing the alignment (in modes xalign, yalign,
xyalign - all atoms are moved) or are flipped (modes Aflip, vflip - unselected atoms are not moved).
If no but filter values are specified, or none is used, all ensemble atoms and bonds are processed.

The following modes are supported:

e jpotate
Rotate the 2D structure coordinates counterclockwise.

© hflip
Perform a horizontal flip around the X axis, while maintaining stereochemistry.

* vflip
Perform a vertical flip around the Y axis, while maintaining stereochemistry.

* xalign
The largest eigenvector of the unweighted XY coordinates of the selected atoms is aligned
with the X axis.

° xyalign
The largest eigenvector of the unweighted XY coordinates of the selected atoms is aligned
with the XY diagonal.

° yalign
The largest eigenvector of the unweighted XY coordinates of the selected atoms is aligned
with the Y axis.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 297

CACTVS Tel and Python Scripting Language Reference

298

Additionally, the mode argument may an ensemble handle or reference. In that case, it is interpreted
as a substructure, matched onto the ensemble, and if a match is found, the 2D coordinates of the
ensemble atoms are adjusted by scaling and rotation for maximum overlap between the 2D
coordinates of the substructure and the matched part of the ensemble. This mode retains the relative
positions of the matched atoms - this is not a full redraw operation around a match template.

The command returns 0 (nothing done) or 1 (coordinates changed).

ens pack
ens pack ehandle ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?

e.pack (?maxsize=?, ?requestprops=?, ?suppressedprops="?, ?2compressionlib="7?)

Pack the ensemble object into a base64-encoded compressed serialized object string. This string
does not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. Outside object relationship information, such as the dataset the ensemble might be a
member of, or tables the ensemble is associated with, are not included.

The maximum size of the object string (default -1, meaning unlimited) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The two optional parameters lists allow to request a specific property set to be part of the package,
even if it normally would not be included, and to explicitly omit properties from the dump. No
property computation is performed, and suppressed properties are not purged from the source
ensemble.

Ensembles can be restored from a packed object string by the ens unpack and ens create
commands.

The ensemble object and its minor objects are unchanged after using this command.

The default compression library is z/ib. Other useful variants include /zo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.
In PyTHON, ensembles support the standard pickle/unpickle protocol.

Example:

set dbstring [ens pack [ens create CC=0]]

ens pis

ens pis ehandle ?filterset? ?filtermode?

e.pis(?filters=?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the systems the
ensemble contains. This is explained in more detail in the section about object cross-references.

Examples:

ens pis $ehandle

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

7 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one ¢ system and one 7 system in this representation.

ens prepare

ens prepare ehandle molfilehandle

e.prepare (molfileref)

Prepare the ensemble for output via the specified file handle, for example by pre-computing
properties that are needed for output. This has only an effect if the I/O module for the format of the
file handle provides an output object preparation function, which is currently only the case for the
BDB database format. The output of prepared and unprepared ensembles sent to the same file handle
is indistinguishable.

The purpose of this command is to allow the preparation of the ensembles for output in a separate
thread. For unprepared ensembles, a significant part of the time to write the record may be spent in
computing required data. During this time, the file handle is blocked. Prepared ensembles already
contain all required data, and are thus faster to write to file. The total time required in single-thread
scripts for a simple molfile write command vs. a ens prepare plus molfile write combo is
not much different. However, these operations are largely independent, and on multi-threaded
scripts the total time savings can be significant if the two commands are executed in different
threads.

The command returns the molfile handle or reference.

ens properties
ens properties ehandle ?pattern? ?noempty?

e.properties (?pattern=?, ?noempty=2?)

Get a list of valid properties of the ensemble and its minor objects. Property subsets may be selected
by a non-empty filter pattern, which the property names must match in order to be listed. If the
ensemble is a member of a reaction, reaction properties are included in the list. The same mechanism
is used for dataset properties.

Ifthe noempty flag is set, only properties where at least one data element controlled by the ensemble
(i.e. a value for an atom of the ensemble, etc.) is not the property default value are output. By default,
the filter pattern is an empty string, and the noempty flag is not set.

This command may also be invoked as ens props or e.props ().

Example:

ens properties $ehandle X *
ens props $ehandle

The first example returns a list of the currently valid reaction properties of the reaction the ensemble
is a member of, or an empty list if it is not. The second example lists all properties, including those
of the ensemble proper, its minor objects such as atoms and bonds, and possibly of the reaction the
ensemble is a member of, if it is an reaction ensemble.

ens purge

ens purge ehandle propertylist/objectclass/specialname ?Pemptyonly?
e.purge (?properties=?, ?emptyonly=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 299

CACTVS Tel and Python Scripting Language Reference

Delete property data from the ensemble. The properties may either be properties of a reaction the
ensemble is a member of (prefix x), properties of a dataset the ensemble is a member of (prefix 0),
or properties of the ensemble proper and its minor objects, such as ensemble or atom properties. If
a property marked for deletion is not present, it is silently ignored.

If an object class name, such as ens or afom, is used instead of a property name, all properties of that
class set on the ensemble are deleted, if they are not locked, or filtered out by the optional
empty-only flag.

Setting the optional boolean flag emptyonly allows restricts the deletion to those properties where
all the values for a property associated with a major object (such as on all atoms in an ensemble for
atom properties, or just the single ensemble property value for ensemble properties) are set to the
default property value.

Besides normal property names, a few convenient special names for common property deletion
tasks are defined and can be used as a replacement for the property list. These include:

* atomquery
Delete atom query properties (2 QUERY and any other atom query property).

* atomstereochemistry
Delete all atomic atom stereo descriptors, but keep those for bonds.

* bondquery
Delete bond query properties (8_QUERY and any other bond query property).

* bondstereochemistry
Delete all bond stereo descriptors, but keep those for atoms.

* isotopes
Delete isotope informationin A_1soTopE and other isotope properties which may be defined
in future software versions.

® query
Delete query information (A QuERY and B_QUERY, and any other query property).

* radicals
Delete atomic radical information in o rRapIcAL and other radical-related properties which
may be defined in future software versions.

° stereochemistry
Delete all stereochemistry descriptors, including 2D wedges, but not 3D coordinates. The
implicit property list includes A LABEL, STEREO, B LABEL STEREO, A CIP STEREO,
B CIP STEREO, A DL STEREO, B CISTRANS STEREO, A HASH STEREO, B HASH STEREO,
A MAP STEREO, B MAP STEREO, A STEREOINFO, B STEREOINFO, A STEREO GROUP,
M _STEREO COUNT, E_STEREO_COUNT and B_FLAGS (only selected bits, the property remains
valid if present).

° wedges
Delete wedge bond flags in property B FLAGS. If B F1.AGS is not present, the command is
ignored and no computation attempt is made.

Examples:

300 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

ens purge Sehandle X IDENT
ens purge Sehandle E IDENT 1
ens purge $ehandle stereochemistry

The first example deletes the property data x_1DENT from the reaction the ensemble is a member of
- provided it actually is a reaction ensemble. The second example deletes property £ IDENT from the
ensemble if the property value is equal to the default value for £_1pENT. The last example removes
all stereochemistry information from the ensemble.

The command returns the original ensemble handle or reference.

ens reaction

ens reaction ehandle ?filterlist?

e.reaction (?filters=?)

Return the handle or reference of the reaction the ensemble is a member of. Optionally, the reaction
may be filtered by a simple filter list. If the ensemble is not part of a reaction, or does not pass the
filter, an empty string is returned for TcL, and None for PYTHON.

Because an ensemble can only participate in a single reaction, the command is spelled ens
reaction in singular.

Example:

ens reaction $ehandle

ens rebuild

ens rebuild ehandle ?minor objectclass?

e.rebuild(?objectclass="?)

This command discards all minor objects and attached property data of a specific class associated
with the ensemble. Afterwards, the minor object set is re-populated by the standard set-up function
of the object class, if such a set-up function is defined.

If no minor object class is specified, bonds are regenerated - for example from 3D atomic
coordinates. Bonds, molecules (mols), sigma and pi systems (sigmas, pis), rings and ring systems
(rings, ringsystems) can all be rebuilt. However, by default no reconstruction function is defined for
groups and surface patches (surfaces), although it is possible to set one via the object class
manipulation command.

Generally, object sets should only be regenerated under exceptional circumstances, for example in
order to undo a manual manipulation. Object sets are automatically generated when they are
required - for example, bonds are automatically derived from atomic 3D coordinates if any property
data associated with bonds is used in any context, and the ensemble so far did not contain bond
information. An explicit request to generate connectivity is rarely needed.

Under normal circumstances, the use of minor object information such as bonds encoded explicitly
in an input file is preferable to indirectly derived sets, such as regenerated connectivity. The
connectivity algorithm of the toolkit is rather capable, but has its limitations, especially when
hydrogen-depleted charged structures are encountered.

Files encoded in a few notorious structure file formats, such as PDB, may contain an incomplete
bond set - without any indication that the bond set is incomplete. The PDB input routine tries to
detect this, and automatically augments the bond set if obvious deficiencies are found. However, in

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 301

CACTVS Tel and Python Scripting Language Reference

302

case of minor omissions in the input data, a PDB structure may be one of the rare cases when an
explicit request for a rebuild of the bond set can be helpful.

Besides the set of ensemble minor objects, the pseudo object class aro is also recognized. This
keyword triggers a re-evaluation of aromatic systems and re-assign Kekulé bond orders, but not
completely redo the bond set.

Example:
ens rebuild $ehandle bonds

This command discards the old bond set, and generate a new one. This only works if there is
information which can be used for regeneration, such as atomic 3D coordinates. If no such
information is present, the loss of bonds is irreversible and the ensemble useless for almost all
applications short of a simulated plasma torch atomization.

The command returns the original ensemble handle or reference.

ens ref
Ens.Ref (identifier)
PyTHON only method to get an ensemble reference from a string handle or another identifier. For

ensembles, other recognized identifiers are ensemble references, or integers encoding the numeric
part of the handle string.

ens rename

ens rename ehandle srcproperty dstproperty

e.rename (srcproperty=,dstproperty=)

This is a variant of the ens assign command. Please refer the command description in that
paragraph.

ens replace

ens replace ehandle property/enshandle/emptystring ?preserved propertylist/all?

e.replace (source=, ?keep="?)
Substitute the ensemble with a structure decoded from data held in an ensemble property of that
ensemble, or with the structure and associated data of another ensemble identified by its handle.

The original handle of the command ensemble is always preserved. The original structure data, with
the exception of explicitly saved properties, is discarded. If the structure source argument is an
ensemble handle, that ensemble is deleted.

For convenience, the replacement data argument may also be an empty string, which results in a
no-op.

If the replacement argument is a property name, the exact type of operation depends on the data type
of the property. The following data types are currently supported:

° structure
Replace command ensemble directly with the property data ensemble.

* string
Try to interpret the string as a structure line notation (as in ens create).

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

o url
Try to download the file behind the Internet address and read it as a structure file.

* blob
Try to read the contents as an in-memory structure file record.

* diskfile, mapfile
Try to read it as a single-record structure file.

Any other property data type, NuLL values of the property, non-ensemble properties, or malformed
data result in an error and the original structure remains unchanged.

The structure source property data does not become not a property of the updated ensemble. In that
ensemble, by default all other ensemble properties of the original are also purged, and all ensemble
properties of the replacement structure are retained. However, by specifying a list of properties to
be transferred, or using the special argument a//, all or a subset of the ensemble property data of the
original ensemble can be transferred to the replacement structure and thus saved. Under these
circumstances, property data from the original ensemble has precedence and overwrites existing
values of the same property on the replacement ensemble. However, all ensemble property data on
the replacement ensemble which are not overwritten remain present in the updated ensemble. It is
not possible to transfer atom, bond, or any other ensemble minor object property data to the
replacement structure directly with this command.

The command returns the original, unchanged ensemble handle or reference.

Examples:

ens replace $eh E CANONIC TAUTOMER [list E IDENT E NAME]

This command replaces the current structure with its canonic tautomer. The values of properties
E_IDENT and E NAME from the original ensemble are kept in the updated form, all other ensemble
property data of the original is discarded.

ens replace $eh $ehnew

Replace the structure with the one in $ehnew. The second ensemble is destroyed in the process.

ens replicate

ens replicate ehandle ?count?

e.replicate (?count=?)

This command duplicates all molecules in the ensemble and appends them to the atom, bond and
other minor object lists of the ensemble.

The default replication count is one, but any other number of duplications may be chosen by an
appropriate count parameter. If the count is less than one, the command is silently ignored.

The command returns the original ensemble handle or reference. As part of the integration step,
merge property invalidation events are generated.

The ens dup command generates a new ensemble, while this command expands the current
ensemble.

Example:

echo [ens get [ens replicate [ens create C.CC]] E SMILES]

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 303

CACTVS Tel and Python Scripting Language Reference

304

This prints C.CC.C.CC as result SMILES string, because both molecules in the original ensemble
were duplicated and appended to the existing ensemble data.

ens rings
ens rings ehandle ?filterset? ?filtermode?
e.rings (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the rings the ensemble
contains. This is explained in more detail in the section about object cross-references.

Examples:

ens rings S$ehandle
ens rings $ehandle [list heterocycle aroring]

The first example returns the labels of all rings the ensemble contains. If the ensemble does not
contain any rings, an empty list is returned. Only labels of rings in the SSSR or ESSSR set are
returned, even if the currently configured ring set is larger. The second example filters the rings -
only heteroaromatic rings are reported.

ens ringsystems

ens ringsystems ehandle ?filterset? ?filtermode?

e.ringsystems (?filters=7?, ?mode="7?)

Standard cross-referencing command to obtain the labels or references of the ring systems the
ensemble contains. This is explained in more detail in the section about object cross-references.

Examples:

ens ringsystems $ehandle
ens ringsystems $ehandle [list heterocycle aroring]

The first example returns the labels of all ring systems the ensemble contains. If the ensemble does
not contain any ring systems, an empty list is returned. The second example filters the ring systems
- aring system label is included in the output list only if that ring system contains one or more hetero
aromats.

ens rotate

ens rotate ehandle angle axis ?center? ?property?

e.rotate (angle=,axis=, ?center=7?, ?coordinateproperty="?)

Rotate the ensemble in 3D space by manipulating property a_xyz, or a custom atom float vector
coordinate property.

The angle argument is a floating-point number in degrees. The axis argument is a 3D vector in
standard notation, i.e. usually a list/tuple of three floating point numbers for the x, y and z
components. If the last optional argument is omitted, the center of rotation is the 3D unweighted
coordinate average of all ensemble atoms with valid 3D coordinates, which is computed as property
E_CENTER. If the center argument is specified, it is expected to be a 3D point which is used as center
of rotation instead.

This operation triggers a 3dglop property invalidation event.

The command returns the original ensemble handle or reference.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Example:
ens rotate $Seh 60 {0 0 1}

Rotate the ensemble 60 degrees counterclockwise around the z axis.

ens scan
ens scan ehandle expression/queryhandle ?mode? ?parameterdict?

e.scan (query=, ?resultmode=?, ?parameters=?)

Perform a query on the ensemble object. The syntax of the query expression and the optional
selection list is the same as that of the dataset scan command with a transient dataset consisting
of the current ensemble only. For more details, please refer to the paragraphs on dataset scan and
molfile scan.

The return value depends on the mode. The default query mode, this is different from the default in
molfile scan, IS exists.

ens set

ens set ehandle ?property value?...
e.set (property,value, ...)

e.set ({property:value,...})
e.property = value

e[property] = value

Standard data manipulation command for setting property data. It is explained in more detail in the
section about setting property data.

Example:

ens set $ehandle E NAME “Pharmacon X-25”

ens setparam

ens setparam ehandle property ?key value?...
ens setparam ehandle property dictionary
e.setparam(property, ?key,value?...)

e.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the

computation parameters in the property definition are not changed.
The return value is the updated property computation parameter dictionary.

Example:

ens setparam Sehandle E GIF comment “Top Secret Lead Structure”

ens setup

ens setup ehandle ?minorobjclass?
e.setup (?objectclass=?)

Query the status of the minor object lists in the ensemble, or initialize one of these to an empty list.

Ifno class is specified, a dictionary with all currently registered minor object classes of the ensemble
is returned. The object class names are the key, the value is a boolean flag for the status.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 305

CACTVS Tel and Python Scripting Language Reference

306

If an object class argument is supplied, the object class is instantiated on the ensemble, if necessary
by auto-loading an object class handler module. Unknown object class names result in an error. If
the minor object class is already instantiated, it is not changed. Otherwise, an empty minor object
set is added. This is even the case if the minor object class handler provides a default object setup
function (see ens rebuild command). Instantiating an object class with this command always
creates an empty collection of the minor objects associated with the ensemble.

Minor object lists are usually implicitly instantiated, as in
ens get $eh M LABEL

which automatically sets up the molecule/fragment object set if it is not yet present, and populates
it with objects identifying disconnected fragments in the ensemble, or

group create $eh [list $al $a2 $a3]
which adds a group to the ensemble, again automatically initializing the group object set if it was
not initialized.

The ens setup command is intended for special circumstances and not commonly used.

ens show

ens show ehandle propertylist ?filterset? ?parameterdict?
e.show (property=, ?filters=?, ?parameters="?)

Ens.Show (data, property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens show is that
the latter does not attempt computation of property data, but raises an error if the data is not present
and valid. For data already present, ens get and ens show are equivalent.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens sigmas

ens sigmas ehandle ?filterset? ?filtermode?

e.sigmas (?filters=7?, ?mode=?)
Standard cross-referencing command to obtain the labels or references of the o systems the
ensemble contains. This is explained in more detail in the section about object cross-references.

Examples:

ens sigmas S$ehandle

o systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one ¢ system and one « system in this

representation.

ens sort

ens sort ehandle ?sort property? ?relabel? ?duplicate? ?datasethandle? ?position?

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Sort the atoms in an ensemble according to a property value. The default property is A LABEL, the
standard atom label. The first optional argument can be used to sort on a different property, or a
property field. However, the property must be either an atom property, or a molecule property. If the
relabel flag is set, the ensemble atoms and molecules are renumbered after the sort in ascending
order, starting with one. By default, atoms and molecules retain their original labels even if they
change positions. If the duplicate flag is set, the sort operation works on a duplicate of the original
ensemble. If the flag is unset, or the argument omitted, the operation modifies the original ensemble
object.

The final two optional arguments allow the direct transfer of the modified ensemble or duplicate into
a dataset, similar to an ens move command. The ensemble may be inserted into a specific position
of a target dataset. If the special value end is used, or the zero-based position index is beyond the

current end of the target dataset, the ensemble is simply appended. By default the ensemble is not
moved, and if it is moved without an explicit position, it is appended.

The sequence of the atoms in the ensemble is rearranged so that the atoms are in ascending order of
the values of the sort property or property field. Indirectly, molecules are also rearranged to
correspond to the sequence of the first atoms in every molecule. This operation triggers a shuffle
property invalidation event. If the renumbering option is selected, the atom and molecule sets are
re-labeled with their standard label properties (i.e. 2 L.ABEL for atoms, M 1LABEL for molecules) in
ascending order, starting with one. Other minor object collections remain in their original sequence
and retain their current labels. Certain important properties which, if present, are dependent on atom
label values, notably 2 LABEL STEREO, B LABEL STEREO and B__FLAGS, are specifically adjusted to
the new labeling scheme instead of being invalidated.

The command returns an ensemble handle or reference. If the operation was operating on a
duplicate, it is the handle or reference of the new ensemble, otherwise that of the original ensemble.

ens split

ens split ehandle ?minsize? ?splitproperty?

e.split(?minsize=7?,?splitproperty="?)

Split the molecules of the ensemble into individual ensembles. The return value is a list of the
handles or references of the new ensembles. If the original structure contains only a single fragment,
the result is the same as a simple ens dup command. The split structures do not become a member
of a reaction or dataset, even if the original structure is.

The optional minsize parameter is a minimum value for the number of heavy atoms (property

M HEAVY ATOM COUNT) in the molecules. If this is not an empty string, molecules which have less
heavy atoms than the minimum are not duplicated. If all molecules in the input ensemble are smaller
than the required size, an empty list is returned.

The optional splitproperty argument can be used to split the ensemble on values of a molecule
property, which needs to be either already set or computable, instead of simply separating fragments
on connectivity. All molecules in the input ensemble which have a common value of this property
are put into a joint result ensemble, and each distinct split property value starts a new result
ensemble. Molecules with a common property value do not need to be present in the input ensemble
in a consecutive sequence, nor are there any special requirements for the data type or value range
of the split property, as long as the data type has a comparison function. If the values of the split
property are distinct over all molecules in the input ensemble, the outcome of command is
indistinguishable from running it without any split property.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 307

CACTVS Tel and Python Scripting Language Reference

308

Example:
lassign [ens split [ens create “CC.CC”]] ehl eh2

This example creates an ensemble with two ethane molecules, splits it, and assigns the two new
ensemble handles to variables eh/ and eh2.

set elist [ens split $eh {} M REACTION LABEL]

Split ensemble along the original reagent or product data blocks found in an RXN or RDF file.

ens sqldget

ens sqgldget ehandle propertylist ?filterset? ?parameterdict?

e.sgldget (property=, ?filters=?, ?parameters=?)

Ens.Sgldget (data,property=,?filters=7?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The differences between ens get and ens sqldget are
that the latter does not attempt computation of property data, but initializes the property value to the
default and returns that default, if the data is not present and valid; and that the SQL command variant
formats the data as SQL values rather than for TcL or PYTHON script processing.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens sqlget

ens sqglget ehandle propertylist ?filterset? Pparameterdict?
e.sqglget (property=,?filters=?, ?parameters="?)

Ens.Sqglget (data,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens sqlget is
that the sQL. command variant formats the data as SQL values rather than for TcL or PYTHON script
processing

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes..

ens sqlnew

ens sqglnew ehandle propertylist ?filterset? ?parameterdict?
e.sqglnew (property=, ?2filters=?, ?parameters="?)

Ens.Sglnew (data, property=,?filters=?, ?parameters="?)
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The differences between ens get and ens sqlnew are
that the latter forces re-computation of the property data, and that the SQL command variant formats
the data as SQL values rather than for TcL or PYTHON script processing.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens sqlshow

ens sqglshow ehandle propertylist ?filterset? ?parameterdict?
e.sqglshow (property=,?filters=?, ?parameters=?)
Ens.Sglshow (data,property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The differences between ens get and ens sqlshow are
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TcL or PYTHON script processing.

The PyTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens subcommands
ens subcommands
dir (Ens)

Lists all subcommands of the ens command. Note that this command does not require an ensemble
handle.

ens surfaces

ens surfaces ehandle ?filterset? ?filtermode?

e.surfaces (?filters=7?, ?mode=7?)
Standard cross-referencing command to obtain the labels or references of surface patches the
ensemble contains. This is explained in more detail in the section about object cross-references.

Example:

ens surfaces $ehandle carbon

This example lists all surface patches which are associated with carbon atoms. Surface patches
associated with other atoms, or with no atoms, are not listed.

ens swapin

ens swapin ehandle

e.swapin ()

Swap an ensemble from the disk store fully back into memory, and disable further automatic loading
and shelving. If the ensemble was not swapped out, the command does nothing.

The command returns the original ensemble handle or reference.

ens swapout

ens swapout ehandle
e.swapout ()

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 309

CACTVS Tel and Python Scripting Language Reference

310

Remove most of the ensemble data from memory and store it in a temporary disk store. The
ensemble handle remains valid. As soon as it is used in a command again after this command has
been executed, the swapped ensemble data is automatically reloaded from file, and then stored again
when the object lock is released. To disable the automatic swapping of an ensemble, use the ens
swapin command.

This command is intended to be used in cases where a large number of ensembles must be kept in
memory. Its routine use is not encouraged - it is only useful in case the programmer knows about
access patterns. In other cases, the standard virtual memory mechanism of the operating system
might yield better performance results.

The ensembles are stored as binary blobs in a key/value store in a process-specific swap directory
cactvs%d, (%d is replaced by the process ID) which is created automatically in the standard
temporary directory. When an ensemble is deleted, its swap record is also removed, if one was
created during the lifetime of the ensemble. When a CacTvs application program exits, the swap
store as well as the swap directory are automatically deleted, even without explicit deletion of the
last set of ensembles in memory. In case of program crashes, the swap directory and its contents may
however survive. If ensemble swapping is used with unstable applications, the temporary directory
should be checked from time to time.

The command returns the original ensemble handle or reference.

Example:

ens swapout $ehandle

ens tables
ens tables ehandle ?filterlist?
e.tables (?filters=?)

Return a list of the handles of all table objects the ensemble is associated with. Optionally, the table
set may be filtered by a simple filter list. If the ensemble is not related to any table, or none of these
tables passes the filter list, an empty string is returned.

This command is only available if the toolkit was compiled with table support.

Example:
ens tables $ehandle

ens taint

ens taint ehandle propertylist/changeset ?purge?

e.taint (property=, ?purge=?)

Issue a property data tainting event which acts on the ensemble data.
If the ensemble is a member of a dataset, the dataset and its objects are not tainted.
The event list may contain any number of the following items:

* A property name.
In that case, all properties which depend on the specified one are invalidated. If the optional
purge parameter flag is also set, the specified property itself is also deleted. By default the
self-deletion flag is not set.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* An object class
All properties which a sensitive to changes in the object class collection associated with the
target ensemble are deleted. Example:

ens taint $eh atom

This deletes all properties which are sensitive to changes in the atom make-up of the
ensemble.

* 2dop
All properties which are dependent on 2D layout coordinates are invalidated.

* 3drelative
All properties which are dependent on relative inter-atomic 3D atomic coordinate changes
are invalidated.

* 3dabsolute
All properties which are dependent on absolute 3D atomic coordinate changes are
invalidated.

° dup
All properties which do not survive duplication of the underlying object are invalidated.

* hadd
All properties which are sensitive to hydrogen addition or deletion via dedicated hydrogen
processing commands, which do not trigger the default atom and bond change events
associated with atom addition or deletion and bond changes, are purged.

° merge
All properties which are invalidated by merging ensembles are invalidated.

o shuffle

All properties which are dependent on the order of minor objects in the ensemble are purged.

* Stereo
All properties which are invalidated by stereco changes are dropped.

The command returns the original ensemble handle or reference.

ens torsions

ens torsions ehandle ?filterset? ?filtermode?

e.torsions (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the torsion objects the
ensemble contains as minor objects. This is explained in more detail in the section about object
cross-references.

ens transfer

ens transfer ehandle propertylist ?targethandle? ?targetpropertylist?
e.transfer (properties=, ?target=?, ?targetproperties=?)

Copy property data from one ensemble to another ensemble or other major object, without going
through an intermediate scripting language object representation, or dissociate property data from

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 311

CACTVS Tel and Python Scripting Language Reference

312

the ensemble. If a property in the argument property list is not already valid on the source ensemble,
an attempt is made to compute it.

If a target object is specified, and a property is not an ensemble but an ensemble minor object
property, the number of property-associated minor objects is usually expected to be the same in both
ensembles, and expected to have the same label set, tough it is not required that they are in the same
sequence. Property data is assigned to the target ensemble minor objects with the minor object label
as reference key. In case of a label set or object count mismatch between the two ensembles, no error
is raised. Excess source data items are discarded, and excess target minor objects, or those with
unmatched labels, retain their original value if the property was present on the target, or are set to
the default value if the property was freshly instantiated. In this command mode, the return value is
the handle of the target ensemble. Source and target ensembles cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple ens get, i.e. the result is the property data value or value
list. The property data is then deleted from the source object. In case the data type of the deleted
property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only unlinked
from the source object, but not destroyed. This means that the object handles returned by the
command can henceforth the used as independent objects. They can be deleted by a normal object
deletion command, and are no longer managed by the source object..

Properties which are ensemble minor object properties can only be transferred to another ensemble.
Ensemble properties can be moved to other major objects.

Example:

ens transfer Seh E EMF IMAGE S$eh2

This copies property E_EMF_IMAGE from the first ensemble to the second. The property data remains
valid on the source ensemble.

set ehc [ens transfer $eh E CANONIC TAUTOMER]

Get the handle of the canonic tautomer of the source ensemble, and dissociate it from the source
ensemble.

ens transform

ens transform ehandle SMIRKSlist ?direction? ?reactionmode? ?selectionmode?
?flags? ?overlapmode? ?{?exclusionmode? excludesslist}? ?maxstructures?
?timeout? ?Pmaxtransforms? ?Pniterations? ?statusvariable?

e.transform(transforms=, ?direction=?, ?reactionmode=?, ?selectionmode=7?, ?flags="?,
? >rlapmode ? 1lu , ?maxstructures=?, ?timeout=?, ?maxtransforms=2,

?iterations=?, ?stat

(]

This command applies one or more SMIRKS transforms to an ensemble and returns a list of ensemble
handles or references of transformation products. The transformation products are filtered for

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

duplicates. The original start structure is never returned - if a transform set does not match at all, an
empty list is returned.

The required parameter after the ensemble handle is a list of SMIRKS lines, where each SMIRKS line
is itself a list. A SMIRKS line is in the simplest case a simple SMIRKS transform without any extra
data, but it may be padded by additional parameters which apply only to the application of that
transform. If these optional parameters local to the current transform are not specified, their global
counterpart on the command line is used instead. The syntax of an individual SMIRKS line is

SMIRKStransform ?step? ?direction? ?flags? ?overlapmode?

The SMIRKS transform part is the only required list element. It may be provided either as a string in
standard Daylight notation, or as a handle of a reaction, which should have been decoded in SMIRKS
mode (see reaction create command). Care should be taken to pass SMIRKS strings as proper
elements of a list, even if only a single string is used, because they may contain whitespace and
naming information after the actual transform code. Example:

ens transform $ehandle [list [list {[C:1][C:2]>>[C:1]=[C:2] Dehydrogenation} 1]]

The string Dehydrogenation is part of the transform specification string and not the transform step.
The name string is attached to the (intermediate, in this case) transform reaction object as property
x_NaME and can be used to track the reaction history of transform result structures.

The optional step element in a transform line (a positive integer or 0) identifies the reaction step of
the transform. Transform sets of different step numbers are isolated from each other and do not
interact. Transforms are executed in ascending step number. Transforms with different step numbers
need not to be sorted, and the step numbers neither need to begin with one, nor form an uninterrupted
sequence. A step number of 0 disables the transform. The default step number is one. All transforms
of the same step number are essentially executed in parallel and may interact with each other.

The third and again optional element of transform lines is the direction identifier. It may be either
forward, backward, or bidirectional. In forward mode, only the left part of a transform is used for
matching, and the matched structure part is modified according to the description on the right side.
backward works the other way around, and in bidirectional mode, both sides of the transform
scheme are independently matched, and, if the match is successful, transformed to the other side. If
this parameter is not specified, or specified as an empty string, the global direction parameter from
the command line is substituted.

The fourth and once more optional element of a transform line is a list of flag words. Every word
sets an additional flag. Currently, the following flag words are recognized:

* absolutestereo
Ifthis flag is set, the stereochemistry of the right side of a transform is transferred unchanged
to the transform result ensemble, without attempting to interpret the operation as a reaction
with stereochemistry inversion or retention by examination of the pattern on the left side. If
the left side does not contain stereochemistry, the behavior induced by this flag is already
the default and it has no effect. It also has no effect if the right side of the transform does
not specify stereochemistry.

* allrequired
If this flag is set, only result structures which were generated by the combined application
of all transforms marked with this flag are accepted as final results. If any of the transforms
marked with this flag did not contribute to a result structure, it is discarded. By default, the
result set is not filtered by its origination from any specific transform.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 313

CACTVS Tel and Python Scripting Language Reference

* anyrequired
If this flag is set, only result structures which were generated by the application of at least
one of all transforms marked with this flag are accepted as final results. By default, the result
set is not filtered by its origination from any specific transform.

* appendpathname
The same as setpathname, except that the content of an existing property £_NaMe on the
input ensembles is not overwritten. Transform path information is always appended. If the
input structure does not have initial name information, the operation of the two flags is
indistinguishable.

* changeelements
If set, the element number and atom type of matched atoms is changed to that of the
matching right side template. By default, atom type and element number of atoms which are
not newly added are preserved in the transformed ensembles. This is usually desirable for
the use of element lists and other generic expressions as part of transform patterns. If this
flag is set, the atom is changed to the exact template definition - including changes to any
atoms, element lists, or complete atomic recursive SMARTS expressions.

* chargeneutral
If set, the sum of all changes in the formal atom charges in the set modified by the
application of the transform, excluding any atoms which are deleted or added, must be zero.
This is helpful for example for charge redistribution transforms. For example, a transform
like
[*;41:1]=[*:2] [N:3]>>[*:1][*:2]=[N;+1:3]
only works on structures where the nitrogen atom is neutral, because otherwise the total
charge of the match three atom block would change. It would be possible to achieve the
same effect with explicit indication of allowed charges on all involved atoms, but this flag
can be convenient.

* chargeradicals
If this flag is set, radicals which are generated as result of a transform are charged using
chemistry common sense. A cleaner and preferable method is to explicitly encode charge in
the transform.

* checkaro
If set, aromaticity checking takes place. Atoms specified as aromatic in the transform
pattern only match aromatic atoms in the target ensemble, and all other atoms only match
non-aromatic atoms. By default, the aromaticity status of atoms is ignored in evaluating the
pattern match.

* checkcharges
If set, formal charges on the match side of the transform must exactly match the charges on
the matched structure atoms. By default, charges are not used for determining a match. This
flag should be set if the transform pattern should only match specific charges.

* checkkekule
If this flag is set, bond orders of aromatic systems in the substrate molecules must be
matched exactly as specified in the transform.

* checkstereo
If set, the stereochemistry on the match side of the transform must match the
stereochemistry on the matched structure atoms. By default, stereochemistry is not used for
matching.

314 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* checkwedges
If this flag is set, bonds in the transform ensemble must match the wedge style specified in
the left side of the transform template. This is useful only under very specific circumstances,
since the style and placement of wedges does not uniquely identify a stereo isomer.
Checking stereochemistry is therefore usually performed via the checkstereo flag, which
relies on the comparison of stereo descriptors instead of wedges.

* distinctpatternmatch
If this flag is set, the match mode of the substructure side of the transform is changed. The
default match mode is a//, meaning that all possible orientations of the substructure are
generated, except in case of a transform application mode first, where the substructure
match mode is also first. If this flag is set, the match mode is changed to distinct. In this
mode, only pattern matches which differ in the set of structure atoms matched are generated,
removing alternative mappings of the substructure on the same set of structure atoms. This
mode is faster and can reduce the number of computation steps significantly, but the
applicability of this match mode for the generation of the full set of desired transform results
must be determined by the programmer with an eye for possible asymmetry of the matched
structures outside the atom set of the transform substructure.

* dropradicals
If this flag is set, transform result structures are discarded if they are radicals. In case the
chargeradicals flag is also set, the radical check is performed after the attempt to charge
standard radical centers and may thus be used as a second line of defense against
unreasonable structures.

o filtercharges
If set, use the localization of formal charges on atoms as a criterion to distinguish
transformation results. By default, the standard hashcoding process is used which does not
care about the placement of formal charges as long as these forms are interconvertible. For
example, with the standard duplicate filtering process, pentavalent and ionic forms of nitro
groups are considered equivalent. However, this will also prevent transforms which convert
one form of a nitro group into another from working, since the transform result is discarded
as being equivalent to the input structure. In order for this kind of transform to function as
expected, the filtercharges flag must be set, which configures the duplicate filter to
distinguish between the two forms. In that case, the preservecharges flag (see below) must
not be set in order to allow the transformation to change the charge, but the checkcharges
flag (see below) should be set in order to restrict the match of the transform to a specific
ionic or pentavalent form.

* filterisotopes
This flag instructs the duplicate detection mechanism to use hash codes which use isotope
labeling information for duplicate removal. This flag is not exclusive to the filterstereo flag
- both attributes can be combined to select a suitable hash code.

o filterkekule
This flag instructs the duplicate detection mechanism to use compute hash codes which are
dependent on the exact bond order - including that of Kekulé structures of aromatic systems
- for duplicate removal.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 315

CACTVS Tel and Python Scripting Language Reference

o filterradicals
If set, use the localization of free electrons on atoms as a criterion to distinguish
transformation results. By default, the standard hashcoding process is used which does not
care about the placement of electrons as long as these are interconvertible. However, this
also prevents transforms which convert from one electron localization scheme to another
without accompanying atom or bond changes from working, since the results are discarded
as being equivalent to the input structure.

* filterstereo
This flag instructs the duplicate detection mechanism to use stereo-specific hash codes for
duplicate removal. This flag is not exclusive to the filterisotopes flag - both attributes are
used to select a suitable hash code.

* keepiterationintermediates
If this flag is set, and multiple iterations are run, the results from intermediate iteration steps
are part of the returned set. By default, only the results of the last iteration are returned.

° kekulize
If this flag is set, a new Kekulé form of aromatic systems in the transformed structure is
constructed. This is useful when the matching pattern did not check for explicit single and
double bonds, so that after applying the transformation the Kekule pattern may be wrong,
for example after swapping an electron-pair donating N witch a normal pi-bonded C atom.
Still, it is generally recommended to use explicit bond order manipulation since that method
is more robust.

o linkreaction
Ensembles which are created via a transform for which this flag is set are linked to an
automatically created reaction object in which the transform result ensemble is the reaction
product, and a duplicate of the input ensemble the reagent. In addition, the x naME and
E_REACTION ROLE properties are set. The return value of the ens transform command is
still a list of the handles of the transform result ensembles. The additional reagent ensemble
handles are not included, and neither are the handles of the reactions. In order to access the
reaction information, a lookup command such as ens reaction with a result ensemble as
argument can be used.

e lockimplicitbonds
Bonds in the transform structure which are represented by bonds with an implicit bond order
on the right side of the pattern (in forward direction, left side for reverse transforms) do not
get their bond order adjusted, with the rationale that these pattern bond orders are not well
defined anyway.

* nitrostandardizer
Ifthis flag is set, the input structure duplicate(s) entered as start compound in the transform
processing queue is standardized to possess the neutral, pentavalent form of nitro groups
and similar groups. This option does not change the input structure(s) of this command but
only the first structure duplicate entered into the processing queue.

* nochargepaircollapse
Disable the feature that bonds which connect atoms of opposite +1 and -1 formal charges
are also matched by the equivalent bond with a bond order increased by one and neutral
atoms.

316 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* nohadd
Part of the normal transformation procedure is a final hydrogen addition step before
duplicate checks etc. are performed. This default behavior is designed to result in standard
fully hydrogen-complete structures. If this flag is set, this step is omitted. This can for
example be useful to avoid the addition of hydrogens to atoms with different default
hydrogen addition characteristics if formal atomic charges have been moved. This option
does apply to the input structure(s) of this command but only the first structure duplicate
entered into the processing queue.

* preservecharges
If set, charges are not modified after a transform is matched. By default, the charge of
matched atoms is set to the charge of the matching atom in the transform template, as long
as the atom has sufficient free electrons to allow the charge change. Atoms which are newly
introduced by the transform always bear the charge specified in the transform description.
This flag does not influence the match process - charges specified in the transform may still
be used for selecting specific atoms via the checkcharges flagpreservestereo
If set, atom and bond stereochemistry are not changed on matched atoms and bonds. By
default, changes do occur - changed atoms or bonds have their stereochemistry reset if the
transform pattern does not contain stereochemistry, or set to a specific stereochemistry if it
does. If only the right side of a transform contains stereochemical descriptors, the
stereochemistry of the transformed product is set to that of the template (for example, a cis
double bond). If both the left and right side of a transform contain stereochemistry, the
chemistry at the transform product is inverted or retained, depending on the stereochemistry
change in the transform. Having stereochemistry only on the left side is possible, and
potentially useful for selecting specific enantiomers or diastereomers via the checkstereo
flag, but results in a reset (if this flag is not set) or retained (if this flag is set) stereochemistry
in the transformed ensemble.

e preservecoordinates
If this flag is set, 2D and 3D coordinates of the transform ensemble are retained. Newly
added atoms are set to a magic coordinates value. By default, a successful transformation
invalidates 2D and 3D coordinates, as well as all property data dependent on these.

° preservestereo
If the flag is set, all stereo descriptors are retained. By default, stereo centers and bonds
matched by the pattern are reset, or inherit their new value from the pattern.

° preservewedges
If set, the wedge status of bonds matching the transform pattern is preserved. By default,
wedges involving bonds which are changed, or which connect atoms which are changed (or
deleted and then re-added in other form), are reset. Note that this flag operates
independently of the set of stereo flags listed above. In most cases, the desired mode of
stereochemistry processing should be selected by specifying these flags, and the wedges
regenerated as needed. If combined with stereochemistry changes, the use of this flag may
otherwise lead to conflicting stereochemical information on the result ensembles.

* removeh
If set, an attempt is made to rescue bond changes which would fail because of insufficient
electrons for bond manipulations by deleting a minimum number of hydrogen atoms on the
bond atoms needed for the bond creation or bond order change. Without this option, a
transform like [c:1][c:21>>[C:1]=[C:2] usually does work, since CAcTvs is designed to
work on structures with a full hydrogen set. When this flag is set, the transform succeeds if

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 317

CACTVS Tel and Python Scripting Language Reference

C1 and C2 both have at least one hydrogen. Alternatively, the transform can be specified
with explicit hydrogens as in [#1][C:1][C:2] [#1]>>[C:1]=[C:2]. In that form, it always
removes the hydrogens because they do not appear on the right side. This is form is slightly
more complex and different from the Daylight mechanism.

* requireheteromatch
If set, among the structure atoms matched by the pattern there must be at least one hetero
atom in order to proceed with the transform modifications. If only carbon or hydrogen is
matched, this match is ignored.

* restricthydrogenmatch

If set, hydrogen matches are not permuted. This means that, for example, the first explicit
hydrogen around a transform substructure atom can only match the first hydrogen around a
structure atom, not all of them (for example, all 3 in a methyl structure group) in different
matches. This is an optimization which is frequently useful, if the transform results are
guaranteed to be identical regardless of which hydrogen atom was matched - for example,
when generating tautomers. However, if extended attributes of the structure hydrogen atoms
are significant, such as 3D position, charge or isotope labels, etc., setting this flag can lead
to the non-generation of distinct result structures.

° setatommatch
Ifthis flag is set, the atom labels (a_1.aBEL) of the stored atoms on the left (substructure) side
of the transform are stored on the transformation result ensembles as property A SSMATCH.
Atoms which are not matched are assigned a zero value.

In case a transform result structure is the product of more than one transform, each
transformation step adds a new property instance A SSMATCH, A_SSMATCH/2, and so on.
Pre-existing 2_ssMaTcH properties on the transform input ensemble are not deleted. If these
exist, the new data is stored in the next unused property instance after the current instance
with the highest slot number.

° Setatomstatus
If this flag is set, the status of the atom during the last transform is marked in property
A TRANSFORM STATUS. Possible values are none: atom did not participate, matched: it was
matched by the transform substructure, but did not change, changed: one or more atom
attributes, including possibly the element number, we edited, new: the atom was added by
the transform.

In case a transform result structure is the product of more than one transform, each
transformation step adds a new property instance A TRANSFORM STATUS,

A TRANSFORM STATUS/2, and so on. Pre-existing A TRANSFORM STATUS properties on the
transform input ensemble are not deleted. If these exist, the new data is stored in the next
unused property instance after the current instance with the highest slot number.

* setbondmatch
This option is very similar to setatommatch described above, except that matching left-side
substructure bond labels B_LABEL are stored in property B_SSMATCH.

* setbondstatus
This option is very similar to setatomstatus described above, except that bond history is
stored in property B_ TRANSFORM STATUS.

318 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* setpathname
If this flag is set, the name (property E_NaME) of the result ensembles is set to display the
transformation sequence the structure underwent from the input structure. The name is
formatted as a TcL-conforming list with one element for each transform applied. The first
character of each list element is either >’ or ’<’ to indicate application of the transform in
forward or reverse direction. It is followed by either the transform name (property x_NAME),
if it is available, or the transform index number (starting with 0). Any initial name of the start
structures of the transformation is cleared, so that the result name only contains transform
path information.

The fifth, final, and again optional element of a SMIRKS line is the overlap mode. Again, if this
parameter is omitted or supplied as an empty string, the global default from the command line is
used. The overlap mode determines whether a transform substructure which consists of multiple
disconnected fragments may match onto common target structure atoms or bonds. The following
values are supported:

* none
No overlap of the substructure fragments, neither on atoms nor on bonds. This is the default
mode, and the most commonly used.

* distinctmols
All disconnected fragments in the substructure must match different molecules in the target
structure. This is a useful mode to prevent, for example, intra molecular reactions.

* any
Any overlap of the substructure fragments is possible. This mode is rather useless for
transforms.

* nobonds
Atoms may overlap, but not bonds. This mode is actually highly useful in some contexts.

* noembed
Atoms and bonds may overlap, but no substructure fragment may be completely embedded
in the structure part matched by another fragment, meaning that at least one of any pair of
matching substructure fragments must match an atom which is not matched by the other
fragment.

* distinctatoms
Between any pair of matched substructure fragments, both fragments must match at least
one atom not matched by the other fragment.

Every SMIRKS line follows the outlined scheme, and all settings within that line are applicable only
to the current transform scheme.

There is no general limit for the maximum number of transforms in this command. However, if
transforms are combined with exclusion substructures, and these exclusion substructures are to be
applied on a per-transform basis, (see below), the highest transform index for which an applicability
flag can be set is 63. Every transform which is applied in bidirectional fashion, either by global
configuration or transform-specific flags, is counted twice toward this limit.

All parameters after the SMIRKS lines list act globally. The third and optional direction parameter,
command word number five, sets the default for the directionality of all transforms for which no
local override was set in their respective SMIRKS lines. If this parameter is not specified, the default
is forward.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 319

CACTVS Tel and Python Scripting Language Reference

320

The optional reaction mode, parameter four and command word six, does not have a counterpart in
the SMIRKS lines. This parameter determines how the possibility of multiple matches of a transform

substructure in the target molecules is handled. It can be one of these values:

o first

Only the first match which is found is executed, all other possible matches are disregarded.
The location of the first match should be considered random.

* exhaustive
Only those transform products where all possible match sites have been processed are
produced. For example, a structure with two reaction sites A and B, only the product where
both A and B have been transformed is reported - provided that the initial transformation of
A or B did not influence the possibility of matching the second part. So, in case of the
hypothetical hydrolysis of a dihalogene compound with explicit water molecules, the fully
reacted product will only be obtained if the input ensemble contained two water molecules.
Otherwise, one (in case of symmetry) or both products of a single hydrolysis step are
obtained. This mode operates by generating the intermediate products and re-submitting
them. If these generate one or more new compounds, they are discarded from the result list.
An older and still recognized name of this reaction mode is all.

° singlestep
All matches are found and the transform executed, but the transform results are not
re-submitted for matching as they are in the exsaustive mode. All different products which
result from a single application of the transform are returned. For hypothetical example of
the hydrolysis of an asymmetrical dihalogene compound, both partial hydrolysis products
are generated, but not the fully hydrolyzed end product.

° multistep
This mode generates all transform products by systematically applying the transforms to all
structures and re-submitting the results again and again, until no new compounds are
generated. In contrast to the exhaustive mode, intermediate products which further react are
not discarded. The hypothetical example of the hydrolysis of an asymmetrical dihalogene
compound yields three products - two partial hydrolysis products, and the fully hydrolyzed
end product.

The default value for the reaction mode is first.

The next optional command parameter, the selection mode, (command argument five and command
word seven) again has no counterpart in the SMIRKS line parameters. It determines the interaction

of transforms of the same step number. All these transforms form a group. This parameter
determines which of the transforms from the current group are executed, and in which order. The
parameter can be set to one of the following values:

o first

The first transform from the current group which matches is processed according to the
reaction mode setting. All other transforms in the group are ignored, regardless whether they
would match or not.

° sequence
All transforms in the current group are applied once in the order they are specified, with the
current reaction mode. Each transform is applied to the result ensembles of the previous
transform, or the start ensemble for the first transform. All results, including those which did
undergo further changes by later transforms, are returned.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* seqendpoints
Similar to the sequence mode, but only those result ensembles which did not lead to further
transformation results (either actually generated, or discarded as duplicates) are returned.
Again, each transform in the sequence is only applied to the result structures of the previous
transform.

* endpoints
Similar to the al/l mode, but every transform is applied to all result ensembles which have
accumulated before. Only those ensembles which did not yield additional, structurally
distinguishable result ensembles are returned as final result.

o all
All transformations are applied to all result ensembles. This process is repeated until no

additional, structurally distinguishable result ensembles are genera‘ced1 . The full set of result
ensembles is returned.

* newseqendpoints
This mode is similar to the seqendpoints mode. In segendpoints mode, if a transform does
not match any of the current input structures, an empty set is passed on to the next transform
as input data. Thus, the transforms which follow a failing transform cannot produce any
results themselves and are effectively ignored. In this mode, if a transform does not yield
any results on the current input set, the current input set is re-used for the next transform,
so that transforms which do not match cannot interrupt the chain. If the current transform
yields results, that result set is used. The final result set is filtered, as in the endpoints and
segendpoints modes, to contain only structures which did not produce any transform results
themselves.

* parallel
All transforms of the current group are applied, but only to the start structure set, not to any
results produced by the successful application of any previous transform.

The default selection mode is first.

The next and again optional flags parameter (command argument six, command word eight) defines
the default for those transforms which do not possess an override flag set in their SMIRKS line. Note
that if a flag set is specified on a SMIRKS line it completely replaces the default flag set. It does not
simply add or bit-or more flags compared to the global setting. The default flag set is empty.

Similarly, the overlap mode parameter (command argument seven, command word nine) sets the
default for handling potential overlap when matching disconnected transform fragments onto the
structure to be transformed. The default setting is none, disallowing any fragment overlap. If the
transforms only consists of a single fragment in the applicable direction(s), there is no effect of this
parameter.

The excludesslist parameter (command parameter eight, command word ten) again has a potentially
complex internal structure. It defines exclusion fragments. An exclusion fragment blocks all
sections of the target structure from matching any transform substructure, either by preventing the
match of transform atoms (the default) or transform bonds. This is a useful feature for example to
easily prevent amide groups from matching amino group transforms. The default exclusion

1. Do not use this mode with transforms which add a group which is again matchable by the transform - you
will face a runaway polymerization-style reaction!

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 321

CACTVS Tel and Python Scripting Language Reference

322

substructure list is empty. The parameter is a list. Every list element can be a simple structure
identifier, or a list of a structure identifier and a transform index list.

Structure identifiers recognized by this command are:

* ensemble handles
This selects the complete parameter ensemble as exclusion substructure.

¢ lists of an ensemble handle and a molecule label
This selects a specific molecule from the ensemble as exclusion substructure,

° SMARTS strings
The SMARTS string is temporarily decoded and used like an ensemble handle. The transient
ensemble is automatically destroyed when the ens transform command has finished.

If the exclusion substructure identifier is not associated with a transform index list, the substructure
applies to all transforms. The optional transform index list consists of an arbitrary number of
transform indices in the range 0...63. If a transform index list is supplied, the exclusion substructure
applies only to the listed transforms. Note that it is not possible to set individual exclusion indices
for transforms beyond the 64th, even though it is allowable to use any number of transforms in the
transform list. All ensembles, including intermediate result ensembles, are checked against all
applicable exclusion structures immediately before the application of a transform is attempted.

The exclusion substructure specification list may be prepended by a magical list element with value
(marked)atoms, (marked)bonds, unmarkedatoms or unmarkedbonds. These control the mechanism
how matched substructures are marked in the transform source structure. The default mode is atoms,
where excluded atoms are prevented from matching transform pattern atoms. The bonds mode
switches this to preventing a bond match. The difference is that in bonds mode, transform pattern
atoms can still overlap, by a single atom, excluded regions, but not change bonds therein, while in
atoms mode absolutely no atom or bond overlap between excluded regions and transform patterns
is allowed. The unmarked variants operated with a reversed exclusion set - i.e. atoms or bonds which
are not matched are excluded from the structure region eligible for transform application.

In case the exclusion mode is (marked)atoms or unmarkedatoms, an atom identifier, i.e. any notation
which is supported to identify an atom in the atom command, may also be used in addition to the
three substructure specification styles listed above to directly exclude a single atom from matching
by all transforms. In (marked)bonds or unmarkedbonds marker mode, bond identifications in the
same style as supported by the bond command, such as bond labels or bond atom label pairs, are
similarly allowed as additional direct bond exclusion specifications, and these again apply to all
transforms.

Exclusion markings, once set for the input structure, are inherited by newly generated result
structures, so that the protection remains active even for structures undergoing sequences of
transformations.

Therelated dataset transformcommand does not support direct atom or bond exclusion marking,
even if the dataset only contains a single structure.

An example for an exclusion list:
ens transform $eh $tlist ... [list ,atoms™ {C(=0) [NH2]} {{C[NH]C} {0 1}} 1]

This exclusion set protects amide groups (the first substructure) from all transforms, secondary
amines including their immediate carbon neighbor atoms from the first two transforms in the set

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

(index 0 and 1, the transform set is specified in the t1ist variable), and the single atom with label
[in the input ensemble. The exclusion marker mode is explicitly spelled out as atoms in first
exclusion list element, which however is already the default.

Another example:

ens transform $eh $tlist ... [list ,unmarkedatoms“ {*}S$Sstatoms]

This transform only operates on the atoms of which the labels or other identifiers are included in the
list in variable statoms. All other parts of the structure are excluded and cannot participate in the
transform.

The next optional global command parameter (parameter nine, command word eleven) is the
maximum number of result ensembles to generate. The input ensemble is not counted. As soon as
the maximum is reached, the command finishes and returns the result ensembles which were
generated so far. If the maximum number of results is set to a negative number (the default), no limit
applies. Ifitis set to zero, the transform command is effectively disabled. The global control variable
reactvs(setsize_exceeded) is set to 1 if the specified maximum number of result ensembles was
going to be exceeded. At the beginning of the execution of the ens transform command, this
control variable is reset to zero. The limit applies to the total of generated unique structures, which
is not necessarily the same as the number of output structures in case the processing mode dictates
that they are processed further and not included as intermediates in the result set. In the special case
of exhaustive transform application, the parameter limits the size of the intermediate result set after
each pass, not the overall total of unique structures.

The timeout parameter (command parameter ten, command word twelve) can be used to set a time
limit in seconds for the command execution. If this parameter is set to 0 or a negative number, no
timeout applies. This is the default. Otherwise, the generation of result ensembles is stopped after
the specified time, and the command returns with the results generated so far. The global control
variable ::cactvs(interrupted) is set to 1 if a timeout occurs. It is reset to 0 at the beginning of the
execution of the command.

The next optional parameter (command parameter eleven, command word thirteen) can be used to
limit the number of transforms applied to the starting structure and intermediate structures. If this
parameter is not specified, or specified as an empty string or a negative value, no limit is imposed.
If this parameter or the timeout option is used, the result set may become dependent on the atom and
bond order of the input structure because the traversed part of the possible transform match space
is different and might yield different and/or a different number of results when the timeout or
application count restriction is triggered.

The second last optional parameter (command parameter twelve, command word fourteen) is an
iteration count. Its default value is one, meaning that the whole transformation process is only
executed once. If set to a larger value, the transformation routine calls itself recursively. This is
equivalent to first running ens transform with a start structure, and then repeatedly execute
dataset transformcommands for the second and later iterations with the last result set. All limits
and other control parameters are passed in the original configuration, and apply only to the next
iteration, not globally over the sum of all transform cycles. By default, the result set of this mode is
what the last iteration produced, but this can be changed to the union of all iteration results by the
keepiterationintermediates flag. Uniqueness checking of result structures is applied to the full return
set. If the parameter is set to zero or a negative value, no transformations are executed. If the
setpathname flag is set, it is automatically switched to appendpathname for the second and later
cycles, so that the name mirrors the full transformation history and is not reset in each cycle.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 323

CACTVS Tel and Python Scripting Language Reference

324

The final optional parameter is an array variable name. If it is specified, various statistics about the
transform application are collected and stored in that array. Some important array elements are:

* patternmatches The total number of transform pattern substructure matches,
on both sides of the transform if the transform settings allow
this

* lefipatternmatches The total number of left-side transform pattern substructure
matches

* rightpatternmatches The total number of right-side transform pattern substructure
matches

* lefipatternmatches$n The number of left-side pattern matches for transform pattern

n, beginning with index 0

* rightpatternmatches$n The number of right-side pattern matches for transform
pattern 7, beginning with index 0

* datafailures The number of aborted transform applications because
property data could not be computed on the transform result
structures

* applicationfailures The total count of failures to apply the transform instructions
of a matched pattern, for example because of bad electron
counts

* applicationsuccesses The total count of successful applications of transforms,
before the duplicate check

* duplicaterejections The number of successfully transformed structures which
were not added to the result set because they were a duplicate
of an already-registered structure

* duplicateaccepts The number of transform result structures which passed the
duplicate result structure check

Example:

set tl {{[0,S8;X1:1]=[C:2x1][C:3X4] [#1:4]>>[#1:4]1[0,5;X2:1][C:2x1]=[C:3]
enol/thiocenol}}

set e]list [ens transform $eh [list $tl] bidirectional multistep all preservecharges
none

This example is part of a tautomer generator. The full standard generator in the toolkit uses a lengthy
list of transform schemes and not just the one sample keto/enol schema displayed here. Because the
operation is bidirectional, the transform transforms ketones into enols, and vice versa. If more than
one interchangeable group exists, all intermediate structures are generated (multistep reaction
mode). All results are retained (a// selection mode), and all intermediate structures are again
subjected to all transforms (this does not have any effect with a single transform, but the real
application uses a set of transforms). Finally, charges should not be changed (preservecharges
flags), and fragment overlap is not allowed (none overlap mode) - this again is without effect in this
sample transform, because it does not consist of disconnected fragments on either side.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Multiple structures may be jointly transformed in a single command by means of the very similar
dataset transform command.

ens translate

ens translate ehandle ptl ?pt2? ?property?

e.translate (pointl=, ?point2=7?, ?coordinateproperty=?)

Move the atoms of the ensemble by modifying their 3D coordinates in property o xvz, or a custom
atomic float vector coordinate property. This command requires atomic 3D coordinates and will
attempt to compute them if they are not yet present. If no 3D atomic coordinates can be generated,
the command fails with an error.

The first argument is interpreted as a 3D vector if this is the only coordinate argument. All atoms
with valid 3D coordinates are moved according to the vector coordinates. In case a second argument
is supplied, both arguments are interpreted as points in 3D space. The ensemble atoms are moved
according to the difference vector between the second and the first point.

This operation triggers a 3dglop property invalidation event.
The command returns the original ensemble handle or reference.

Examples:

ens translate $eh {0 0 1}
ens translate Seh [atom get Seh $al A XYZ] [atom get $eh Sa2 A XY7Z]

ens trim
ens trim ehandle ?propertylist?

e.trim(?properties=?)

Reduce the information content of a structure to a standard minimum set and discard any additional
information. This process minimizes the storage requirements of the ensemble. The properties of the
internally defined minimum set are computed if required. The retained property set is designed to
support a faithful representation of connectivity including bond and atom labels and types as well
as formal charges, stereochemistry, isotopes, 2D and 3D coordinates, but not of auxiliary additional
attributes of atoms, bonds or other minor objects.

The optional fourth argument is a list of properties which should be retained in addition to the
standard set. I[f any of these are not present on the ensemble to be trimmed, they are silently ignored
and no attempt is made to compute them. Specifying properties of the standard retention set in this
list is allowed but has no additional effect.

The return value of the command is a list of the remaining properties of the ensemble.

Example:
ens trim $ehandle {E_GIF E SMILES}

ens uncharge

ens uncharge ehandle ?filterset? ?flags?

e.uncharge (?filters=?,?flags=?)

Attempt to remove charges on atoms in a chemically sensible way. Charge removal by default
happens via addition or removal of protons. In cases where this does not make chemical sense, a

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 325

CACTVS Tel and Python Scripting Language Reference

326

direct charge manipulation may be performed instead. Charged metal ions and other charged species
without an obvious method for neutralization remain unchanged.

By default all atoms are processed, but the set of processed atoms can be limited by specifying a
filter collection. Additional conditions on processed atoms can be set via the flag argument, which
accepts the same values as ens hadd. Please refer to that command for a list and explanation of these
flags.

The command returns the number of atoms which were neutralized.

Example:

ens uncharge [ens create {[NH3+]CC(=0) [0-]}]

This sample line removes a proton from the charged amino group and add a proton to the charged
carboxyl group of the initial glycine zwitterion. The returned result value is 2. In this example the
total hydrogen count has not changed. In case of an unbalanced set of positive and negative,
modified charged centers this is usually not the case.

ens unlock

ens unlock ehandle propertylist/objclass/all

e.unlock (property=)

Unlock property data for the ensemble, meaning that they are again under the control of the standard
data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

* Property names or references
Valid property instances on the ensemble, or ensemble minor objects are unlocked.
Non-existent data is silently ignored. It is not possible to unlock individual property fields.

e all
All valid ensemble or ensemble minor object properties are unlocked. Ensemble properties
and ensemble minor object properties are not affected.

e ens,atom,bond...
These are object class identifiers. All property data which is controlled by the ensemble
major object and attached to the specified object class is unlocked.

Property data locks are obtained by the ens lock command.
The return value is the original ensemble handle or reference.

Example:

set eh [ens create CCC]

ens lock $eh A SYMBOL 1

ens purge $eh A ELEMENT

atom set $eh 1 A query(dsearch) 3
ens unlock $eh A SYMBOL

In this example, an ensemble is created, and the atom symbol information is locked. Next, the
element number property is deleted, and a query attribute is set. Finally, the lock is released. Had
the element symbol information not been locked, the ensemble would have become unusable due
to an overzealous data consistency manager. Setting query information in property 2 QUERY can

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

have an influence on the atom symbol. So the default action of invalidating 2 syMBoL when
manipulating A QUERY is correct. However, in case there is no element information o ELEMENT, and
no atom symbol information o _symBoL, the element information is completely lost, and the
ensemble becomes unusable. So in this case, locking o symBoL (or alternatively A ELEMENT) is
required to avoid unexpected side effects of structure editing.

ens unpack

ens unpack packstring ?compressionlib?

Ens.Unpack (data=, ?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by an ens pack command. The
return value of this function is the handle of the newly created ensemble object, which is an exact
duplicate of the packed original ensemble.

Packed ensembles may also be unpacked by the ens create command.
The default compression library is z/ib. For more options, see ens pack.

Example:

set packdata [ens pack [ens create CCCl]]
set ehandle [ens unpack $packdatal

ens valencecheck

ens valencecheck ehandle ?failedatomvariable? ?nitrogenmode?

e.valencecheck (?variable=?, ?nitrogenmode="?)

Perform a valence check on the ensemble, comparing the current bonding situation at all atoms to
the list of element-specific valence states in the system element table. This command is intentionally
quite picky, discouraging for example the use of pentavalent nitrogen by default. For the calculation
of valence, only bonds of type normal (valence bonds) are taken into account. Complex bonds and
pseudo bond types thus do not interfere in the calculation. Some more exotic metal atoms with many
different valence states, or few well-defined covalent compounds, such as vanadium or rhodium,
always pass.

The handling of nitrogen in pentavalent or ionic form can be controlled by setting the optional
nitrogenmode argument, or modifying the global ::cactvs (nitrogen_valence check)
variable.Possible values are xionic, ionic (the default), asis, pentavalent and xpentavalent. These are
the same values as with the ens nitrostyle command - please refer to that command for more
information. In asis mode, both ionic and pentavalent forms pass.

The return value of this command is the number of atoms which failed the valence check. If the
optional failedatomvariable argument is specified as non-empty string, it is the name of a variable
which receives a list of the atom labels which failed the check, or is set to an empty list in case no
problems were found.

Note that this command assumes that all hydrogen atoms are in place. Processing of structures with
implicit hydrogen atoms is not supported.

mol valcheck is a short command alias.

Example:

ens valencecheck [ens create {CN(=0)=0.C[N+] (=0) [0-]}] badatoms

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 327

CACTVS Tel and Python Scripting Language Reference

328

This sample command checks the valence situation of ni tromethane in two encoding formats. The
first molecule, using a pentavalent nitrogen encoding, is responsible for the result value 1, indicating
one failed atom, and the variable badatoms is set to 2, the label of the pentavalent nitrogen atom.
The second molecule passes the check and reports no additional problems.

ens valcheck is a short alias.

ens valid

ens valid ehandle propertylist

e.valid (property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the ensemble. No attempt at computation is made. For PyTHoN, where single-item lists are
syntactically not the same as a single value, the return value is a single boolean if the argument was
a string or a property reference, and only a single property was decoded.

Example:

ens valid $xhandle X IDENT

reports whether the ensemble has a standard ID (has a valid E_TDENT property) or not.

ens has is an alias to this command.

ens vector
ens vector ehandle property vectorname ?invert? ?integrate?

Map ensemble property data to a BLT library vector object. Please refer to the BLT manual pages for
more information on these. BLT vector objects are very useful, for example, for the efficient set-up
of GUI graphing widgets which are provided by the BLT Tk extension. This command automatically
attempts to load the BLT Tcl module if necessary. If that fails, an error results.

The vectorized property data must be of a vector type, and the element type of the vector must either
be a simple numeric type, or a bit for bitvectors, or a floating-point pair. It is possible to address a
property field, for example the X/Y data points of a spectrum which are typically stored as a field
in a complex compound property.

If the invert flag is set, the stored BLT vector object values are set to 1.0 minus the property data
value. By default, this flag is not active. If the integrate flag is set, the BLT vector object element
values are set to the sum of all preceding property data values. This flag is also disabled by default.

If the property data type is a float pair vector, two vector objects are created in the BLT namespace,
with suffixes X and Y. For simple vector types, the vector name is used directly. It is possible to
overwrite existing BLT vectors of the same name with this command.

The return value of the command is a list of the generated name of the vector, followed by the
minimum and maximum data values in that vector object. These may the different from the
ensemble property data values because of the application of the invert or integrate flags.For float
pair vectors, the same information is repeated for the second vector object.

The command is not supported in the PyTHoN interface.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

ens verify

ens verify ehandle property

e.verify (property)

Verify the values of the specified property on the ensemble. The property data must be valid, and
of an ensemble or ensemble minor object property. If the data can be found, it is checked against all
constraints defined for the property, and, if such a function has been defined, is tested with the value
verification function of the property.

If all tests are passed, the boolean return value is boolean 1, 0 if the data could be found but fails
the tests, and an error condition otherwise.

ens weed

ens weed ehandle keywords

lence)

eywordsequ

This command performs a number of common clean-up and standardization operations on the
ensemble, which are especially useful in the context of processing PDB files. The ensemble is
potentially modified, but keeps its handle or reference, which is returned as command result. In
addition, properties A xvz and A RESIDUE, which are normally susceptible to bond manipulations,
are locked and retained.

The keywords argument selects the desired set of operations. Most of the keywords are single words,
but the minsize and maxsize as well as the minaminoacids and maxaminoacids keywords take an
additional integer number as argument. The following operations are currently supported:

* carbonless
Remove all molecules/fragments which do not contain carbon.

* disulphides
Split and hydrogenate all disulfide bridges. This operation can change the molecule and ring
set.

* duplicates
Remove all molecules/fragments which are duplicates (taking isotope labels and
stereochemistry into account) of another molecule in the ensemble. Only a single instance
of any duplicate molecule is retained. Internally, this is a check on property M _HASHISY.

* hydrogenless
Remove all molecules which do not contain hydrogen.

* inorganic
Remove all inorganic molecules.

e ligands
Remove all molecules which do not consist exclusively of linked standard amino acids. This
flag is complementary to proteins.

° maxaminoacids n
Discard all molecules from ensemble which consist only of linked standard amino acids and
contain more than the specified number of them. This operation requires an additional
integer after the keyword.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 329

CACTVS Tel and Python Scripting Language Reference

330

* maxsize n
Discard all molecules from ensemble which have more than the specified number of atoms.
This operation requires an additional integer after the keyword.

° metalatoms
Remove all metal atoms from the ensemble. This operation can change the molecule and
ring set.

* metalions
Remove all molecules which are unbonded metal atoms. Bonded metal atoms are not
affected.

* metaloxygenbonds
Remove all bonds between metal atoms and oxygen atoms. This operation can change the
molecule and ring set.

° minaminoacids n
Discard all molecules from ensemble which consist only of linked standard amino acids and
contain less than the specified number of them. This operation requires an additional integer
after the keyword

* minsize n
Discard all molecules from ensemble which have less than the specified number of atoms.
This operation requires an additional integer after the keyword.

e proteins
Discard all molecules which only consist of linked standard amino acids. This is a shortcut
for minaminoacids 0.

* proteinhetatmbonds
Discard all bonds between the protein core and heterogens, i.e. all bonds where the property
field o rRESIDUE (HETATOM) is different among the involved bond atoms. This operation can
change the molecule and ring set.

* proteinspecialbonds
Discard all special bonds (i.e. complex bonds, link bonds, etc.) where at least one atom is
from the protein, i.e. was encoded with an aToM line in a PDB file, not HETATM. This operation
can change the molecule and ring set.

* specialbonds
Delete all bonds which are not VB bonds. This operation can change the molecule and ring
set.

° water
Discard water molecules, i.e. all molecules which consist of one oxygen atom, any number
of hydrogen atoms, and no other element.

The order of the keywords is not important. The sequence of operations is always

metalatoms > specialbonds > proteinspecialbonds,proteinhetatmbonds > metaloxygenbonds >
disulphides > carbonless,hydrogenless,inorganic,maxsize,metalions, minsize,water >
maxaminoacids,minaminoacids > duplicates

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Applied operations which potentially change the set of molecules and rings trigger an automatic
re-evaluation of this data after the operation block has been executed.

Example:

The code below is part of a reliable PDB ligand extractor.

ens weed $eh {metaloxygenbonds water proteinspecialbonds duplicates minsize 10 \
maxsize 300 maxaminoacids 6 disulfides}

if {[ens get S$eh E NATOMS]==0} {

try again with additional bond cut step. Cannot do this by default, because
there are plenty of ligands with embedded amino acid parts
that are encoded as ATOM lines. PDB files suck.

molfile backspace $fh
set eh [molfile read $fh]

ens weed $eh {metaloxygenbonds water proteinspecialbonds proteinhetatmbonds \
duplicates minsize 10 maxsize 300 maxaminoacids 6 disulfides}

}

ens xhandle

ens xhandle ehandle

Return the remote handle of the ensemble if it was exported and is currently under the control of a
live-linked application. In case the ensemble is not exported, an error results.

This command is not supported in the PYTHON interface.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 331

CACTVS Tel and Python Scripting Language Reference

332

The group Command

The group command is the generic command used to manipulate groups. The syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel.

Pseudo group labels first, last and random are special values, which select the first group in the
group list, the last, or a random group.

Example:
group get Sehandle 1 G _SIZE

This is the list of officially supported subcommands:

group add

group add ehandle label object/objectlist...
g.add (?object/objectsequence?,...),

Add more atoms or groups as members to an existing group. A group cannot be added to itself, and
the formation of cyclic dependencies is illegal. It is however possible to add an atom or group more
than once to a group, and an atom or a group may be a member of an arbitrary number of groups.

Adding objects to a group triggers a groupchange property invalidation event and may thus have an
influence on the validity of chemical object data.

The use of an empty object list is possible and does not change the group, nor is an invalidation event
issued.

The object list syntax is the same as in the group create command.
The command returns the original group label or reference.

Examples:

group add $ehandle $glabel 1
group add $ehandle $glabel [list “group” [group create $ehandle [list 5 7]]]

The first sample line simply adds the atom with label 1 to the group. The second line adds a newly
created group with atoms 5 and 7 to the existing group as a recursive group element.

group append

group append ehandle label ?property value?...
g.append ({?property:value,?...})
g.append (?property,value, ?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:

group append Sehandle 1 G NAME “ linker”

group atoms

group atoms ehandle label ?filterset? ?filtermode?

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

g.atoms (?filters=?, ?mode="7?)

List the labels or references of all atoms which are in the group. There are two different modes of
operation, depending on whether the group contains at least one atom as member object.

If there is a member atom: Group member objects which are not atoms, such as bonds or recursive
groups, are omitted from output, as are atoms which are only indirectly a group member via a
recursive group.

Without atoms in the group, atoms which are components of the group objects are listed, e.g. the
atoms of bonds that are in the group.

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references.

Example:

set gh [group create $ehandle [list 1 2 3]]
group atoms $ehandle $gh carbon

gets the labels of the carbon atoms in the group.

set gh [group create $ehandle [list [list ,bond™ 1]]]
group atoms $ehandle $gh

while this command on a group which only contains bonds, but no atoms, reports the atom labels
of the bond in the group.

group bonds
group bonds ehandle label ?filterset? ?filtermode?

g.bonds (?filters=?, ?mode="?)

Retrieve the labels or references of bonds which are associated with a group. There are two different
modes of operation, depending on whether the group contains at least one bond as member object.

If there is a member bond: Group member objects which are not bonds, such as atoms or recursive
groups, are omitted from output, as are bonds which are only indirectly a group member via a
recursive group.

Otherwise, a bond is considered to be associated with a group if all atoms of the bond are group
members. All bond atoms must be in the same group object, i.e. indirect memberships via recursive
groups are ignored. Bonds are not associated with a group if only some of their atoms are members
of the group.

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references.
Example:

set gh [group create $ehandle [list 1 2 3]]
group bonds $ehandle $gh {1 doublebond triplebond}

gets the bond labels of all double and triple bonds between the group atoms.

set gh [group create $ehandle [list [list ,bond™ 1]]]
group bonds $ehandle $gh

while this command directly lists the bond in the group.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 333

CACTVS Tel and Python Scripting Language Reference

334

group create
group create ehandle objectlist...
Group (?objectref?, ...)

Group.Create (?object?ref, ...)

Group (eref, ?objectref/objectrefsequence/objectlabel?, ...)

Group.Create (eref, ?objectref/objectrefsequence/objectlabel?, ...)

Create a new group containing atoms or other minor objects, including other groups as member
elements.

The object list parameter is a list of object identifiers. An object identifier is either a single-element
simple identifier, in which case it is interpreted as an atom identifier (usually a label, but all other
identifiers are possible), or a two-element list. If the second form is used, the list must consist of an
object class name, followed by an object identifier (usually a label, but all types of minor object
identifiers are possible).

Specifying a member object which cannot be resolved produces an error. However, it is no error for
an atom or a group to be listed more than once as a member of a group, nor is there any restriction
of how many groups an atom or other minor object can be a member. However, circular relationships
are illegal, and a group cannot be a member of itself. Duplicate objects in a group are allowed and
not filtered when a group is set up.

Creating a new group triggers the group and groupchange invalidation events and may thus
influence the validity of chemical object data.

The creation of empty groups by supplying an empty object list is possible.
The return value of this function is the label of the new group.

Examples:

set gl [group create $ehandle {1 2 3}]
set g2 [group create $ehandle [list [list “group” $gl] 4 [list “atom” #5]1]

The first line creates a simple group with atoms 1, 2 and 3. The second line builds a recursive group
which contains the first group (identified as a group reference by prefixing its label with a group
object class name), the atom with label 4, and the atom with index 5 (which could have any label).

group defined

group defined ehandle label property
g.defined (property)

This command checks whether a property is defined for the group. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The ens valid command is used for this purpose.

Example:
group defined S$ehandle 1 G XYZ

checks whether group 1 is of a type for which ¢_xvz is defined.

group delete

group delete ehandle ?label?...
group delete ehandle all

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

g.delete ()

Group.Delete (eref,”all”)

Group.Delete (gref,...)

Group.Delete (eref, ?glabel/gref/grefsequence?, ...)

Delete a set of groups. Groups are either identified by a standard group identifier (usually a label),
or the reserved word all.

If a deleted group contains as a member another group, that group is also deleted in a recursive
fashion. If this behavior is not wanted, recursive groups should be explicitly unlinked from their
base groups by means of the group remove command.

Deleting a group triggers the group and groupchange invalidation events and may thus influence the
validity of chemical object data. If an empty object list is used, the command does nothing, and no
invalidation event is generated.

This command returns the number of deleted groups on the first level, i.e. recursive group deletions
are not counted.

Examples:

group delete S$ehandle all
group delete S$ehandle [ens groups S$ehandle xatom]

The first example deletes all groups in the ensemble. The second example deletes all those groups
which contain one or more hetero atoms as members.

group dget
group dget ehandle label propertylist ?filterset? P?Pparameterdict?

g.dget (property=, ?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group dget
is that the latter does not attempt computation of property data, but rather initializes the property
values to the default and return that default if the data is not yet available. For data already present,
group get and group dget are equivalent.

group dup
group dup ehandle label ?datasethandle? ?position?

g.dup (?target=?, ?position="?)

Duplicate the atoms and bonds of a group into a new ensemble. The function returns the new
ensemble handle or reference.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional target dataset
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed
(or None for PyTHON), the duplicate is not made a dataset member, even if the input ensemble is in a
dataset.

Example:

group dup $ehandle 1 [dataset create]

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 335

CACTVS Tel and Python Scripting Language Reference

duplicates the group with label one and move the new single-molecule ensemble into a newly
created dataset.

group ens
g.ens ()

PytHON-only method to get the ensemble reference from a group reference.

group exists

group exists ehandle label ?filterlist?
g.exists(?filters=?)
Group.Exists (eref,label,?filters=?)

Check whether this group exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns boolean 0 if the group does not exist, or fails the filter,
and 1 in case of successful testing.

Example:

group exists S$ehandle 99

group expr

group expr ehandle label expression
g.expr (expression)

Compute a standard SQL-style property expression for the group. This is explained in detail in the
chapter on property expressions.

group fill

group fill ehandle label ?property value?...
g.fill ({property:value,...})
g.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.
Example:

group fill $Sehandle 1 B COLOR red

sets the color of the first bond group 1 contains or is associated with to red.

group filter

group filter ehandle label filterlist
g.filter(filters)

Check whether a group passes a filter list. The return value is boolean 1 for success and O for failure.

Example:

group filter Sehandle 1 [list carbon doublebond]

336

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

checks whether the group contains one or more carbon atoms and one or more double bonds. The
double bond does not need to be with a carbon atom.

group formulamatch
group formulamatch ehandle label formula expression ?other elements?

g.formulamatch (query=, ?other elements=?)

Match the group against a formula expression. Its syntax is the same as in formula queries in
molfile scan and other scan commands.

There are several methods to specify whether any elements not mentioned in the formula expression
may or must be present. If the other elements flag is used, it has the highest priority. If may be set
to 0 (no other elements allowed), 1 (allowed) or 2 (required), and if it is set, any prefix in the formula
expression is ignored. If it is not used, a prefix in the formula expression may be used to control the
matching. Supported prefixes are = (no other elements), >= (other elements allowed) and >
(required). If no prefix is used, the default mode is an exact match without other elements.

The return value is the boolean match result.

Examples:

group formulamatch S$eh 1 >Cé6

Tests whether the group contains six carbon atoms. At least one atom which is not carbon must be
present.
group formulamatch $eh 1 C5-6(Cl+Br+I)2- 1

Tests whether the group has five or six carbon atoms, two ore more heavy halogens, and potentially
any other elements.

group get

group get ehandle label propertylist ?filterset? ?parameterdict?
g.get (property=, ?2filters=?, ?parameters=?)

g[property]

g.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
group get Sehandle 1 {G_SIZE A ELEMENT}

yields a list with two elements, consisting of the group size (count of group members) as the first

element and the element numbers of all atoms in the groups as a nested list as the second result list
element. If the information is not yet available, an attempt is made to compute it. If the computation
fails, an error results.

group get Sehandle 1 B _ORDER ringbond

gives the bond orders of all bonds of associated with the group which are ring bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the group get command are group new, group dget, group nget, group show, group
sqldget, group sqlget, group sqlnew and group sqlshow.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 337

CACTVS Tel and Python Scripting Language Reference

338

Further examples:

group get Sehandle 1 E NAME
group get Sehandle 1 A FLAGS (boxed)

group group

group group ehandle label

Group.Ref (eref, identifer)

Standard cross-referencing command to obtain the label or reference of the group as stored in
property ¢_LABEL. This is explained in more detail in the section about object cross-references. Note
that there is also a group groups (plural groups) command which has a different function.
Example:

group group S$ehandle #0

returns the label of the first group of the ensemble group list.

group groups

group groups ehandle label ?filterset? ?filtermode?

g.groups (?filters=7?, ?mode=?)

List the labels or references of all groups which are members of the group. Group member objects,
such as atoms, which are not groups are omitted, as are groups which are only indirectly a group
member via a recursive group.

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references. Note that there is also
a group group (singular group) command which has a different function.

Example:

group groups S$ehandle 1

gets the labels of the groups which are a (recursive) member of group 1.

group hdup

group hdup ehandle label ?datasethandle? ?position?
g.hdup (?target=?, ?position=?)

This command provides the same functionality as group dup, except that it also adds a standard set
of hydrogens to the new ensemble.

group index

group index ehandle label

g.index ()

Get the index of the group. The index is the position in the group list of the ensemble. The first
position is index 0.

Example:

group index $ehandle 99

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

group jget

group Jjget ehandle label propertylist ?filterset? P?Pparameterdict?

g.jget (property=,?2filters=?, ?parameters=?)

This is a variant of group get which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

group jnew

group Jjnew ehandle label propertylist ?filterset? ?parameterdict?

g.jnew (property=,?filters=?, ?parameters=?)

This is a variant of group new which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

group jshow

group jshow ehandle label propertylist ?filterset? P?parameterdict?
g.jshow (property=, ?filters=?, ?parameters=?)

This is a variant of group show which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

group local

group local ehandle label propertylist ?filterset? ?Pparameterdict?

g.local (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
group local Sehandle 1 A LABEL STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

group match

group match ehandle label ss ehandle ?ss label? ?matchflags? ?ignoreflags?
Patommatchvar? ?bondmatchvar? ?molmatchvar?

g.match (substructure=, ?substructuregroup=?, ?matchflags=?, ?ignoreflags=?,

?atommatchvariable=?, ?bondmatchvariable=?, ?molmatchvariable=?)

Check whether the selected group matches a substructure. Only the first substructure group, or the
group selected by the substructure label parameter, is tested. The substructure may be part of any
structure ensemble, and even be in the same ensemble as the primary command group. Both the
atoms in the group and the bonds between them are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,

atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels. If no match can be found, the variable is set to an empty list. In case only a bond

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 339

CACTVS Tel and Python Scripting Language Reference

340

or molecule match variable is needed, an empty string can be used to skip the unused match variable
argument positions.

Example:

set ss [ens create {clcccccl} smarts]
set g contains phenyl ring [group match $Sehandle $label S$ss]

group mols
group mols ehandle label ?filterset? ?filtermode?

g.mols (?filters=7?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the molecules the atoms
in the group are a member of. This is explained in more detail in the section about object
cross-references.

Examples:

group mols $ehandle 1
group mols $ehandle 1 heterocycle

The first example is simple retrieval, the second line filters the molecules and lists only the labels
of those molecules which contain one or more heterocycles.

group new
group new ehandle label propertylist ?filterset? ?parameterdict?

g.new (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group new
is that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

group nget
group nget ehandle label propertylist ?filterset? ?parameterdict?

g.nget (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group nget
is that the latter always returns numeric data, even if symbolic names for the values are available.

group objects
group objects ehandle label ?filterset? ?filtermode?

g.objects (?filters=7?, ?mode="?)

This is a cross-referencing command specific to groups. The standard operation of cross-referencing
commands and the use of the optional parameters are explained in the object referencing section of
this manual.

The difference of this command to the group atoms, group bonds Or group groups commands
is that this command lists all object classes present in the group. Every listed item is output as a list

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

with two elements - the first being the object class (atom, bond or group), the second being the object
label or reference. This list is suitable for use in a group create Or group add statement.

The command returns the label or reference of the new group.

Example:
group create $ehandle [group objects S$ehandle 1]

This command duplicates the group with label 1.

group pis
group pis ehandle label ?filterset? ?filtermode?

g.pis(?filters=?, ?mode="?)
Standard cross-referencing command to obtain the labels or references of the © systems the group
is associated with. This is explained in more detail in the section about object cross-references.

Examples:

group pis $ehandle 1

7 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one ¢ system and one 7 system in this representation.

group ref
Group.Ref (eref,identifier)

PytHoN only method to get a group reference. See group group command.

group remove

group remove ehandle label objectlist...

g.remove (?object/objectsequence?, ...)

Remove group items from a group. The removed objects are not deleted from the ensemble, they
simply are no longer a group member. The syntax of the object list is the same as in the group add
and group create commands. The groups the objects are removed from also remain in existence.

Removing an object from a group triggers a groupchange property invalidation event and may thus
have an influence on the validity of chemical object data.

The command returns the number of removed group elements.
Examples:

group remove S$ehandle 1 [group atoms S$ehandle 1 hydrogen]

This command removes all hydrogen atoms from group 1.

group replicate

group replicate ehandle label ?count? ?creategroups?

g.replicate (?count=?, ?creategroups="?)

Add copies of a group to the current ensemble as a new molecule/fragment. All atoms of the group
are replicated, and the bonds which are either explicitly part of the group, or, if these are not set, all

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 341

CACTVS Tel and Python Scripting Language Reference

342

bonds between the group atoms are also created in the new fragment. The default duplication count
is one.

If the creategroups boolean flag is set, the duplicated atoms are also registered as a new group.

If new groups are created, the return value is a list of the handles or references of the new groups.
If no new groups are created, the return value is the handle or reference of the argument ensemble.

group rings

group rings ehandle label ?filterset? ?filtermode?

g.rings(?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the rings the group is

associated with. This is explained in more detail in the section about object cross-references. Rings
which only partially overlap with the group are included.

Examples:

group rings $ehandle 1
group rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the group overlaps with. If the group does not overlap
with any ring, an empty list is returned. Only labels of rings in the SSSR or ESSSR set are returned,
even if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

group ringsystems
group ringsystems ehandle label ?filterset? ?filtermode?

g.ringsystems (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the ring systems the group
is associated with. This is explained in more detail in the section about object cross-references. Ring
system which only partially overlap with the selected group are listed.

Examples:
group ringsystems $ehandle 1

group ringsystems $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all ring systems the group is associated with. If the group does
not overlap with any ringsystem, an empty list is returned. The second example filters the ring
systems - a ring system label is added to the output list only if that ring system contains one or more
hetero aromats.

group set

group set ehandle label ?property value?...

.set (?property,value?,...)

g

g.set ({property:value,...})
g.property = value
glproperty] = value

Standard data manipulation command for setting property data. It is explained in more detail in the
section about setting property data.

The command returns the first data value.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Example:
group set Sehandle 1 G _CONSTRAINT [list “distance” [list 3.0 4.0]]

group show

group show ehandle label propertylist ?filterset? ?parameterdict?

g.show (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group show is
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, group get and group show are equivalent.

group sigmas

group sigmas ehandle label ?filterset? ?filtermode?

g.sigmas (?filters=7?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the o systems the group
is associated with. This is explained in more detail in the section about object cross-references. An
association is assumed if any atoms of the ¢ system is a group member. Recursive groups are not
searched.

Examples:

group sigmas S$ehandle 1

o systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond

in multiple bonds. A simple double bond is described with one ¢ system and one 7 system in this
representation.

group sqldget

group sqgldget ehandle label propertylist ?filterset? ?parameterdict?

g.sgldget (property=, ?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The differences between group get and group
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

group sqlget

group sqglget ehandle label propertylist ?filterset? ?Pparameterdict?
g.sqglget (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 343

CACTVS Tel and Python Scripting Language Reference

344

For examples, see the group get command. The difference between group get and group sqlget
is that the SQL command variant formats the data as SQL values rather than for TcL or PyTHON script
processing.

group sqlnew

group sqglnew ehandle label propertylist ?filterset? Pparameterdict?

g.sglnew (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The differences between group get and group
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TcL or PYTHON script processing.

group sqlshow

group sqglshow ehandle label propertylist ?filterset? ?parameterdict?

g.sglshow (property=,?filters=?, ?parameters=?)
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The differences between group get and group
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TcL or PYTHON script processing.

group subcommands

group subcommands

dir (Group)

Lists all subcommands of the group command. Note that this command does not require an
ensemble handle, or a group label.

group surfaces

group surfaces ehandle label ?filterset? ?filtermode?

g.surfaces (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of surface patches the group
is associated with. This is explained in more detail in the section about object cross-references.
Example:

group surfaces $ehandle $label

Note that surface patches do not need to be associated with an atom, and if they are not, they are
implicitly not associated with any group.

group xbonds

group xbonds ehandle label ?filterset? ?filtermode?

g.xbonds (?filters=7?, ?mode=?)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Retrieve the labels or references of bonds which cross from the group atoms to atoms which are not
in the group. This corresponds to the MDL SDFILE “M sBL” field, except when the group type is a data
group, or a type not covered by the SDF encoding. This reference command always re-computes
these bonds from the group atoms. The original bond set when reading an SGRoup SDF is stored in
property G_xBoNDS or G_BONDS (for data groups).

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references.

Example:

set gh [group create $ehandle [list 1 2 3]]
group xbonds $ehandle $gh

gets the bond labels of all crossing bonds.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 345

CACTVS Tel and Python Scripting Language Reference

346

The hierarchy Command

Hierarchy objects are multi-level ordered trees which store major objects (ensembles, reactions,
datasets, tables, networks, biologics) in their leave nodes and contain one or more levels of hierarchy
nodes which organize the object content and may themselves possess property data. Hierarchy
nodes may contain, in addition to the leaf objects, other hierarchy nodes.

Hierarchy objects are major objects. Associated properties start with a H prefix.

hierarchy add

hierarchy add hhandle ?handle?...
h.add (?handle/ref?,...)

Add objects to a hierarchy. The handles can be ensembles, reactions, datasets, tables, networks,
biologics or hierarchies. If an added object is a hierarchy, it is added as a subtree. The new objects
are added at the end of the current object set in the hierarchy. It is possible to use this command to
change the position of an object within a hierarchy, or to transfer it from a different hierarchy.

In addition to recognized handles, the arguments may also be identifiable reaction or structure line
encodings, such as SMILES or REACTION SMILES strings. These objects are decoded with standard
options, get their own handles, and immediately added to the hierarchy.

The command returns the hierarchy handle or reference.

hierarchy append

hierarchy append hhandle ?property value?...
h.append ({?property:value,?...})
h.append (?property,value, ?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

hierarchy assign

hierarchy assign hhandle srcproperty dstproperty
h.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same hierarchy. Both properties must be associated
with the hierarchy object class. This process is more efficient than going through a pair of
hierarchy get/hierarchy set commands, because in most cases no string or TCL/PYTHON script
object representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant hierarchy rename directly
exchanges the property name without any data duplication or conversion, if that is possible. In any
case, the original property data is no longer present after the execution of this command variant.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The command returns the object handle for TcL, or object reference for PyTHON.

If the object class of the assigned property is not hierarchy, the command executes recursively on
all hierarchy objects.

Examples:

hierarchy assign Shh H IDENT H NAME
hierarchy assign Shh E IDENT E_NAME

hierarchy biologics
hierarchy biologics hhandle ?filterlist? ?recursive?

h.biologics (?filters=?, ?recursive=?)

Return a list of the handles or references of all biologics objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level 5_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy biologics $hhandle

hierarchy create

hierarchy create ?handle?...
Hierarchy (?handle/ref?,...)

Hierarchy.Create (?handle/ref?,...)
Create a new hierarchy object with an initial set of embedded objects.

The arguments may be handles of structure ensembles, reactions, datasets, networks, tables, or
hierarchies themselves.

In addition to recognized handles, the arguments may also be identifiable reaction or structure line
encodings, such as SMILES or REACTION SMILES strings. These objects are decoded with standard
options, get their own handles, and immediately added to the hierarchy.

The command returns the handle or reference of the newly created hierarchy object.

hierarchy dataset

hierarchy dataset hhandle ?filterlist?

h.dataset (?filters="?)

Return the dataset handle or reference of the dataset the hierarchy is a member of. It the hierarchy
is not member of a dataset, or does not pass all of the optional filters, an empty string or None for
PYTHON is returned.

This command is not the same as hierarchy datasets.

Example:
hierarchy dataset Shhandle

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 347

CACTVS Tel and Python Scripting Language Reference

348

hierarchy datasets

hierarchy datasets hhandle ?filterlist? Precursive?

h.biologics (?filters=?, ?recursive=?)

Return a list of the handles or references of all dataset objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

This is not the same as the hierarchy dataset command.

Example:

hierarchy datasets $hhandle

hierarchy defined

hierarchy defined hhandle property
h.defined (property)

This command checks whether a property is defined for the hierarchy. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The hierarchy valid command is used for this purpose.

hierarchy delete

hierarchy delete ?hhandle/hhandlelist/all?...
h.delete ()
Hierarch

Hierarch

Delete (“all”)

v.
y.Delete (?href/hrefsequence/hhandle?, ...)

Delete hierarchy objects. The special parameter a/l may be used to delete all hierarchies currently

registered in the application. Alternatively, any number of hierarchy handles may be specified for
specific object deletions.

The command returns the number of deleted hierarchies.

Example:

hierarchy delete all
hierarchy delete $hhandle

hierarchy dget

hierarchy dget hhandle propertylist ?filterset? ?parameterdict?

h.dget (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The difference between hierarchy get and
hierarchy dget is that the latter does not attempt computation of property data, but rather
initializes the property values to the default and return that default if the data is not yet available.
For data already present, hierarchy get and hierarchy dget are equivalent.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

hierarchy dup
hierarchy dup hhandle ?dataset? ?position?

h.dup (?target=7?, ?position=7?)

Duplicate a hierarchy with all objects in them and all attached data on the hierarchy object proper
and its contained objects.

The duplicate hierarchy is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (or None for PyTHON) places the duplicate outside
any dataset, regardless of the dataset membership of the source hierarchy.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the hierarchy
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the hierarchy is appended.

Example:
hierarchy dup $hhandle

The command returns a new hierarchy handle or reference.

hierarchy ens
hierarchy ens hhandle ?filterlist? ?recursive?

h.ens(?filters=7?, ?recursive=?)

Return a list of the handles or references of all structure ensemble objects in the hierarchy node
which additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy ens $hhandle

hierarchy exists

hierarchy exists hhandle ?filterlist?
h.exists (?filters=?)

Hierarchy.Exists (href, ?filters=?)

Check whether a hierarchy handle or reference is valid. The command returns boolean 0 or 1.
Optionally, the hierarchy may be filtered by a standard filter list, and if it does not pass the filter, it
is reported as not valid.

Example:

hierarchy exists $hhandle

hierarchy expr

hierarchy expr hhandle expression

h.expr (expression)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 349

CACTVS Tel and Python Scripting Language Reference

350

Compute a standard sQL-style property expression for the hierarchy. This is explained in detail in
the chapter on property expressions.

hierarchy fill

hierarchy fill hhandle ?property value?...

h.fill ({?property:value,...})

h.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

hierarchy filter
hierarchy filter hhandle filterlist
h.filter(filters=)

Check whether the hierarchy passes a filter list. The return value is boolean 1 for success and 0 for
failure.

hierarchy get

hierarchy get hhandle propertylist ?filterset? Pparameterdict?
hierarchy get hhandle attribute

h.get (property=,?filters=?, ?parameters="?)

h.get (attribute)

h[propert ttribute]

“y/at
h.property/attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
hierarchy get S$hhandle {H IDENT H NAME}

yields the ID and name of the hierarchy as a list. If the information is not available, an attempt is
made to compute it. If the computation fails, an error results.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the hierarchy get command are hierarchy new, hierarchy dget, hierarchy
jget, hierarchy jnew, hierarchy jshow, hierarchy nget, hierarchy show, hierarchy
sqldget, hierarchy sqlget, hierarchy sqlnew, and hierarchy sqlshow.

In addition to property data, a hierarchy object possesses a few attributes, which can be retrieved
with the gef command (but not by its related sister subcommands like dget, sqlget, etc.). Some of
them are also modifiable via hierarchy set.These attributes are:

* coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* deletable
Flag indicating whether the object can be deleted with a standard hierarchy delete
command. This attribute is read-only. Objects which are, for example, property data values
cannot be deleted by standard means.

° failures
If the property computation failure cache is active, return a list of all properties which have
failed computation for this object after the last structural change. This attribute is read-only.

* footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

* gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

* header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

* hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

* incomplete
Boolean status flag indicating an aborted input operation during the read of the object from
file, which returned the structure intact but without the complete set of associated data. An
aborted input may be either be the result of an explicitly set input control flag, or by
encountering property data which could not be decoded. This attribute is read-only.

* invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

* javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

* modcount
Object data modification count. This attribute is read-only.

* mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

° pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

° pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of

the Python wrapper class instance, if it exists. This attribute is read-only.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 351

CACTVS Tel and Python Scripting Language Reference

352

* refcount
If the TcL interpreter is using native CAcTvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TcL object references active for this object. This attribute is read-only.

* scoped
A boolean object visibility control flag. If set, and global control flag
: :cactvs (object_scope) is also set, the object is visible only in theTcL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

o selected
Flag indicating whether the object is selected. This attribute can be changed.

* tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

° uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

° X
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

c Yy
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

hierarchy getparam
hierarchy getparam hhandle property ?key? ?default?

h.getparam(property=, ?key=7?, ?2default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PyTHoN). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

hierarchy hdup

hierarchy hdup hhandle ?dataset? ?position?
h.hdup (?target=?, ?position="?)

Duplicate a hierarchy with all objects in them and all attached data on the hierarchy object proper
and its contained objects. Additionally, hydrogen addition is performed on all objects which support
this operation.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The duplicate hierarchy is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (or None for PYTHON) places the duplicate outside
any dataset, regardless of the dataset membership of the source hierarchy.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the hierarchy
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the hierarchy is appended.

Example:
hierarchy hdup $hhandle

The command returns a new hierarchy handle or reference.

hierarchy hierarchies

hierarchy hierarchies hhandle ?filterlist? ?recursive?

h.hierarchies (?filters=?, ?recursive="?
14

Return a list of the handles or references of all hierarchy objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

This command is not the same as the hierarchy hierarchy command.

Example:

hierarchy hierachies $hhandle

hierarchy hierarchy

hierarchy hierarchy hhandle ?filterlist? ?root?

h.hierarchy (?filters=?, ?root=?)

Return the hierarchy handle or reference of the hierarchy the command object is part of. If the
command object is the root node, or does not pass all of the optional filters, an empty string or None
for PyTHoN is returned. By default, the hierarchy object which directly contains the command object
isreturned. Ifthe root flag is set, the root hierarchy object is reported instead, which is the same only
if the hierarchy has only a single level.

This is not the same as the hierarchy hierarchies command.

Example:

hierarchy hierarchy $hhandle

hierarchy index

hierarchy index hhandle

h.index ()

Get the position of the hierarchy in the object list of its dataset. If the object is not member of a
dataset, -1 is returned.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 353

CACTVS Tel and Python Scripting Language Reference

354

hierarchy jget
hierarchy jget hhandle propertylist ?filterset? Pparameterdict?

h.jget (property=,?filters=?, ?parameters="?)

This is a variant of hierarchy get which returns the result data as a JSON formatted string instead
of TcL or PyTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

hierarchy jnew

hierarchy jnew hhandle propertylist ?filterset? ?parameterdict?

h.jnew (property=,?2filters=?, ?parameters=?)

This is a variant of hierarchy new which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

hierarchy jshow
hierarchy jshow hhandle propertylist ?filterset? ?parameterdict?

h.jshow (property=,?filters=?, ?parameters=?)

This is a variant of hierarchy show which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

hierarchy list

hierarchy list ?filterlist?

Hierarchy.List (?filters=?)

This command returns a list of the hierarchy handles currently registered in the application. This list
may optionally be filtered by a standard filter list.

hierarchy lock

hierarchy lock hhandle propertylist/hierarchy/all ?compute?
h.lock (property=, ?compute=?)

Lock property data of the hierarchy object, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the hierarchy which would invalidate the information. Property data remains
locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

* Property names
Valid property instances on the hierarchy object are locked. If the boolean compute flag is
set, an attempt is made to compute the property if it is not yet present. Otherwise, a request
to lock non-existent data is silently ignored. It is not possible to lock individual property
fields.

o all
All valid hierarchy properties are locked. The compute flag is ignored.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* hierarchy
This is an object class identifier. All property data which is controlled by the hierarchy major
object and attached to the specified object class is locked. Since hierarchies do not contain
minor objects, this identifier is equivalent to all.

The lock can be released by a hierarchy unlock command.

The return value is the original hierarchy handle or reference.

hierarchy max

hierarchy max hhandle propertylist ?filterset?

h.max (property=,?2filters=?)

Get the maximum value of one or more properties in from the elements in the hierarchy. The
property argument may be any property attached to hierarchy members, or minor objects thereof. If
the filterset argument is specified, the maximum value is searched only for objects which pass the
filter set.

hierarchy metadata

hierarchy metadata hhandle property ?field ?value??

h.metadata (property=, ?field=?, ?value="?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands hierarchy setparam and
hierarchy getparam can be used for convenient manipulation of specific keys in the computation
parameter field. Metadata can only be read from or set on valid property data.

hierarchy min

hierarchy min hhandle propertylist ?filterset?

h.min (property=,?filters="?)

Get the minimum value of one or more properties in from the elements in the hierarchy. The property
argument may be any property attached to hierarchy members, or minor objects thereof. If the
filterset argument is specified, the maximum value is searched only for objects which pass the filter
set.

hierarchy move

hierarchy move hhandle ?datasethandle|remotehandle? ?position?

h.move (?target=?, ?position=?)

Make the hierarchy a member of a dataset, or remove it from a dataset. If the dataset handle or
reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed from
its current dataset. The dataset handle or reference may be the name of a remote dataset for moving
objects over a network connection.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 355

CACTVS Tel and Python Scripting Language Reference

dataset objects minus one, the hierarchy is appended as per the default. It is legal to use this
command for moving objects within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset. Using this mode with remote datasets is currently not supported.

By default, datasets do not accept hierarchies as objects. This must be explicitly enabled by
modifying the acceptance bits, as for example in

dataset append $dhandle accepts hierarchy
The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TcL) or None (PYTHON) if it was not member of a
dataset.

hierarchy mutex

hierarchy mutex hhandle mode

h.mutex (mode)

Manipulate the object mutex. During the execution of a script command, the mutex of the major
object(s) associated with the command are automatically locked and unlocked, so that the operation
of the command is thread-safe. This applies to builds that support multi-threading, either by
allowing multiple parallel script interpreters in separate threads or by supporting helper threads for
the acceleration of command execution or background information processing.

This command locks major objects for a period of time that exceeds a single command. A lock on
the object can only be released from the same interpreter thread that set the lock. Any other threaded
interpreters, or auxiliary threads, block until a mutex release command has been executed when
accessing a locked command object. This command supports the following modes:

* lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

* reset
Release all persistent locks on the object, if they exist.

° fest
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

* unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

356 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

hierarchy need

hierarchy need hhandle propertylist ?mode? ?parameterdict?

h.need (property=, ?mode=?, ?parameters="?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original hierarchy handle or reference.

hierarchy networks

hierarchy networks hhandle ?filterlist? ?recursive?

h.networks (?filters=?, ?recursive=?)

Return a list of the handles or references of all network objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy networks $hhandle

hierarchy new

hierarchy new hhandle propertylist ?filterset? P?parameterdict?
h.new (property=, ?mode=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

hierarchy nget

hierarchy nget hhandle propertylist ?filterset? Pparameterdict?
h.nget (property=, ?mode=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy nget is that the latter always returns numeric data, even if symbolic names for the values
are available.

hierarchy nnew

hierarchy nnew hhandle propertylist ?filterset? ?parameterdict?
h.nnew (property=,?2filters=?, ?parameters="?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 357

CACTVS Tel and Python Scripting Language Reference

358

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy nnew is that the latter always returns numeric data, even if symbolic names for the
values are available, and that property data re-computation is enforced.

hierarchy objects

hierarchy objects hhandle ?filterlist? ?Precursive?

h.objects (?filters=?, ?recursive=?)

Return a list of the handles or references of all objects in the hierarchy node which pass the filter
set, if one is specified. Lower hierarchy node objects are not listed.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy objects S$hhandle

hierarchy pack

hierarchy pack hhandle ?maxsize? ?requestprops? ?suppressedprops?
?compressionlib?

h.pack (?maxsize=?, ?requestprops=?, ?suppressedprops=?, ?compressionlib=?)

Pack the hierarchy object into a base64-encoded compressed serialized object string. This string
does not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. The objects in the hierarchy and their property data are part of the dump. Further object
relationships, such as datasets the object might be a member in are not saved.

The maximum size of the object string (default -1, meaning unlimited size) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The other optional property parameter lists allow to request a specific property set to be part of the
package, even if it normally would not be included, and to explicitly omit properties from the dump.
No property computation is performed, and suppressed properties are not purged from the hierarchy.

Hierarchies can be restored from a packed object string by the hierarchy unpack command.
The hierarchy object and its contained objects remain in existence after using this command.

The default compression library is z/ib. Other useful variants include /zo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

In PyTHON, hierarchy objects support the standard pickle/unpickle protocol.

Example:

set dbstring [hierarchy pack $hhandle]

hierarchy properties
hierarchy properties hhandle ?pattern? ?noempty?

h.properties (?pattern=?, ?noempty=2)

Generate a list of the names of all properties attached to the hierarchy object. Optionally, the list may
be filtered by a string match pattern.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The command may be abbreviated to props instead of the full name properties.

hierarchy purge
hierarchy purge hhandle propertylist/hierarchy/specialname ?emptyonly?

h.purge (properties=, ?emptyonly?)

Delete property data from the hierarchy. If a property marked for deletion is not present on an object,
it is silently ignored. If the hierarchy is not a dataset member, a request for the deletion of dataset
properties is also ignored.

If the object class name hierarchy is used instead of a specific property name, all hierarchy property
data (5_ prefix) is deleted from the object.

The optional boolean flag emptyonly can be used to restrict the deletion to those properties where
all the values for a property associated with a major object (such as on all atoms in an ensemble for
atom properties, or just the single ensemble property value for ensemble properties) are set to the
default property value.

The return value is the original object handle or reference.

hierarchy reactions
hierarchy reactions hhandle ?filterlist? ?recursive?

h.reactions (?filters=?, ?recursive=?)

Return a list of the handles or references of all reaction objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy reactions $hhandle

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 359

CACTVS Tel and Python Scripting Language Reference

hierarchy ref
Hierarchy.Ref (identifier)

PyTHON only method to get a hierarchy reference from a handle or another identifier. For hierarchies,
other recognized identifiers are hierarchy references, integers encoding the numeric part of the
handle string, or the vuib of the hierarchy object.

hierarchy remove

hierarchy remove hhandle ?objhandle?...
h.remove (?oref/ohandle?, ...)

Remove objects from the hierarchy. The object arguments must be a member of the command
hierarchy object.

The command returns the original handle or reference.

hierarchy rename

hierarchy rename hhandle srcproperty dstproperty
h.rename (srcproperty=,dstproperty=)

This is a variant of the hierarchy assign command. Please refer the command description in that
paragraph.

hierarchy set

hierarchy set hhandle ?property value?...
h.set (property,value, ...)

h.set ({property:value,...})

h.property = value

h[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

hierarchy setparam

hierarchy setparam hhandle property ?key value?...
hierarchy setparam hhandle property dictionary
h.setparam(property, ?key,value?...)
h.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

The return value is the updated property computation parameter dictionary.

hierarchy show

hierarchy show hhandle propertylist ?filterset? Pparameterdict?
h.show (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

360

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, hierarchy get and hierarchy show
are equivalent.

hierarchy sqldget

hierarchy sqgldget hhandle propertylist ?filterset? ?Pparameterdict?

h.sgldget (property=, ?mode=7?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The differences between hierarchy get and
hiedrarchy sqldget are that the latter does not attempt computation of property data, but
initializes the property value to the default and returns that default, if the data is not present and
valid; and that the SQL command variant formats the data as SQL values rather than for TcL or PYTHON
script processing.

hierarchy sqlget
hierarchy sglget hhandle propertylist ?filterset? ?parameterdict?

h.sgldget (property=, ?mode=7?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy sqlget is that the SQL command variant formats the data as SQL values rather than for
TcL or PYTHON script processing.

hierarchy sqlnew
hierarchy sqglnew hhandle propertylist ?filterset? ?parameterdict?

h.sglnew (property=, ?mode=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The differences between hierarchy get and
hierarchy sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

hierarchy sqlshow

hierarchy sqglshow hhandle propertylist ?filterset? ?parameterdict?

h.sglshow (property=, ?mode=7?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The differences between hierarchy get and
hierarchy sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TcL or PYTHON script processing.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 361

CACTVS Tel and Python Scripting Language Reference

362

hierarchy subcommands

hierarchy subcommands

dir (Hierarchy)

Lists all subcommands of the hierarchy command. Note that this command does not require a
hierarchy handle.

hierarchy tables

hierarchy tables hhandle ?filterlist? ?Precursive?

h.tables (?filters=?, ?recursive=?)

Return a list of the handles or references of all table objects in the hierarchy node which additionally
pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level E_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy tables $hhandle

hierarchy transfer

hierarchy transfer hhandle propertylist ?targethandle? ?targetpropertylist?
h.transfer (properties=, ?target=?, ?targetproperties="?)

Copy property data from one hierarchy to another hierarchy or other major object, without going
through an intermediate scripting language object representation, or dissociate property data from
the hierarchy. If a property in the argument property list is not already valid on the source reaction,
an attempt is made to compute it.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple hierarchy get, i.c. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only
unlinked from the source object, but not destroyed. This means that the object handles returned by
the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

hierarchy unlock

hierarchy unlock hhandle propertylist/hierarchy/all
h.unlock (property=)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Unlock property data for the reaction, meaning that they are again under the control of the standard
data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

* Property names or references
Valid property instances on the hierarchy are unlocked. Non-existent data is silently
ignored. It is not possible to unlock individual property fields.

° all
All valid hierarchy properties are unlocked.

* hierarchy
This is an object class identifier. All property data which is controlled by the hierarchy major
object and attached to the specified object class is unlocked. Since hierarchies do not contain
minor objects, this identifier is equivalent to a/l.

Property data locks are obtained by the hierarchy lock command.

The return value is the original hierarchy handle or reference.

hierarchy unpack
hierarchy unpack packstring ?compressionlib?

Hierarchy.Unpack (data=, ?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by a hierarchy pack
command. The return value of this function is the handle or reference of the newly created hierarchy
object, which is an exact duplicate of the packed original hierarchy.

The default compression library is z/ib. For more options, see reaction pack.

Example:
set packdata [hierarchy pack [hierarchy create C=0>>CO]]
set hhandle [hierarchy unpack $packdata]

hierarchy valid
hierarchy valid hhandle propertylist

h.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the hierarchy. No attempt at computation is made. For PyTHoN, where single-item lists are
syntactically not the same as a single value, the return value is a single boolean if the argument was
a string or a property reference, and only a single property was decoded.

hierarchy has is an alias to this command.

hierarchy verify

hierarchy verify hhandle property
h.verify (property)

Verify the values of the specified property on the hierarchy. The property data must be valid, and a
hierarchy property. If the data can be found, it is checked against all constraints defined for the

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 363

CACTVS Tel and Python Scripting Language Reference

property, and, if such a function has been defined, is tested with the value verification function of
the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.

364 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The majorobj Command

This command provides simple, generic versions of some commonly used major objects
(ensembles, reactions, datasets, molfiles, tables, networks) commands. The difference to the
object-specific commands is that any major object handle is accepted as object identifier, not just
the type of handle associated with the associated specialized object command. Specialized object
commands generally implement more powerful commands with additional, usually class-specific
options. This command is generally used when different types of objects (such as ensembles and
reactions) share a common simple processing path and code duplication for each type of object
would be tedious.

It is not possible to create generic major objects without specialization - this is an abstraction.

majorobj delete

majorobj delete ?handle?...

Majorobij.Delete (?mrefsequence/mref/handle?, ...)

Delete major objects.
The command returns the number of deleted objects.

Example:

majorobj delete $ehandle $xhandle

majorobj dget
majorob] dget handle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj dget is that the latter does not attempt computation of property data, but rather initializes
the property values to the default and return that default if the data is not yet available. For data
already present, majorobj get and majorobj dget are equivalent.

A PyTHON implementation would not be useful because every major object has a dget () method,
which can be invoked without exact knowledge of the object class.

majorobj dup
majorob] dup handle ?dataset? ?position?

Duplicate a major object.

The duplicate object is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument places the duplicate outside any dataset, regardless
of the dataset membership of the source object.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the object is
inserted at the given position, starting with 0. If the requested position is larger than the current size
of the dataset, the object is appended.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 365

CACTVS Tel and Python Scripting Language Reference

366

A PyTHON implementation would not be useful because every major object has a dup () method,
which can be invoked without exact knowledge of the object class.

Example:

majorobj dup S$handle

The command returns a new object handle or reference.

majorobj exists
majorob] exists handle ?filterlist?

Check whether a handle is valid. The command returns boolean 0 or 1. Optionally, the object may
be filtered by a standard filter list, and if it does not pass the filter, it is reported as not valid.

A PYTHON implementation would not be useful because every major object has a exists () method,
which can be invoked without exact knowledge of the object class.

Example:

majorobj exists S$handle

majorobj get

majorobj get handle propertylist ?filterset? ?parameterdict?
majorobj get handle attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the majorobj get command are majorobj new, majorobj dget, majorobj jget,
majorobj jnew, majorobj jshow, majorobj nget, majorobj show, majorobj sqgldget,
majorobj sqlget, majorobj sqlnew, and majorobj sqlshow.

In addition to property data, all major objects possess a few common attributes, which can be
retrieved with the get command (but not by its related sister subcommands like dget, sqlget,
etc.). Object-specific attributes can only be retrieved via the object-specific access commands. The
common attributes are:

* coords
If the toolkit was compiled with factory support, these are the coordinates of the object on
its workbench, encoded as integer pair.

* deletable
Flag indicating whether the object can be deleted with a standard majorobj delete
command. This attribute is read-only. Object which are, for example, property data values
or a part of amolfile loop command cannot be deleted by standard means.

* failures
A list of properties for which computation failed on this object. This is a read-only attribute.
Depending on configuration settings, this information may be used to block pointless
attempts at re-computation of incomputable data.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench.

* gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

° handle
The handle of the object, always reported as a string.

* header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench.

* hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections.

* invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering referring pointers.

* javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

* modcount
Object modification count.

° mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

* pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists.

° pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists.

* refcount
If the TcL interpreter is using native CAcTvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TcL object references active for this object.

° reference
The handle of the object, reported as TcL object reference object if the TcL interpreter is
configured to use these.

* scoped
A boolean object visibility control flag. If set, and global control flag
: :cactvs (object_scope) is also set, the network object is visible only in theTcL
interpreter which set the scope flag and thus claimed it. Object list commands executed in
other interpreters omit this object, and attempts to decode its handle in other interpreters will
fail. The most common use of this feature is the hiding of persistent chemistry objects in
scripted property computation functions.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 367

CACTVS Tel and Python Scripting Language Reference

368

o selected
Flag indicating whether the object is selected.

* tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench.

° uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

° X
If the toolkit was compiled with factory support, this is the x coordinate of the object on its
workbench.

°y
f the toolkit was compiled with factory support, this is the y coordinate of the object on its
workbench.

A PYTHON implementation would not be useful because every major object has a get () method,
which can be invoked without exact knowledge of the object class.

majorobj hadd

majorobj hadd handle

Add a standard set of hydrogens to the object, if applicable (ensembles, reaction, datasets). The
command returns the total number of hydrogens added. This command version has less options than
the class-specific variants.

A PyTHON implementation would not be useful because all applicable major objects have a hadd ()
method, which can be invoked without exact knowledge of the object class.

majorobj hdup
majorobj hdup handle ?dataset? ?position?

This command is the same as majorobj dup, except that a full set of hydrogens is added to the
duplicated objects if applicable (ensembles, reactions, datasets).

A PyTHON implementation would not be useful because all applicable major objects have a hdup ()
method, which can be invoked without exact knowledge of the object class.

majorobj hstrip
majorobj hstrip handle ?flags?

This command removes hydrogens from all applicable objects (ensembles, reactions, datasets). By
default, all hydrogen atoms on the object are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* deprotonate
If this flag is set, a single proton is removed from the first suitable atom. This command
variant triggers a standard atom and bond change property invalidation event, and it always
ends processing after removing the first proton. Proton removal decreases the charge of the
atom by one. In the reaction command variant, this flag is rarely useful - it is supported for
compatibility with the atom hstrip command

* keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

* keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).
* keeporiginal
Hydrogen atoms which were not automatically added via a hadd command are retained.

Note that hydrogen addition commands can be run in a mode which does not leave
information about automatic addition - hydrogens added this way will also survive.

* keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

* keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

° keepwedge
keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.
* normalize
Normalize the wedge pattern for standard cases, removing wedges from hydrogens if the

result is still stereochemically defined. Hydrogens which lose their wedge in this process are
no longer protected by the keepwedge flag.

° wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

The return value is the total number of hydrogens deleted.

A PYTHON implementation would not be useful because all applicable major objects have ahstrip ()
method, which can be invoked without exact knowledge of the object class.

majorobj jget

majorobj jget handle propertylist ?filterset? ?parameterdict?

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 369

CACTVS Tel and Python Scripting Language Reference

370

This is a variant of majorobj get which returns the result data as a JSON formatted string instead
of TcL or PyTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

A PyTHON implementation would not be useful because every major object has a jget () method,
which can be invoked without exact knowledge of the object class.

majorobj jnew
majorobj jnew handle propertylist ?filterset? ?Pparameterdict?

This is a variant of majorobj new which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

A PyTHON implementation would not be useful because every major object has a jnew () method,
which can be invoked without exact knowledge of the object class.

majorobj jshow
majorobj jshow handle propertylist ?filterset? ?Pparameterdict?

This is a variant of majorobj show which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

A PyTHON implementation would not be useful because every major object has a jshow () method,
which can be invoked without exact knowledge of the object class.

majorobj Idup
majorobj ldup ?handlelist?...

Majorobj.ldup (?mref/mrefsequence/handle?, .. .)

Duplicate all objects in the handle list(s) in default mode.

The return value is a single list (even if multiple source lists are used) of the duplicated object
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string (or None) element at its position,
without raising an error.

majorobj lhdup

majorobj lhdup ?handlelist?...

Majorobj.lhdup (?mref/mrefsequence/handle?, ...)
Duplicate all objects in the handle list(s) in default mode, and add hydrogens if applicable
(ensembles, reactions, datasets).

The return value is a single list (even if multiple source lists are used) of the duplicated object
handles. If an argument list element is an empty string (or None for PYTHON), it indicates a missing
object, and the output list also receives an empty string (or None) element at its position, without
raising an error.

majorobj new

majorobj new handle propertylist ?filterset? ?parameterdict?

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

A PYTHON implementation would not be useful because every major object has a new () method,
which can be invoked without exact knowledge of the object class.

majorobj nget
majorobj nget handle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj nget is that the latter always returns numeric data, even if symbolic names for the values
are available.

A PYTHON implementation would not be useful because every major object has a nget () method,
which can be invoked without exact knowledge of the object class.

majorobj nnew
majorobj nget handle propertylist ?filterset? ?Pparameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj nget is that the latter always returns numeric data, even if symbolic names for the values
are available.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj nnew is that the latter always returns numeric data, even if symbolic names for the values
are available, and that property data re-computation is enforced.

A PyTHON implementation would not be useful because every major object has a nnew () method,
which can be invoked without exact knowledge of the object class.

majorobj show

majorobj show handle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobnj get and
majorobj show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, majorobj get and majorobj show
are equivalent.

A PyTHON implementation would not be useful because every major object has a show () method,
which can be invoked without exact knowledge of the object class.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 371

CACTVS Tel and Python Scripting Language Reference

372

majorobj sqldget
majorobj sgldget nhandle propertylist ?filterset? Pparameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The differences between majorobj get and
majorobj sqldget are that the latter does not attempt computation of property data, but initializes
the property value to the default and returns that default, if the data is not present and valid; and that
the SQL command variant formats the data as SQL values rather than for TcL or PyTHON script
processing.

A PyTHON implementation would not be useful because every major object has a sqldget () method,
which can be invoked without exact knowledge of the object class.

majorobj sqlget
majorob]j sglget nhandle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj sqglget is that the SQL command variant formats the data as SQL values rather than for
TcL or PYTHON script processing.

A PyTHON implementation would not be useful because every major object has a sqlget () method,
which can be invoked without exact knowledge of the object class.

majorobj sqlnew
majorobj sglnew nhandle propertylist ?filterset? ?Pparameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The differences between majorobj get and
majorobj sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TcL or PYTHON script processing.

A PyTHON implementation would not be useful because every major object has a sqlnew () method,
which can be invoked without exact knowledge of the object class.

majorobj sqlshow
majorob]j sglshow nhandle propertylist ?filterset? Pparameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The differences between majorobj get and
majorobj sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TcL or PYTHON script processing.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

A PyTHON implementation would not be useful because every major object has a sqlshow () method,
which can be invoked without exact knowledge of the object class.

majorobj subcommands

majorobj subcommands

dir (Majorobj)
List all currently implemented subcommands of this command.
The PyTHON version is somewhat misleading, because it also lists methods which are implemented

in a generic fashion for all major objects and then inherited by specialized classes.

majorobj valid
majorobj valid handle propertylist

Returns a list of boolean values indicating whether values for the named properties are currently set
for the object. No attempt at computation is made.

majorobj has is an alias to this command.

A PyTHON implementation would not be useful because every major object has a valid () method,
which can be invoked without exact knowledge of the object class.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 373

CACTVS Tel and Python Scripting Language Reference

374

The mol Command

The mo1 command is the generic command used to manipulate molecules. The syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel.

The mol command supports, in addition to the normal label decoding process, the magic value
primary as molecule label. The primary molecule is determined, in this order, by the maximum
value of properties M HEAVY ATOM COUNT, M NATOMS and M HASHISY. When there is more than one
molecule where all properties are top-rated, the first molecule of these in the molecule list is chosen.
An empty ensemble has no primary molecule. The pseudo molecule labels first, last and random are
additional special values, which select the first molecule in the molecule list, the last, or a random
molecule.

Examples:

mol get Sehandle 1 M WEIGHT

mol delete $ehandle 2

mol dup $ehandle primary

set pmol label [mol mol $ehandle primary]

This is the list of officially supported subcommands:

mol append

mol append ehandle label ?property value?...
m.append ({?property:value,?...})
m.append (?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
mol append S$Sehandle 1 M NAME “ linker”

mol align3d

mol align3d ehandle label box/center/masscenter/pmi ?usehydrogens? ?property?

m.align3d(?mode=?, ?usehydrogens=?, ?coordinateproperty="?)

Perform a 3D alignment by modifying standard atom coordinates property o_xvz, or an alternative
explicitly specified atomic coordinate property.

The possible alignment modes are

° box
move center of enclosing 3D coordinate box to origin

* center
move average atom coordinates to origin

* masscenter
move mass-weighted atom coordinates to origin

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* pmi
align ensemble to principle moments of inertia (largest on x axis), and move the
mass-weighted center to the origin.

By default all atoms of the molecule are used to compute the alignment rotation and movement
vectors, including hydrogens. If these should be omitted from computing the movement vectors (but
not the subsequent atom movement), the optional usehydrogens parameter can be set to false.

The command returns the label or reference of the molecule.

mol atoms
mol atoms ehandle label ?filterset? ?filtermode?

m.atoms (?filters=?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the atom in the molecule.
This is explained in more detail in the section about object cross-references.

Example:

mol atoms $ehandle !hydrogen

returns the labels of the non-hydrogen atoms in the molecule.

mol bondangles
mol bondangles ehandle label ?filterset? ?filtermode?

m.bondangles (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the bond angle objects the
molecule contains. This is explained in more detail in the section about object cross-references.

mol bonds
mol bonds ehandle label ?filterset? ?filtermode?
m.bonds (?filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the bonds the molecule
contains. This is explained in more detail in the section about object cross-references. Bonds which
cross into other molecules are not listed. Such bonds may exist if they are not of a bond type which
is used to group atoms into molecules.

Examples:

mol bonds $ehandle 1
mol bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds molecule 1 contains. The second example returns
the number of double or triple bonds in the molecule.

mol compare
mol compare ehandle label ehandlelZ labell2

m.compare (mref)

Compare two molecules, yielding a stable sort order. The compared attributes are, in this order, the
number of atoms, the number of bonds, the molecular weight, the number of ESSSR rings and
finally the stereo- and isotope aware 64-bit hashcode (M _I1soTOPE STEREO HASHY). The command

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 375

CACTVS Tel and Python Scripting Language Reference

376

returns 1 if the first molecule is larger, -1 if the second is larger, and 0 if they are identical according
to the comparison scheme.

The compared property values, with the exception of the final hashcode tiebreaker, are compatible
with the RDKIT model.

mol defined
mol defined ehandle label property

m.defined (property)

This command checks whether a property is defined for the molecule. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

Example:
mol defined Sehandle 1 M NAME

checks whether molecule 1 is of a type for which M_naumE is defined.

mol delete

mol delete ehandle ?label?...
mol delete ehandle all
m.delete ()

Mol .Delete (eref,”all”)
Mol.Delete (mref, ...)

Mol.Delete (eref, ?mlabel /mref/mrefsequence?, ...)

Delete molecules from the ensemble. All minor objects on the same ensemble which contain atoms
from the deleted molecules, such as rings, groups and ring systems, are also deleted. However, these
minor object sets are not completely destroyed and property data on the remaining objects remains
valid, if those properties are not invalidated by merge events.

Deleting a molecule triggers a merge invalidation event, but not atomchange/bondchange events.
Property data which is susceptible to this invalidation mode is recursively deleted from the
ensemble.

The special label all deletes all molecules in the ensemble. Usually this is equivalent to ens clear,
but in theory there may exist atom-class objects which are not part of a molecule, and these are then
retained.

The command returns the number of deleted molecules.
Example:

mol delete $ehandle 1

mol dget

mol dget ehandle label propertylist ?filterset? ?parameterdict?

m.dget (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

For examples, see the mol get command. The difference between mol get and mol dget is that
the latter does not attempt computation of property data, but rather initializes the property values to
the default and return that default if the data is not yet available. For data already present, mol get
and mol dget are equivalent.

mol dup
mol dup ehandle label ?datasethandle? ?position?

m.dup (?target=?, ?position=?)

Duplicate a single molecule into a new ensemble. The function returns the new ensemble handle or
reference.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string (or None for
PyTHON) is passed, the duplicate is not made a dataset member, even if the input ensemble is in a
dataset.

The new ensemble preserves ring information and associated property data and other minor object
data from the original ensemble for all minor objects which exclusively refer to atoms which are part
of the duplicated molecule. Minor objects outside the duplicated molecule, or spanning multiple
molecules are not duplicated.

Example:

mol dup $ehandle 1 [dataset create]

Duplicate the molecule with label one and move the new single-molecule ensemble into a newly
created dataset.

mol ens
m.ens ()

PyTHoN-only method to get the ensemble reference from a molecule reference.

mol exists

mol exists ehandle label ?filterlist?
m.exists (?filters="?)
Mol .Exists (eref,label,?filters="?)

Check whether this molecule exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the molecule does not exist, or fails the filter, and 1
in case of successful testing.

Example:

mol exists $ehandle 99

mol expand

mol expand ehandle label ?allowambiguous? ?noimplicith?

m.expand (?allowambiguous=?, ?noimplicith="?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 377

CACTVS Tel and Python Scripting Language Reference

378

This command expands all superatoms in the molecule. The mechanisms for the expansion of
superatoms are described in detail for the atom expand command. This command is functionally
equivalent, working on all atoms in the molecule instead a single atom.

Example:

mol expand $ehandle 1

The command returns the total number of successfully expanded atoms.

mol expr

mol expr ehandle label expression

m.expr (expression)

Compute a standard SQL-style property expression for the molecule. This is explained in detail in
the chapter on property expressions.

mol fill

mol fill ehandle label ?property value?...
m.fill ({property:value,...})
m.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.

Example:
mol fill Sehandle 1 B COLOR red

sets the color of the first bond molecule 1 contains to red.

mol filter

mol filter ehandle label filterlist
m.filter(filters)

Check whether a molecule passes a filter list. The boolean return value is 1 for success and 0 for
failure.

Example:
mol filter $ehandle 1 [list carbon doublebond]

checks whether the molecule contains one or more carbon atoms and one or more double bonds. The
double bond does not need to be with a carbon atom.

mol get

mol get ehandle label propertylist ?filterset? ?parameterdict?

m.get (property=, ?filters=?, ?parameters="?)

m[property]

m.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Examples:
mol get Sehandle 1 {M WEIGHT A ELEMENT}

yields a list with two elements, consisting of the molecular weight as the first element and the
element numbers of all atoms in the molecule as a nested list as the second result list element. If the
information is not yet available, an attempt is made to compute it. If the computation fails, an error
results.

mol get Sehandle 1 B _ORDER ringbond
gives the bond orders of all bonds of the molecule which are ring bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the mol get command are mol new,mol dget, mol show, mol sqldget, mol sqlget,
mol sqglnew and mol sglshow.
Further examples:

mol get Sehandle 1 E NAME
mol get Sehandle 1 A FLAGS (boxed)

mol groups

mol groups ehandle label ?filterset? ?filtermode?

m.groups (?filters=7?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the molecule
contains. This is explained in more detail in the section about object cross-references. Groups which
contain atoms from more than one molecule are included.

Example:

mol groups S$ehandle 1

mol hadd
mol hadd ehandle label ?filterset? ?flags?
m.hadd (?filters=?,?flags="?)

Add a standard set of hydrogens to the molecule. If the filterset parameter is specified, only those
atoms which pass the filter set are processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

* keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

* no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 379

CACTVS Tel and Python Scripting Language Reference

* no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

* noanions
Do not add hydrogen to atoms with a negative formal charge.

° noatoms
Do not add hydrogen to atoms without any bonds.

* nocations
Do not add hydrogen to atoms with a positive formal charge.

* noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

* noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

° nofixatomtext
Do not adjust property A_TExTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOQOELt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

* nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

° nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

* nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

* nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B TYPE not normal).

* protonate
Add a single proton to the molecule, to the first suitable atom. The charge of the selected
atom is increased, only a single hydrogen is added regardless of the standard number of
missing hydrogens, and this command will issue the standard property invalidation event for
atom and bond changes. In the molecule command variant, this option is rarely useful. It is
supported for compatibility with the atom hadd command.

° resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

380 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Adding hydrogens with this command, except if the protonate flag is set, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

The command returns the number of hydrogens which were added.

Example:

set ehandle [ens create {[C].[C]}]
mol hadd $ehandle 1

adds four hydrogens to the first carbon atom, transforming it into methane, but leave the second
carbon atom untouched.

mol hdup

mol hdup ehandle label ?datasethandle? ?position?
m.hdup (?target=?, ?position=?)

This command provides the same functionality as mol dup, except that it also adds a standard set
of hydrogens to the new ensemble.

mol hstrip

mol hstrip ehandle label ?flags?
m.hstrip(?flags=?)

This command removes hydrogens from the selected molecule. By default, all hydrogen atoms in
the molecule are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

* deprotonate
If this flag is set, a single proton is removed from the first suitable atom. This command
variant triggers a standard atom and bond change property invalidation event, and it always
ends processing after removing the first proton. Proton removal decreases the charge of the
atom by one. In the molecule command variant, this flag is rarely useful - it is supported for
compatibility with the atom hstrip command.

* keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

* keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 'H).
* keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are

retained. Note these commands commands can be run in a mode which does not leave
information about automatic addition - hydrogens added this way are not protected.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 381

CACTVS Tel and Python Scripting Language Reference

382

* keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

* keepspecial

If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

* keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

* normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

° wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
when the deprotonate flag is set. The system assumes that this operation is done as part of some file
output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that the structure may contain implicit hydrogens.

The return value of the command is the number of hydrogens removed.

Example:

mol hstrip $ehandle 1 [list keeporiginal wedgetransfer]

mol hydrogenate

mol hydrogenate ehandle label ?filterset? ?changeset?

m.hydrogenate (?filters=7?, ?changeset="?)

Reduce all bonds in the molecule to single bonds except those excluded by the filter set.
If a change set is supplied, its interpretation is the same as in mol hadd.
The command returns the number of added hydrogens.

Example:
mol hydrogenate $eh 1 {'!'arobond !ccbond}

This reduces all non-aromatic hetero bonds in molecule 1 to single bonds.

mol image

mol image ehandle label ?width? ?height? ?options?

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

This command generates a Tk image object displaying the molecule as an icon. The command is
only available in toolkit variants which are linked with the portable Tk GUI toolkit library and which
are either statically linked with the GD image drawing library, or can load it dynamically. It is
currently not support in the PyTHoN interface.

The default image size is 64x64 pixels, but this may be overridden by the width and height
parameters. If only width is set, it is also used for the height. The command returns a Tk image
handle. These images may for example be placed on Tk canvases as canvas objects, or used on
buttons and other GUI objects.

Because of the small size of the images, atoms are not displayed as symbols, but small color-coded
squares. This is a command for the implementation of graphical structure-handling applications
with icons. For serious structure visualization, use the E GIF, E EMF_IMAGE Of E_EPS_IMAGE
properties.

Additional options may be added by an arbitrary sequence of option/value pairs. Color names can
be those registered in the X11 color database, or a numeric specification in the #rrggbb format. These
options are currently supported:

e -background color
Background color. The default is black.

* -border npixels
Thickness of the image border. The default are 5 pixels.

e -bordercolor color
Border color. The default is blue.

e -cmode none/special/all
Display mode for carbon atoms. The default is special, meaning that only carbon atoms
which usually are drawn with a C symbol are displayed as colored rectangle and not just a
bond node. Highlighted atoms are always displayed.

* -highlightatom /abel
Select an atom for highlighting. By default, no atom is highlighted.

* -highlightcolor color
Set the highlighting color. The default is chartreuse.

* -hmode none/special/all
Display mode for hydrogen atoms. The default is special, meaning that only hydrogen
atoms which usually are drawn with an H symbol are displayed as colored rectangle. Other
hydrogen atoms and the bonds leading to them are suppressed. Highlighted atoms are
always displayed.

° -imagename name
Explicitly set a name for the image. By default, a name of the form imagen is automatically
generated. It is possible to specify the name of an existing image, which will then be
overwritten.

* -linecolor color
Color of bond lines and wedges. The default is white.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 383

CACTVS Tel and Python Scripting Language Reference

384

Images are cached. If an image for the selected molecule with the same display attributes exists, it
is reused.

Example:

set img [mol image S$ehandle 1 80 80 -border yellow -linecolor blue]
canvas create .canvaswin image 50 50 -image $img

mol index

mol index ehandle label

m.index ()

Get the index of the molecule. The index is the position in the molecule list of the ensemble. The
first position is index 0.

Example:
mol index $ehandle 99

mol isotopecheck

mol isotopecheck ehandle label ?failedatomvariable? ?extended?

m.1isotopecheck (variable=, extended=)

Test whether the isotope labels on the atoms of the molecule, if they exist, are physically reasonable.
The command returns the number of failed atoms. If a capture variable is specified, the atom labels
or references of these atoms are stored therein. If no isotope labels are set in 2 _1S0TOPE, the
command always reports zero problems.

By default, a smaller isotope table is used which contains only isotopes which are sufficiently
long-lived to perform chemistry on. These include naturally occurring isotopes as well as isotopes

used for experimental labeling, such as *H or *C. If the extended boolean flag is set, a larger table
containing all known isotopes of the elements is used.

The isocheck command is an alias.

mol jget

mol jget ehandle label propertylist ?filterset? ?parameterdict?

m.jget (property=,?filters=?, ?parameters=?)

This is a variant of mol get which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

mol jnew

mol jnew ehandle label propertylist ?filterset? ?parameterdict?
m.jnew (property=, ?filters=?, ?parameters=?)

This is a variant of mol new which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

mol jshow

mol jshow ehandle label propertylist ?filterset? ?parameterdict?
m. jshow (property=, ?filters=?, ?parameters="?)

This is a variant of mol show which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

mol local
mol local ehandle label propertylist ?filterset? ?parameterdict?

m.local (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
mol local Sehandle 1 A LABEL STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

mol match

mol match ehandle label ss ehandle ?ss label? ?matchflags? ?ignoreflags?
Patommatchvar? ?bondmatchvar? ?molmatchvar?

m.match (substructure=, ?substructuremol=?, ?matchflac ?,?2ignoreflags=7?,
?atommatchvariable=?, ?bondmatchvariable=?, ?molmatchvariable=?)

Check whether the selected molecule matches a substructure. Only the first molecule, or the
molecule selected by the substructure label parameter, is tested. The substructure may be part of any
structure ensemble, and even be in the same ensemble as the primary command molecule. Both the
atoms in the molecule and the bonds between them are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,

atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels. If no match can be found, the variable is set to an empty list. In case only a bond
or molecule match variable is needed, an empty string can be used to skip the unused match variable
argument positions.

Example:

set ss [ens create {clcccccl.clnccccl} smarts]
set m_contains_phenylring [mol match Sehandle $label $ss 1]

mol mol
mol mol ehandle label

Mol.Ref (eref,identifier)

Standard cross-referencing command to obtain the label or reference of the molecule as stored in
property M_1ABREL. This is explained in more detail in the section about object cross-references.

Example:
mol mol S$ehandle #0
returns the label of the first molecule of the ensemble molecule list.

mol mol $ehandle primary

returns the label of the primary molecule in the ensemble.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 385

CACTVS Tel and Python Scripting Language Reference

386

mol new

mol new ehandle label propertylist ?filterset? ?parameterdict?

m.new (property=, ?2filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol new is that
the latter forces the re-computation of the property data, regardless whether it is present and valid,
or not.

mol nget

mol nget ehandle label propertylist ?filterset? ?parameterdict?

m.nget (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol nget is that
the latter always returns numeric data, even if symbolic names for the values are available.

mol pack

mol pack ehandle label ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?
m.pack (?maxsize=?, ?requestprops=?, ?suppressedprops=?, 2compressionlib="?)

Pack the selected molecule into a base64-encoded compressed serialized object string. This string
does not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. Outside object relationship information, such as the dataset the ensemble of the
molecule might be a member of, or associated tables of the parent ensemble are not included, and
neither are any ensemble properties.

The maximum size of the object string (default -1, meaning unlimited) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The next two optional parameters allow to request a specific property set to be part of the package,
even if it normally would not be included, and to explicitly omit properties from the dump. No
property computation is performed, and suppressed properties are not purged from the ensemble.

The default compression library is z/ib. Other useful variants include /zo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

Single-molecule ensembles can be restored from a packed object string by the ens unpack and ens
create commands.

The PYTHON Mol class also supports the pickle protocol, but not unpickling. Restoring a pickled
molecule can be done via the Ens unpickle method - this is like unpacking the pack string, which
also returns a new single-mol ensemble.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

mol pis

mol pis ehandle label ?filterset? ?filtermode?

m.pis(filters=7?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the & systems the
molecule contains. This is explained in more detail in the section about object cross-references.

Examples:
mol pis $ehandle 1
T systems are a rather exotic feature and not commonly used. These are essentially descriptions of

bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one ¢ system and one 7 system in this representation.

mol ref
Mol .Ref (eref,identifier)

PytHoN only method to get a group reference. See mol mol command.

mol replicate

mol replicate ehandle label ?count?

m.replicate (?count=?)

Add duplicates of the selected molecule to the command ensemble. The default number of
duplicates is one, but any other number may be requested by setting the count parameter. If the count
is less than one, the command is silently ignored.

The command returns the labels or references of all newly created molecules as a list. New molecule
labels begin at one plus the highest old label. All atoms, bonds and other chemistry objects which
are created by the command are appended to the object lists in the ensemble and will thus bear higher
labels than any existing label of their class in the ensemble. This command triggers a merge property
invalidation event.

The mol dup command duplicates a molecule into a new ensemble, which is quite different from
what this command does.

Example:

set eh [ens create C.CC]
mol dup $eh 1 2
echo [ens get $eh E SMILES]

returns C.CC.C.C, because the first molecule (label one) was duplicated twice.

mol rings
mol rings ehandle label ?filterset? ?filtermode?

m.rings (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the rings the molecule
contains. This is explained in more detail in the section about object cross-references. Rings which
are not restricted to the selected molecule are listed. Under certain circumstances, it is possible to
have rings which span more than one molecule.

Examples:

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 387

CACTVS Tel and Python Scripting Language Reference

388

mol rings $ehandle 1

mol rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the molecule contains. If the molecule does not
contain any rings, an empty list is returned. Only labels of rings in the SSSR or ESSSR set are
returned, even if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

mol ringsystems
mol ringsystems ehandle label ?filterset? ?filtermode?

m.ringsystems (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the ring systems the
molecule contains. This is explained in more detail in the section about object cross-references. Ring
systems which are not restricted to the selected molecule are included. Under certain circumstances,
it is possible to have ring systems which span more than one molecule.

Examples:

mol ringsystems $ehandle 1
mol ringsystems $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all ring systems the molecule contains. If the molecule does
not contain any ring systems, an empty list is returned. The second example filters the ring systems
- aring system label is included in the output list only if that ring system contains one or more hetero
aromats.

mol rotate

mol rotate ehandle label angle axis ?center? ?property?

m.rotate (angle=,axis=, ?center=?, ?coordinateproperty="?)

Rotate the molecule in 3D space on property o_xvz or a custom atom float vector coordinate
property.

This command requires 3D atomic coordinates. If these are not yet present, an attempt is made to
compute them. The rotation angle is specified in degrees. The first point is the axis vector - it can
be specified in any format the TcL vec command understands. By default the center of rotation is the
center of the molecule bounding box, but by providing explicit center coordinates, any center of
rotation can be set.

This operation triggers a 3Dop property invalidation event.
The command returns the original molecule label or reference.

Example:
mol rotate $ehandle 1 50 {1 1 0}

rotates the molecule around its center 50 degrees counter-clockwise along the 45-degrees
xy-diagonal.

mol set

mol set ehandle label ?property value?...
m.set (?property,value?, ...)

m.set ({property:value,...})

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

m.property = value

m[property] = value

Standard data manipulation command for setting property data. It is explained in more detail in the
section about setting property data.

The command returns the first data value.

Example:

mol set Sehandle 1 M NAME “Pharmacon X-25"

mol show
mol show ehandle label propertylist ?filterset? ?parameterdict?

m.show (property=, ?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol show is that
the latter does not attempt computation of property data, but raises an error if the data is not present
and valid. For data already present, mol get and mol show are equivalent.

mol sigmas
mol sigmas ehandle label ?filterset? ?filtermode?

m.sigmas (?filters=?, ?mode="7?)

Standard cross-referencing command to obtain the labels or references of the ¢ systems the
molecule contains. This is explained in more detail in the section about object cross-references.

Examples:

mol sigmas $ehandle 1

o systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond

in multiple bonds. A simple double bond is described with one ¢ system and one & system in this
representation.

mol sqldget
mol sgldget ehandle label propertylist ?filterset? ?parameterdict?

m.sgldget (property=, ?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The differences between mol get and mol sgldget
are that the latter does not attempt computation of property data, but initializes the property value
to the default and returns that default, if the data is not present and valid; and that the SQL command
variant formats the data as SQL values rather than for TcL or PYTHON script processing.

mol sqlget

mol sqglget ehandle label propertylist ?filterset? ?parameterdict?
m.sqglget (property=, ?filters=?, ?parameters=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 389

CACTVS Tel and Python Scripting Language Reference

390

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol sqlget is
that the SQL command variant formats the data as SQL values rather than for TcL or PyTHON script
processing.

mol sqglnew

mol sglnew ehandle label propertylist ?filterset? ?parameterdict?

m.sqglnew (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The differences between mol get and mol sqlnew are
that the latter forces re-computation of the property data, and that the SQL command variant formats
the data as SQL values rather than for TcL or PYTHON script processing.

mol sqlshow

mol sglshow ehandle label propertylist ?filterset? ?parameterdict?

m.sglshow (property=,?filters=7?, ?parameters="?)
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The differences between mol get and mol sglshow
are that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TcL or PYTHON script processing.

mol subcommands

mol subcommands
dir (Mol)

Lists all subcommands of the mo1 command. Note that this command does not require an ensemble
handle, or a molecule label.

mol surfaces

mol surfaces ehandle label ?filterset? ?filtermode?

irfaces (?filters=7?, ?mode=7?)
Standard cross-referencing command to obtain the labels or references of surface patches the
molecule is associated with. This is explained in more detail in the section about object
cross-references.
Example:

mol surfaces $ehandle $label

Note that surface patches are not required to be associated with any atom, and if they are not, they
are implicitly not associated with any molecule.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

mol torsions

mol torsions ehandle label ?filterset? ?filtermode?

m.torsions (?filters=?, ?mode="?)

Standard cross-referencing command to obtain the labels or references of the torsion angle objects
the molecule contains. This is explained in more detail in the section about object cross-references.

mol translate
mol translate ehandle label ptl ?pt2? ?property?

m.translate (pointl=, ?point2=?, ?coordinateproperty="?)

Move the atoms of the molecule by modifying their 3D coordinates in property 2_xyz, or a custom
atomic float vector coordinate property. This command requires atomic 3D coordinates and will
attempt to compute them if they are not yet present. If no 3D atomic coordinates can be generated,
the command fails with an error.

The movement vector may either be specified by a single vector, or two points. If two points are
used, the subtraction of the second point from the first is used to compute the movement vector. Both
point/vector arguments understand the same vector notation syntax as the vec command.

This command triggers a 3Dglop property invalidation event.
The command returns the original molecule label or reference.

Example:
mol translate $ehandle 1 {1 0 0} {2 0 0}

moves the molecule one Angstrém in x-direction.

mol valencecheck

mol valencecheck ehandle label ?failedatomvariable? ?nitrogenmode?

m.valencecheck (?variable=?, ?nitrogenmode="?)

Perform a valence check on the molecule, comparing the current bonding situation at all atoms to
the list of element-specific valence states in the system element table. This command is intentionally
quite picky, discouraging for example the use of pentavalent nitrogen by default. For the calculation
of valence, only bonds of type normal (VB bonds) are taken into account. Complex bonds and
pseudo bond types thus do not interfere in the calculation. Some more exotic metal atoms with many
different valence states, or few well-defined covalent compounds, such as vanadium or rhodium,
always pass.

The handling of nitrogen in pentavalent or ionic form can be controlled by setting the optional
nitrogenmode argument, or modifying the global ::cactvs (nitrogen_valence check)
variable.Possible values are xionic, ionic (the default), asis, penta and xpenta. These are the same
values as with the ens nitrostyle command - please refer to that command for more information.
In asis mode, both ionic and pentavalent forms pass.

The return value of this command is the number of atoms which failed the valence check. If the
optional parameter failedatomvariable is specified as non-empty string, it is the name of a variable
which is set to a list of the atom labels or references which did fail, or is set to an empty list in case
no problems were found.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 391

CACTVS Tel and Python Scripting Language Reference

392

Note that this command assumes that all hydrogen atoms are in place. Checking molecules with
implicit hydrogen atoms is not supported.

Example:

mol valencecheck [ens create {CN(=0)=0.C[N+] (=0) [0-]}] 1 badatoms

0)=0.C[N+] (=0) [0-1}] 2 badatoms

mol valencecheck [ens create {CN(

These sample commands check the valence situation of nitromethane in two encoding formats. The
first molecule, using a pentavalent nitrogen encoding, returns 1, indicating one failed atom, and the
variable badatoms is set to 2, the label of the pentavalent nitrogen. The second molecule, checked
with the line below, passes without problems, with a return value of 0 and an empty badatoms
variable.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The molfile Command

The molfile command is the generic command used to manipulate chemical structure and reaction
files. These can be of any supported format, not just MDL molfiles.

Molfiles are major objects. They are uniquely identified by their label alone. Molfiles do not contain
minor objects.

Example:

set fhandle [molfile open myfile.sdf]
set ehandle [molfile read $fhandle]
molfile get $fhandle record

As explained in more detail in the section about working with structure files, the molfile handle
identifier can be replaced by a file name. This file is automatically opened, the command executed,
and the file closed in a single one-shot operation.

In the context of structure files, file-related data is usually provided as attributes. However, molfiles
can store property data like any other chemistry object.

Example:
molfile get $fhandle F_COMMENT

When property data is requested which is not of the molfile type, the next record is read from the
file into a temporary ensemble, reaction or dataset object, depending on the file configuration. An
attempt is then made to obtain the property data from that object. Afterwards, the object is
automatically deleted.

Example:
set mw [molfile get ,somefile.smi™ E WEIGHT]

This example temporarily opens the file, reads the first record into an ensemble, and computes the
molecular weight. Both the ensemble and the molfile object are transient and do no longer exist after
the command completes.

This is the list of currently officially supported subcommands:

molfile add
molfile add filehandle ?objecthandle/objecthandlelist?...

f.add (objectsequence/objectref, ...)

Molfile.Add (filename, objectsequence/objectref,...)

If the filehandle argument refers to an open chemistry data file, this command is indistinguishable

frommolfile write.

A difference only exists if the filehandle argument is a file name (or, in cased of PYTHON, the class
method is used). In that case, molfile write overwrites an existing file, while molfile add
attempts to temporarily open the file for appending, as withamolfile open filename a command.
If the format of the output file supports appending, the output objects are written as new records after
the last existing record.

It is not possible to append to single-record file formats.

Example:

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 393

CACTVS Tel and Python Scripting Language Reference

394

molfile add smilerecords.smi $eh

molfile append

molfile append filehandle ?property value?...
f.append ({?property:value,?...})
f.append (?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data. This is not a command to append file records. Use the
molfile write command for this purpose.

The command returns the first data value.

Example:

molfile append $fh F GAUSSIAN JOB PARAMS (route) "“Opt=(AddRed,CalcFC)”

molfile assign
molfile assign filehandle srcproperty dstproperty

f.assign (srcproperty=,dstproperty=)

Assign property data to another property on the same ensemble. Both properties must be associated
with the same object class. This process is more efficient than going through a pair of mol£file
get/molfile set commands, because in most cases no string or TcL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variantmolfile rename directly exchanges
the property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

The command returns the object handle for TcL, or object reference for PyTHON.

molfile backspace

molfile backspace filehandle ?nrecords?

f.backspace (?records=?)
Position the file pointer backwards. If no record counter is specified, the file is backspaced by a
single record. It is an error to attempt to reposition the file before the beginning of the file.

Examples:

molfile backspace $fh
molfile set $fh record [expr [molfile get $fh record]-1]

These two sample lines provide identical functionality.

The molfile backspace command is often used in combination with the molfile copy command
in order to copy records with specific properties verbatim:

set eh [molfile read S$fh]

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

if {[strucuture passes condition Seh]} {
molfile backspace $fh
molfile copy $fh Soutfilehandle

}

molfile blob

molfile blob enshandle/reactionhandle/datasethandle ?attribute value?...
molfile blob enshandle/reactionhadle/datasethandle? ?attribute dict?
Molfile.Blob (eref/xref/dref, ?attribute, value?,...)

Molfile.Blob (eref/xref/dref,attribute dict)

This is an alias of mol1file string. Please refer to the section on that command for more
information.

molfile close

molfile close ?filehandle?

molfile close all

f.close()

Molfile.Close (Mall”)

Molfile.Close (mrefsequence/mref/mhandle, ...)

Close one or more file handles. If the file handle corresponds to a scratch file, the file is deleted. If
it corresponds to a pipe, all programs in the pipe are shut down.

Ifallis passed instead of a set of file handles, all currently opened structure files are closed. Standard
TcL or PyTHON files upon which a molfile handle has been piggybacked are not affected, i.e. these
language channels are flushed and remain open, while the molfile object component is closed.

It is a good idea to close files when they are no longer needed. In addition, while most file format
I/0 modules commit all data to disk after each record has been written, so that a clean close-down
is not absolutely required, there are file formats for which the I/O module has a cleanup or
finalization routine which is only called if the file is properly closed.

The command returns the number of files which were closed.

Example:

set fhandle [molfile open scratch]
molfile close $fhandle

The example closes a scratch file, which is automatically deleted from disk when it is closed.

On normal interpreter program exit, the close functions of all remaining open file handles are
automatically called.

molfile copy
molfile copy filehandle ?channel? ?count? ?startrecord/startrecordlist?

f.copy(?outfile=?, ?2count=?, ?startrecord="?)

Copy arecord to a TcL or PyTHON file I/O channel, to a CacTvs structure file handle, or retrieve it as
a byte image. No interpretation or formatting of the data in the file record(s) takes place - the data
is copied verbatim, byte by byte.

If file format conversion is desired, the data items (ensembles, reactions, datasets) must be explicitly
read (molfile read command) as chemistry objects and written to another mol£ile opened for

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 395

CACTVS Tel and Python Scripting Language Reference

396

output in the desired format (mo1file write command). That procedure involves re-formatting and
potential loss of formatting or information which was not captured by the input routine, or cannot
be written by the output routine.

By default the next record after the current file pointer position is returned as a byte image. The
optional parameters allow the selection of a specific start record (beginning with 1 for the first
record), the copying of multiple records in one command (by default, a single record is processed),
and output to alternative TcL or PyTHoN file I/O channels or CAcTvs molfile structure file handles.
If an empty string, None in PYTHON, or the value 0 are used as start record number, the file is copied
from the current position. If the start record is negative, it is interpreted as offset from the current
position. Therefore, passing -1 as parameter instructs the command to backspace by one record prior
to copying. Not all files can be backspaced. The start record can also be specified as a record list
(Tew) or record sequence (PyTHON). In that case, the input file pointer is positioned to every specified
record in order, and from that position the selected number of records is copied. If the special record
count values end or all are used, all remaining records in the input file are copied. Otherwise, if the
number of available records is smaller than the requested copy count, an error results.

If the output channel argument is omitted, or set to an empty string, the record(s) are returned as a
byte sequence command result. Otherwise, the data is written to the file handle the argument is
connected to. For CAcTvs molfile handles, the destination is the current write position of the
underlying file handle. On UNix/LINux systems, writable active TcL file or socket handles (in the form
filexxx or sockxxx) are also supported, but not on Windows. Additionally, the special output channel
names stdout and stderr can be used. If output is written to a channel, and not returned as blob, the
number of actually copied records is returned as the command result.

The I/O modules for some formats like SDF provide optimized fast copy routines and are thus
notably faster to copy then other file formats without explicitly encoded record positions. These still
need to read the file line by line and maintain a parser state, though they can avoid decoding the
record contents as structures or reactions.

Example:
set eh [molfile read S$fhandle]
set fhout [open “metal compounds.sdf” w]
if {[ens atoms $eh metal exists]} {
molfile copy $fhandle $fhout 1 [expr [molfile get $fhandle record]-1]
}

This example reads a structure from an input file, checks whether is contains a metal atom, and if
yes, copies the record unchanged to an output file, which is opened as a simple TcL text file channel
in this example. The expression which forms the last parameter backspaces the input file by one
record, so that the same record which was just read can be copied. A simpler solution for the same
functionality is to simply pass -1 as argument. This works of course only if the input file can be
repositioned backwards. i.e. normal text files are fine, standard input or a socket connection do not
work.

molfile count

molfile count filehandle ?maxrecords? ?readscope?
f.count (?maxrecords=?, ?readscope="?)

Molfile.Count (filename, ?maxrecords=?, ?readscope="?)

Count the number of records in the file.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If the file format contains an internal or external record index with information about the complete
file, the answer is produced from the index, and thus is typically obtained fast. Otherwise, the file
is skipped from the current position until the end, and the sum of the number of records encountered
while skipping and the record index when the count started is returned. In case of files which are
rewindable, the original input file pointer position is then be restored. On non-rewindable files, the
file contents are consumed, and no return to the old input position is possible. For files which are
opened for writing, the count usually is simply the current output position, except for those few file
formats which support in-file record replacement in combination with a complete file index. In the
latter case, the count is again extracted from the index.

During the record skipping part the file contents are not physically read if possible. Rather, the skip
function of the responsible file format I/O module is used to scan the file effectively. After arriving
at the end of the file, a full in-memory record position index has been assembled for the file, and
future record selection within files which support re-positioning is fast.

The type of record boundaries counted depends on the input scope of the file. For file formats which
support multiple input modes, such as for extraction of ensembles or molecules or datasets, the count
is dependent on the type of object which is configured to be read. If the file input object type is
changed, the in-memory record index table is discarded.

If the maxrecords parameter is specified, and is not a negative number, it is the maximum count
reported. No attempt is made to position the file beyond this mark during the count process. This has
no effect on future input operations - these may still proceed beyond the reported count. This option
is not intended to be generally useful, but is used for example in the structure browser csbr with the
-m option to enable quick inspection of a file without full scanning.

The optional readscope parameter can be used to temporarily modify the read scope under which
the file is processed. It can be any of the generally recognized values (mol, ens, reaction, dataset).
If the file format does not support the specified mode, its default mode is silently used. If the file is
not positioned at the beginning of the data, the count reports the sum of the currently known records
as perceived by the previous read scope, and the remaining file records under the new one. If these
values are different, the result may only be useful under very specific circumstances. The the
parameter is not set, or an empty string is passed, the currently set, or, for one-shot file operations,
the default read scope, is used.

Example:

set nrecs [molfile count “thefile.sdf”]
set nrecs [molfile count “test.spl” -1 mol]

molfile dataset

molfile dataset filehandle ?filterlist?

f.dataset (?filters=?)

Return the handle of the dataset associated with the file handle. If no such dataset is set, the
command returns an empty string, or None for PyTHoN. The command

molfile get $filehandle dataset

is equivalent.

This command is different from the dataset commands for ensembles, reactions or tables, where it
indicates membership in a dataset. File objects cannot be a member of a dataset. This dataset
association is explained in more detail in the mol1file set command section.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 397

CACTVS Tel and Python Scripting Language Reference

398

molfile defined
molfile defined filehandle property

f.defined (property)

This command checks whether a property is defined for the structure file. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The molfile valid command is used for this purpose.

molfile delete

molfile delete filehandle recordlist ?rebuildindex?

f.delete (records=, ?rebuildindex="?)

Delete records from the file. The file must have been opened for writing or update, and be
rewindable. In case the file is not a simple record sequence, the /O module for its format must
provide a deletion function, or the operation will fail.

The deletion record list is a single or set of record numbers in any order. They are sorted and
duplicates removed before file modification commences. It is no error to specify an empty removal
record list. The record numbering starts with one, and the record numbers are referring to the record
numbering at the moment the command is issued. There is no need to compensate for intermediate
record numbering shifts when more than one record is deleted.

The optional index rebuild parameter, a boolean value, can be set to optimize the deletion process
for files in formats which maintain field index information. By default, indices are updated as part
ofthe deletion process. In case many records are deleted, it may be more efficient to drop the indices
prior to the deletions and rebuild them after the records have been removed. In order to select this
alternative procedure, a true parameter value can be set. At this time, the only file format which
actually can use that parameter is the bdb database file format.

In case the file is to be truncated, the molfile truncate command is usually more efficient.

This command returns the number of deleted records. It does not close or destroy the file handle, or
the underlying file.

molfile dget

molfile dget filehandle propertylist ?filterset? ?parameterdict?
f.dget (property=,?filters=7?, ?parameters="?)

Molfile.Dget (filename,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see themolfile get command. The difference betweenmolfile get and molfile
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, molfile get and molfile dget are equivalent.

The PyTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

molfile dup
molfile dup filehandle
f.dup ()

This command duplicates a file handle. The duplicate handle or reference points to the same
underlying file or other data channel, is opened in the same access mode, and positioned at the same
record. Also, all file object attributes and file properties are set to identical values.

Currently, it is not possible to duplicate virtual file sets opened by a molfile lopen command.

The command returns a new file handle or reference.

molfile exists

molfile exists filehandle ?filterlist?

f.exists (?filters=?)

Molfile.Exists (mref,?filters=?)

Check whether a molfile handle is valid. The command returns O or 1. Optionally, the molfile may
be filtered by a standard filter list, and if it does not pass the filter, it is reported as not valid.

molfile extract
molfile extract filehandle retrievallist

f.extract (retrievallist)

Extract the contents of data fields from the file, without reading full structure or reaction records if
possible. This operation requires a support function in the I/O module for the file format. Generally,
only formats optimized for query operations, such as the CAcTvs bdb and chs formats provide such
a function in their [/O module.

This command is essentially a shortcut foramolfile scan command with an empty query condition
and a propertylist retrieval mode. Please refer to that command for details about the possible
contents of the retrieval list.

The result is a nested list of extracted property values, with one outer list element for every file
record to the end of the file, and inner list with one element per retrieval field.

molfile filter

molfile filter filehandle filterlist
f.filter (filters)

Check whether the structure file passes a filter list. The return value is boolean 1 for success and 0
for failure.

Example:
molfile filter $fhandle $filter

molfile fullscan

molfile fullscan filehandle queryexpression ?mode? ?parameterdict?
f.fullscan (query=, ?mode=7?, ?parameters="?)

Molfile.Fullscan (filename, query=, ?mode=?, ?parameters="
14 14

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 399

CACTVS Tel and Python Scripting Language Reference

400

This command is the same asmolfile scan, exceptthat an automatic rewind (seemolfile rewind)
is performed before the query is executed. The same effect can be achieved by setting the
startposition parameter value to 1.

molfile get

molfile get filehandle propertylist ?filterset? ?parameterdict?
molfile get filehandle attribute

f.get (property=, ?filters=?, ?parameters=?)

f.get (attribute)

f[property/attribute]

f.property/attribute

Molfile.Get (file e, property=,?filters=?, ?parameters="?)

Molfile.Get (filename,attribute)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

The molfile object possesses a rather extensive set of built-in attributes, which can be retrieved with
the get command (but not its related subcommands like dget, sqlget, etc.). Most of them can also
be manipulated with a set command. In addition, molfile objects can possess file-level properties.
The standard prefix for these is F_.

The PyTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

Example:
set ¢ [molfile get Sfhandle F_COMMENT]

These built-in attributes are:

* address city
The city part of the author contact address.

* address_country
The country part of the author contact address, following the ISO3166 standard.

* address_state
The state part of the author contact address. Empty if not applicable.

* address_street
The street address part of the author contact address. Includes floor, house number, etc.

* address zip

The zIP code or other applicable postal code of the author contact address.
* affiliation

The institution the author works for.

 affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

* affiliationurl
The URL of the affiliated institution.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* atomlabelproperty

The name of a property which holds data for a parallel user-defined atom numbering scheme
(see writeflags/writelabels attribute) which can be output by some I/O modules. The default
property is A LABEL. The property must be associated with atoms, but is not required to be
an integer, if the I/O modules supports alternative data types (i.e. for CDX/CDXML the label
data in the file format is internally a string, and any different property data type is converted
as necessary). This attribute has an effect only if the writelabels flag is also set in the
writeflags attribute.

° author
The author of the file, as free-form string data.

° aquthorization
A service authorization URL, which might for example be presented to the user for approval
of access to a resource. In the case of dropbox file access, this data is copied from the global
value of the I/O module (see filex get command). For normal files, this attribute is empty,
and setting it to a string value has no effect.

* authorurl
A URL with information on the author, or an empty string if unset.

* batchsize
The number of records in a standard processing batch. The default batch size are 10 records.

* bondlength
The standard bond length to be used in the file. The unit is points (1/72 inch). If the value
is negative (the default), the standard format-specific bond length is used. This attribute is
only supported in a few graphics-oriented file formats, such as CDX or SKC files, or EMF
images.

* cachesize

The size of the record prefetch cache the file should use. Normally, the size is zero and no
such cache is employed. The I/O modules for a few file formats, such as PusCHem CID and
SID files, where the individual retrieval of a record via the Internet is almost as expensive
as fetching a sizable batch, use a cache if allowed and prefetch multiple records when a

record read operation is performed and the cache is empty or the requested record is not in
the cache. A later read can, if the input record is in the cached set, return the data without
establishing a new network connection.Using a cache is beneficial only when the expected
access pattern is linear and in ascending record order. It decreases performance if the record
access pattern is random and not limited to a continuous record set that fits into the cache.

* category
A category string to be used if the file is stored in a repository.

* chain

A single-letter code indicating the chain to be read from records with structure disorder data.
These can for example be found in PDB files. The default value ‘?” automatically selects the
first chain which is encountered in the file record. After a record has been read, the attribute
is set to the actual character of the chain which was selected, so it needs to be reset in case
more than one record is input via this file handle. If the chain character is set to an empty
string, all atoms are read from files even if they belong to multiple overlapping disordered
structure instances. This can of course lead to problems in connectivity representation. The
alternative name disordered is an alias for this attribute.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 401

CACTVS Tel and Python Scripting Language Reference

e classuuid
The base class UUID of this file object, copied from its I/O module UUID.

* coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed

* compact
A boolean flag indicating whether the file is present in a abridged form, or should be written
as compact as possible. This attribute effects few file formats. An example is the native
cactvs ASCII format (cascii).

° complexresolver
A boolean flag which enables or disables bond type processing after input. It the flag is on,
typical complex bonds between metal atoms and ligands, or between metal atoms, are
recognized and re-coded as complex bonds, which provide connectivity, but do not
participate in valence electron counting. In many cases, this improves the general
representation quality of the structures. However, since most chemical data exchange
formats do not support this type of bonds, it can also make export of the data difficult. By
default, this flag is on. For maximum portability, it should be switched off. This attribute is
a convenience shortcut operating on the readflags attribute.

* computationlog
A read-only attribute. It is a list of all properties which were computed during a record write
operation, either implicitly or explicitly via the computelist attribute. This can be used to
determine which effects the output has had on the information content of a written object,
or to optimize I/O throughput by performing pre-computation of these properties in a
separate thread.

* computelist
A list of properties which are automatically computed before an output object is written if
they are not yet valid. Computation failures are silently ignored.

* compression
The detected file compression type. It can be one of none, compress, pack, gzip or bzip2.
Compressed files are automatically opened for reading via a pipe to the suitable
decompressor program, if it can be located. This attribute can also be set, but it currently has
no effect on the actual output in any format. In order to write compressed files, open an
output as a pipe to a compressor program.

* corsdomain
If specified, and the Attpheader attribute is also set to a value larger than zero, the output
HTTP header contains a CORS domain header line (Access-Control-Allow-Origin:). Useful
values for this parameter are either * (for free access), a host name, or a domain name. If this
parameter is not specified, HTTP headers do not contain information, which usually is
equivalent to allowing access for AJAX queries only from the same server as the requesting
page.

e ctime
A read-only attribute reporting the time of the last status change of the file. Its unit are
seconds since January 1st, 1970. This value is meaningful only for normal disk files.

* date
The date the file structure was defined. This is not the same as the filesystem time stamps,
such as the ctime or mtime attributes.

402 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* deletable
Flag indicating whether this molfile can be deleted or closed with a standardmolfile close
command. The attribute is read-only. Molfiles which are, for example, property data values
or a part of amolfile loop command cannot be deleted by standard means.

* deselection
This somewhat awkwardly named attribute is the inverse of the selection attribute. For
further explanation, refer to the paragraph on selection.

* device
A read-only attribute reporting the device number of the file. This is meaningful only for
normal disk files, and only supported on Unix/Linux.

* doi
A digital object identifier for the file content, if defined.

* downloadfilename
Ifthe httpheader attribute is set to a value larger than zero, this value is included in the HTTP
header as save file name, with a MIME type of application/save-to-disk which overrides any
native file format MIME type.

* droplist
A list of properties which are not to be written to the file, even if they are already present
on output objects and the file format can encode them. Naming a property in this list does
not delete them from the property set of objects which are written to the file, just suppresses
their output.

e email
A contact email of the file author.

* embedformat
The format of embedded objects encoded in another format. This is meaningful only for a
few file formats, for example zip (which contains single-record files of a different type) or
rtf (which may contain cdx or skc embedded OLE objects). If this attribute is not set, the
default depends on the wrapper format (i.e. SDF files for zip, cdx OLE objects for rtf).
Setting it to an empty string or none disables embedding where applicable. The attribute is
updated on input and can be read when a file record is input which contains embedded data.

* encoding
The detected encoding type of the file. It can be one of ascii, binary or unicode. This is a
read-only attribute.

° eof
This read-only boolean attribute indicates whether the file read pointer is at the end of the
file.

* eolchars
A sequence of characters which are used as line terminators for the output of text-based file
formats which do not define a specific line end character. The default value is
platform-dependent. It is a single newline character on Linux/Unix, cR/LF on Windows and
a single cr on Macs. This attribute has no effect on input. All input routines automatically
recognize and read all three variants on all platforms.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 403

CACTVS Tel and Python Scripting Language Reference

On setting, the magic strings windows, mac (both checked for the first three characters only)
as well as unix and /inux are translated to the standard platform line terminators and not
copied verbatim. Alternative names for these standard system encodings are crif, cr and If.
The special value default resets the attribute to the platform-dependent default.

° eor
A read-only attribute which indicates at what type of record terminator the current read
position is located. Possible values are none, mol, ens, reaction and dataset. The none value
indicates that reading did stop in the middle of a record due to some problem.

* errorproperty
A read-only attribute which holds the name of the last property where input failed. This is
not supported by all file /O modules. It is especially useful for binary formats where a line
number cannot be used for simple visual inspection of an input problem.

° failures
A list of properties for which computation failed on this object. This is a read-only attribute.
Depending on configuration settings, this information may be used to block pointless
attempts at re-computation of incomputable data.

o fd
A read-only attribute which reports the system channel number the file object is associated
with.

* fields
This is a list of the names and potentially attributes of data fields in the file. For simple
formats such as SD files, this is simply a list of property names, and it is updated after each
read record to track a potentially changing field set. For more complex formats such as bdb
and cbs, every list item is a nested list which contains the field name, field flags, field object
class association and partition file. The field output for simple formats such as SD is
controlled via the writelist attribute, and the value of the fields attribute has no effect on
output. However, the I/O modules for complex database-type formats such as bdb and cbs
provide a handler function which translates an updated value of this attribute into a changed
database layout. Depending on the I/O module, this may be supported only for an empty file
(cbs), or may be possible even for files which already store records (bdb). This attribute can
also be addressed by the alias fieldnames.

o filelock
On reading, this is a boolean flag indicating whether a file lock is currently set on the file
or not. On setting, the argument can be release, trylock, forcelock or test. The first variant
attempts to release an existing file lock, the second variant attempts to set a file lock, but
returns immediately if that is not possible, the third variant blocks until the lock can be
established, and the fourth version tests for the presence of a lock. The return value is a
boolean status result. This command is not supported on Windows. File locking may pose
special problems if the file is not residing on a local file system.The underlying system call
is lockf64() or lockf(). Please consult your operating system manual for more details.

e fileset
A read-only attribute containing a list of the names of the physical files which are behind
the file handle. For normal files, this is a single list element for a single file. However, for
file handles opened by means of the mol1file lopen command to access a virtual file
assembled from multiple physical files, this can be a list with more than one element.

404 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

o filter
A query expression (seemolfile scan command) which input records must match to yield
aresult object when amolfile read command is run. The read command is automatically
looped until a matching record is found, or the end of the input source is reached. Since the
test is only applied after a prospective input object has already been fully read internally, this
style of record filtering is in many cases considerably less effective than using molfile
scan for file formats which possess query acceleration features, such as CBS, BDB or the
PuscHem virtual file module. For the reading of simple text files, such as SDF, there is no
performance difference to usingmolfile scan in the ens or reaction object retrieval mode,
and this type of filter which can be easily adjusted or disabled (by setting it to an empty
string) can be convenient.

° fontsize
The standard font size for text in graphics-oriented formats, such as CDX or SKC. The value
is a floating point number measured in points (1/72 inch). A value of zero or less, which
corresponds to the default, lets the software chose a suitable value, which is dependent on
scaling and bond length.

* fold
The number of characters after which the software should look for a good position to use a
continuation character and line break. This is only used in a few formats, such as SLN.

* footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

* format
The standard name of the file format the molfile object is linked to. This is normally only
set in scripts for output files, because the format for input files is auto-detected.
Nevertheless, it is possible to set a format explicitly also for input files, and even to switch
it when records have already been read. When setting a format, generally a set of alias names
are recognized in addition to the short official name.

° from
The sender of a file. This is only set when the file has been extracted from a mail message
or attachment.

* gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

* handle
The handle of the file as a read-only attribute. Not generally useful, because in standard
access modes you already need the handle to identify the file object.

* header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

° height
The maximum height of a structure or reaction depiction in points (1/72 of an inch). This is
only used for graphics-oriented formats, such as CDX, SKC or EMF. If the attribute is set to
anegative value, which is the default, the size is indirectly controlled by the bond length and
atom coordinates. In case this attribute is set to a positive value, and the depiction would
exceed the maximum height, it is automatically scaled down proportionately.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 405

CACTVS Tel and Python Scripting Language Reference

* hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering object selections. This attribute can be set.

* highmaprecord
The maximum record to include in a memory-mapped section of the file for accelerated read
access. If set to a negative value, which is the default, the system automatically determines
if mapping is worthwhile, and if it is, map the full file. This attribute is primarily useful for
the acceleration of queries which repeatedly operate in a section of a larger file, for example
when running distributed queries with multiple processes handling different parts of a large
file.

* host
This is a shortcut for the host name part of a file or virtual file addressed via an URL. For
simple retrieval it is equivalent to the URL field attribute ur/(hostname). For some 1/0
modules, for example the interface to access MysaL tables as virtual structure files, a change
of the host name does have an effect and results in (re)-connection to a different database
host. For normal files accessed via a URL a change of the attribute is ignored after the file
has been opened. Files that are not associated with an URL have an empty host name value.

* httpheader
Configure whether the file content output should be prefixed by a HTTP header. This can be
useful when scripting CGI or FCGI applications. The value can be 0 (no HTTP header prefix,
the default), 1 (standard HTTP header prefix, without status code) or 2 (HTTP header
including 200 status code). String values none, default and status are also recognized. Not
all table I/O modules support this feature. This attribute has an effect only if the file is
opened for output, and has no records when it is opened. The data is written immediately
after the file is opened, before any other output is performed. The configured corsdomain,
mimetype and downloadfilename attribute data is part of the output. Note that prefixed files
are only useful in Web application CGI/FCGI contexts, where the header is stripped before
the data is seen. They cannot be read as normal structure files.

* hydrogenfilter

A hint about the desired output style of hydrogen atoms of the structure. In contrast to the
hydrogens attribute, this hint does not actually change the structure by adding or removing
hydrogen atoms, neither on the original output object nor a temporary processed structure
or reaction duplicate. Not all I/O modules support this flag. Its availability can be queried
via the capabilities attribute of the £ilex command for the format. The possible values are
default (or -1), which is the default and selects the default hydrogen write mode of the file
format, none (or 0) which suppresses hydrogen output, special (or 1) which writes
hydrogens shown normally with a symbol only, and a// (or 2), which writes all extant
hydrogens. Since this attribute does not change the hydrogen atom set, setting for example
the mode to all when there are no hydrogens attached to the structure has no effect.

* hydrogens
The hydrogen processing mode of the file. Its default can be controlled via the system
variable ::cactvs(default _hydrogen addition mode). Its standard setting is asis, meaning
the hydrogen set is to kept as it stored in the objects for output, or defined in the original file
records for input. Possible modes for this attribute, or the system control variable, are add
(add a complete standard set of hydrogens), asis (keep unchanged), strip (strip hydrogens
except those which are normally displayed, such as bonded to hetero atoms or at stereo
centers), stripall (strip all hydrogen), stripadded (strip all hydrogens which were added by

406 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

a hydrogen add command, automatic hydrogen addition on input, or similar mechanisms)
and addblind (which is the same as add, but does not register the added hydrogen atoms as
implicit in property o _1MpLICIT). When writing a structure object to a file with enabled
hydrogen processing, the original object is not changed. Hydrogen processing takes place
on a ephemeral duplicate object. On input, hydrogens which are no explicitly encoded, but
defined via implicit valence rules in the format specification are still instantiated in asis
mode. For example, a single C atom in an MDL Molfile is read as a single atom, because there
are no default valence rules, but a C as a SMILES string is expanded into one carbon plus four
hydrogen atoms. For a method to suppress the expansion of valence-implicit hydrogen
atoms, see the readflags attribute.

* hydrogenstatus
An enumerated value providing information about the hydrogen status of the file. Possible
values are unknown, complete (all hydrogens present), partial (some hydrogens present)
and missing (no hydrogens present). This attribute is updated when data is read from files
which encode this information. It may also be set and has an effect on some post-processing
operations on objects read from the file.

* ignoreempty
A boolean flag which instructs, when set, the I/O module of the file format associated with
the molfile object to ignore empty records without atoms when reading from the file. By
default, this flag is not set and empty records are retrieved as empty ensembles or other
objects.

* ignoreerrors
A boolean flag which tells the I/O module of the file format associated with the molfile
object to ignore errors and to attempt to read or write the next record instead. By default the
flag is not set and errors in I/O result in Tcl script command errors.

* ignorelist
A list of properties which should not be read from the file, even if they are explicitly encoded
in the records.

* incomplete
This is a boolean read-only boolean flag which indicates that a record was only read
partially. This is the same as checking for the presence of the incomplete flag in the flags
attribute.

* infourl
A URL with information on the file content, or an empty string if unset.

* inode
A read-only attribute reporting the inode number of the file. This is meaningful only for
normal disk files, and only supported on Unix/Linux.

* instanceuuid
The UUID for this object instance.

* invisible
Flag indicating whether the molfile object is invisible. This is not the same as the Aidden
state. An invisible object is no longer accessible via its handle. This is usually the case for
objects which are scheduled for deletion, but still have lingering referring pointers. This
attribute is read-only.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 407

CACTVS Tel and Python Scripting Language Reference

* iscompressed
A boolean read-only attribute which is set when the file is compressed by one of the
recognized compression algorithms (gzip, bzip2 by default). In that case, the file is not
accessed directly but via a pipe the the appropriate decompression program, which changes
the file handling characteristics.

° ismapped
A boolean read-only attribute which is set when the file is read via a memory-mapping
method.

* ispipe
A boolean read-only attribute which is set when the file is accessed via a pipe, either because
it was explicitly opened to a pipe, or because decompression (gzip, bzip2) or character
encoding (iconv) programs where automatically spliced in.

* javaobject
Ifthe toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

o jstreversal
A boolean flag indicating whether the JST special encoding variant for MDL Molfiles should
be used.

* keywords
A list of keywords associated with the file.

o lastrecord
The value of the file record read position before the last mol1file read command. This is
normally the value of the record molfile attribute after the read operation minus one and
corresponds to the file record number of the read object in the data file.

* license
The license class associated with this file. Setting the license to a standard type updates the
associated URL with a standard location.

o licenseurl
A URL with details about the network object license.

e literature
A free-form literature reference.

* line
A read-only attribute returning the current line number. /c is an alias name for this attribute.
Generally this attribute is meaningful only for text-based file formats. For most binary
formats, the value of this attribute is the same as the record number. This line number always
refers to the current physical file. To get the global line number of a virtual file set, use the
viine attribute.

* Joinc
The LOINC code (https://loinc.org/) describing the file contents. For I/O formats where
this information us used (currently SPL) and the attribute is not set, the default is 64124-1
(Indexing - substance). Setting a LOINC value for the first time takes a second or two because
this is a controlled vocabulary, and the term table is loaded from disk for verification.

* loopitem
The current file input item in amolfile loop statement. This is the same as the content of
the loop variable. If no loop is active, this is an empty string. This is a read-only attribute.

408 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* lowmaprecord
The minimum record to include in a memory-mapped section of the file for accelerated read
access. If set to a negative value, which is the default, the toolkit automatically determines
if mapping is worthwhile, and if it is, map the full file. This attribute is primarily useful for
the acceleration of queries which repeatedly operate in a section of a larger file, for example
when running distributed queries with multiple processes handling different parts of a large
file.

* mailencoding
This is a read-only attribute which is only set if the file has been extracted from an email
message or attachment. Possible values are unknown, ascii, iso (for ISO 8859-1), quoted
(for quoted printable), base64 and utfs.

° mailproperties
This is a read-only attribute which is only set if the file has been extracted from an email
message or attachment. It is a list of properties which were requested for computation in a
header field. This attribute is typically used for setting up email-based property computation
services.

* maxblobsize

The maximum size of CAcTvs ensemble or reaction blobs which are part of the file records,
measured in bytes. This attribute only applies to those few file formats which store structure
and reaction data as CAcTvs toolkit blobs. Currently these are CBS and BDB. If the blob size
exceeds the limit, the input or output of the record fails. The default value are 256K, which
is more than sufficient for standard applications. If the attribute is changed, a minimum
value of 64K is silently enforced. Increasing the attribute can have a small negative effect
on I/O performance, but is otherwise safe.

* mimeboundary
This is a read-only attribute which is only set if the file has been extracted from an email
message or attachment. This is the string which was used to separate MIME data blocks in
the message.

° mimedefaulttype
A read-only attribute giving the default MIME type associated with the current file format.

* mimetype
The currently configured MIME type for the file. Initially, it is set to the default type (attribute
mimedefaulttype). However, it can be changed, and it is used for transmitting the file data
via various types of Internet connections.

* modcount
The molfile object modification count. This is a read-only attribute.

* mode

This is a read-only attribute which describes the general file access mode which was
established when the file handle was created by a molfile open Or molfile lopen
command. Possible values are append, pipe, read, string, write and update. Note that in this
attribute there is no difference between the standard read and the restricted read-only modes
(see molfile open). The file mode cannot be changed at a later time by directly changing
the mode attribute. However, with some limitations, a file may be switched back and forth
between input and output modes with the aid of the molfile toggle command.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 409

CACTVS Tel and Python Scripting Language Reference

* mtime
A read-only attribute reporting the time of the last modification of the file. The unit is
seconds since January 1st, 1970. This value is meaningful only for normal disk files.

° mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

° name
On input, this attribute simply reports the full path name of the underlying file, or the
original magic name in case of special files. This attribute can also be set, and in case of
normal disk files, the physical file is renamed, too, if the file access permissions are
sufficient for this operation.

* nitrostyle

The nitro (and similar) group encoding conventions associated with the file handle. There
are actually independent settings of this attribute for input and output. The version reported
by the command is dependent on whether the file is in input or output mode. Possible values
are asis, ionic neutral, xionic and xneutral. The default input value is ionic, while the default
output value is asis. When the value is modified, the new value is stored both for input and
output. If the value is not asis and a structure item is read, its nitro group (and related groups)
connectivity is automatically adjusted to the preferred style. If processing is requested for
output, the connectivity change is performed on a temporary duplicate, so that the original
output object is not modified.

* nullstring
A string which on input is used to identify NULL values, or used on output to encode NULL
values. This attribute is only used by a few I/O modules. The most important application is
in reading text-based tables with embedded structure notations by means of the table
structure I/O module.

° offset

A read-only attribute reporting the current byte offset position of the read or write pointer.
It is not meaningful for all types of data channels.

* orcid
The ORCID code of the author (see www.orcid.org).

* orientation
This value can be none (the default), landscape or portrait. It describes the orientation of a
drawing area specified via the paper attribute. Few I/O modules use this information. The
most important formats which implement this is are CDX and CDXML.

* originalname
The name as originally used to create the molfile object. The standardized name, with path
information in case of disk files, can be accessed via the name attribute. Changing this
attribute has no effect on the file system. This is different from the handling of the name
attribute.

* pagecount
The number of (vertically stacked) pages in the document. This attribute is currently only
used for the CDX and CDXML formats.

410 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° paper
An attribute describing the size of the drawing areas for formats such as CDX or CDXML,
which can encode this type of information. Possible values are none (the default), a3, a4,
as, a6, a7, b3, b4, b5, bo, letter, legal and executive. The associated orientation of the
drawing orientation can be set via the orientation attribute.

* parameters
A free-form string which can be used to pass additional, non-standardized parameters to a
file format I/O module. Few I/O modules use this, one example is the XFIG output code.

* password
A file access password. It is used in various contexts, for example for authentication when
using URL-based access to files, to enable the I/O of encrypted records in files which
support partial data encryption, such as the CAcTvs CBS and BDB formats, or to proceed with
the execution of a remote query received via a listener port. In most cases a change of the
attribute value after a file has been opened has no effect. An exception are modules which
access database tables as virtual structure files. These will react to a changed user name with
re-authentication to the database and table, which may result in different access
permissions.

° path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

° phone
A contact phone number of the file author.

* polysymbol
A free-form string used to override the standard symbol used by a file format I/O module
to indicate polymer components. If set to an empty string, the standard symbol is used,
which depends on the file format. The default is an empty string.

° port
The number of a port on which the file handler should accept remote query requests. If set
to a negative value (the default), no such requests are accepted, and in case a monitor thread
was executing before the value was changed, it is shut down. If a positive port number is set,
a monitor thread is automatically started as listener on the specified port.

* position
This read-only attribute describes the relative position of the read or write pointer in the full
file, as an integer in the range between 0 and 100. It is primarily intended to be used in
progress meters and similar widgets. In case the relative position is unknown, for example
because the total size of the input file is unknown, the value is zero.

o preservelist
A list of properties which should not be changed if a file record is updated, even if the value
in principle depends on, for example, changed connectivity of the main structure record.
Currently, the only I/O module which supports this feature is BDB.

* previousrecord
This read-only attribute is a convenience function to obtain the value of the record number
of the file handle that before the current record was read. Usually, it is the same as the
record attribute minus one, but if reactions from files where reagents and products are
separate sub-records, or complete datasets were read, the difference may be larger.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 411

CACTVS Tel and Python Scripting Language Reference

* progress
A user-defined progress value intended to track the state of lengthy operations on the file.
It is an integer between zero and one hundred and is initially set to zero. When the argument
is set, it accepts a floating point value, but the stored value is automatically rounded to the
next integer and forced into the 0..100 range.

* pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

* pyrefcount
If the toolkit was compiled with Python support, this attribute contains the reference count
of the Python wrapper class instance, if it exists. This attribute is read-only.

* reactioncolumn
This attribute is the numerical index of a column in table-style data files which are, for
example, read by the reaction table I/O module. The column is expected to contain a string
notation for the reaction object which is returned by a molfile read operation. To this
decoded object the contents of the other columns is attached as property data. Typically the
content of the structure column is a Reaction SMILES string or similar line notation. A
negative value of this attribute indicates that the presence of structure data in a specific
column is unconfirmed. In that case, an attempt is made to determine the reaction column
automatically, and the attribute is updated accordingly. However, setting it explicitly may
still be required in case there are multiple columns with reaction data, or there are too many
unreadable or NULL row entries to allow automatic determination.

* reactionscreen
The name of the property which is used for bitvector screening in filtering records for
reaction transform matching. Its default default value is controlled by the global variable
::cactvs (default_reaction_screen_ property) and is usually x_screen. If a file is
opened that contains information about the screen property set when the file was written (for
example, CBS and BDB formats), this attribute is automatically set to the value stored in the
file.

* readflags
This attribute controls a set of input processing flags. If the attribute is queried, the result is
alist of the names of all flags which are currently set. For modification, the preferred method
is to use the bit manipulation prefixes for generic bitset operations. In case just additional
flags should be activated, the mol1file append command can also be conveniently used.
There are also a few shortcut alias attribute names which set or reset selected, frequently
used flags directly (complexresolver). The following flag names are currently recognized:

° none
no flags.

* aroresolver
resolve aromatic bonds into a Kekulé form. A frequent application is the input of records
from MDL SD files which are not used as query structures, but where aromatic bonds in
the original data are nevertheless and illegally encoded as the aromatic structure query
bond type with magic bond order 4. This flag should not be used on formats which are
guaranteed to already encode a proper Kekulé form. This includes all native toolkit
formats (cbin, cbs, bdb, cda, cpc).

412 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° autowrap
When the end of the file has been reached, automatically start reading from the
beginning of the file again, until the full file has been scanned once. This operation
effects only the mol1file scan command and is used there in order to perform full-file
queries starting from an arbitrary position in the middle of the file.

* basiconly
only read basic property data set, not full record. This is supported in CBIN, CBS and BDB
formats in order to accelerate fast filter and query operations.

* chargebalancer
Try to neutralize and balance charges.

* chargecombiner
Try to merge opposing charge pairs where possible, changing the bond orders of paths
between them if necessary.

* complexresolver
perform a bond analysis and re-code typical bonds in metal complexes as non-VB bonds,
which do not participate in valence electron counting. For a more detailed explanation,
see the alias shortcut complexresolver. This flag is set by default.

* continueafterhetatm
For PDB files, consider any atom line after the first HETATM to be a heterogen, regardless
of the line type. This feature helps to cope with ligands which contain amino acid
substructures and which some other PDB write software misclassified as part of the
protein.

* fixdoublespace

If set, this flag instructs I/O modules with support for this feature to read structure files
which contain one spurious empty line after each data line, which unfortunately appears
to happen sometimes when DOS-encoded files are transferred to Apple systems. This is
not the same as reading cr/LF files on crR-only or NL-only platforms, or vice versa, which
is always possible and fully automatic. This flag addresses the problem that, due to
mishandling by obscure transfer software, duplicated Eor-markers are introduced in the
file (two identical cr/LF, or CR, or NL pairs after each data line).

* fixstereo
Remove spurious stereo descriptors on atoms and bonds which are not stereogenic.

* fixwedges
Re-code wedges which are attached with the broad base to a stereo center (for example
as written by IDBS software) into standard [UPAC format with tips at the stereo centers.

* hetatmonly
In PDB files, read only HETATM lines.

* ignorecr
Allow an isolated carriage return (ASCII 13) character without following NL (ASCII 10)
character as data content instead of examining it as potential line break symbol. This flag
is necessarily ignored on Mac-style input files which only use cr as EoL markers.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 413

CACTVS Tel and Python Scripting Language Reference

* ignoreitherdb
If set, ignore any either attribute data for double bonds in MDL Molfiles. Instead,
determine their stereochemistry from coordinates.

* ignoreempty
When reading an empty record, with no atoms, from a multi-record file, ignore the
record and immediately proceed with the next.

* ignoreerrors
When reading a corrupted record from a multi-record file, ignore the error and instead
attempt to re-synchronize and read the next record.

* ignorenorecall
If set, the norecall field flag supported in some file formats (CBS, BDB) is ignored. By
default, data from fields which carry this flag is not merged into the property set of
ensembles or reactions when they are retrieved as objects from these files, as an
optimization to avoid recalling data which is useful for queries, but not so much as object
data (for example, screen bits, element counts). With a set attribute flag, all fields of the
record are attached as property data to recalled objects.

* ignorevisibility
Ignore any display attributes in the input data which would make atoms or bonds
invisible in renderings.

* latehprocessing
Ifthis flag is set, the standard hydrogen addition/removal operations are performed after
other selected processing steps have been performed. By default, hydrogen processing
takes place before charge equilibration, radical charging, etc. This flag should be set if
the hydrogen set in the file records is known to be complete, but the charge and radical
situation is dubious.

* lockmemory
Lock the shared memory mapping arena of the file into memory, preventing it from
being swapped out. This is only supported on Linux, and has an effect only if the
sharedmap flag has been set. Depending on the size of the arena, and the system
configuration, this operation may require enhanced privileges.

* logqueries
If the file formats supports operation logging, activate the log.

* keepcoords
In case multiple molecules or ensembles are read in one operation, the system normally
verifies that they do not have overlapping 2D display coordinates, and moves them apart
if necessary. If this flag is set, the 2D display coordinates in property a_xy are always
passed unchanged.

414 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° mergedata
In case there are repeat instances of the same data item in an input record, attempt to
append it in a suitable fashion to the first property instance on the input object. By
default, multiple data items with the same name are not merged, but result in multiple
property data instances. This is a problem which is encountered typically while reading
data from formats with limited syntactic expressiveness that cannot properly distinguish
between these cases.

* multibondcheck
attempt to correct unlikely clusters of multiple bonds.

* nocoordinatecheck
do not attempt to discover and fix mixed-in missing 2D or 3D coordinates, for example
encoded as all-0 values. All coordinate data is to be preserved verbatim.

* noorigin
do not register the origin of the property data values from the current file as metadata
information.

* noeof
do not attempt to detect EoF. More data may be coming.

* noimplicith
do not add a standard valence set of hydrogens to explicitly encoded atoms, even if the
file format specification defines such a set. The most common application is for reading
SMILES strings without the default hydrogen atoms. nohadd is a (slightly misleading)
alias for this flag. This flag is independent of the generic hydrogen addition/removal
processing option, which can be configured with the sydrogens attribute.

° nometa
if this flag is set, it asserts that the file does not contain metal atoms. This is for example
useful for reading PDB files which frequently possess ambiguous encodings such as CA
for calcium or alpha carbon.

* nometalh
suppress addition of hydrogens to metal atoms.

e noradicals
assert that the file does not contain records with atoms that are radicals. This is a hint
which is used for hydrogen addition, radical charging, and other operations.

* pedantic
apply pedantic checking of file syntax rules. For some frequently abused file formats,
such as MDL Molfiles or PDB, this may result in quite a percentage files being rejected
for file format specification violations.

* radicalcharger
Edit radicals which are typically formed by reading a file without formal atomic charge

information by adding standard formal charges, for example replacing NR4 with N(+)R4

and OR with OC)R. This only works reasonably well if the file contains a complete
hydrogen set.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 415

CACTVS Tel and Python Scripting Language Reference

* readas2d
Force the interpretation of atomic coordinates as 2D, regardless of the file type encoding
or presence of a third coordinate column, which may have been abused as an additional
atom data store.

* readparity
If this flag is set, the parity fields in MDL Molfiles and derivatives are read and the data
stored in property A_LABEL_STEREO. In accordance with MDL rules, this field is normally
ignored, and stereochemistry decoded from wedge bonds and atom coordinates.

* sharedmap
If the file is memory-mapped, use a shared memory segment for the data. This can be
useful if there are many processes accessing the same file for reading. This flag is only
supported on Unix/Linux.

o simpleradicals
Ifthis flag is set, the input file is assumed to contain only simple doublet radicals, if any.
Any encoding of other, probably miscoded radical forms is changed to a doublet.

* tautoresolver
Perform a tautomer standardization on the read structure. This operation invalidates
numerous atom and bond properties, such as coordinates, but in this special case all
ensemble properties which were attached to the processed structure are retained,
regardless of their sensitivity toward atom and bond changes. Tautomer resolution
requires a complete hydrogen set, so either these must be present in the input file, or a
suitable hydrogen addition mode must have been set on the file handle. The processing
behind this input option is comparatively expensive. For normal input, when speedy
input and maximum fidelity of the data to the original file is desired, this flag should not
be set.

* readkey
This attribute is only used in certain library configurations which have been configured to
restrict read access to specific types of files. The key and data computed from the file name
must together match the signature. Usually restricted applications have a compiled-in
signature, and one or more read keys which enable read access to the same number of
specific files.

* readkeysignature
This attribute is used for certain library configurations which have been configured to
restrict read access to specific files. This signature is required to verify the read access key.

* readkeystatus
A read-only attribute which reports the access key status for a file for which a read key has
been specified. It can be unchecked, verified or error.

* readscope

This attribute controls which types of objects are read from a file, in case the file contains
more than one object type. For example,. MDL RXN files can be read as en ensemble record
stream, or as a reaction record stream. CAcTvs CBIN files can be read as a multi-record stream
of individual ensemble or reaction records, or as a single dataset with additional dataset
properties. CTX files allow access to individual molecules or ensembles. The hierarchical
FDA SPL format supports read modes for molecules, ensembles, and datasets. The default
value for this attribute depends on the file format and is automatically updated whenever the

416 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

format is analyzed or changed. It is generally set to the most commonly used access variant
for that format, for example reactions for RXN files and ensemble streams for CBIN, but it
may also be set explicitly. Possible values are none, mol, ens, reaction, dataset, biologics,
hierarchy and auto. In case a file format does not support a specific variant, the next
supported type to the right in this sequence is automatically used. The auto mode performs
a new content analysis for every record and use the most suitable scope. Examples where
this is useful are RDF files with mixed structure and reaction records, or RTF documents
which mix reaction and structure OLE objects. The dataset mode is potentially dangerous
when reading large multi-record files which do not contain multiple smaller datasets. In that
case, the whole file is interpreted as a single dataset, and that can lead to a large amount of
memory being consumed.

* record
The number of the next record to be read or written, starting with one. This value always
refers to the current physical file, even if the file handle manages a virtual file. In case a
virtual file is read, the vrecord attribute can be used to access the global record number. rc
is an alias name for the attribute.

It is possible to set this attribute in order to reposition the file pointer. In case the file is
opened for output, and is not in update or append mode, this operation truncates the file.
Repositioning while reading does not modify the file. It is not possible to position the file
pointer any further to the rear of a file than immediately behind the end of the last existing
record. In case of virtual files, a record setting implicitly changes the vrecord attribute, not
the current physical file record.

When setting the attribute, the special values end and last can be used to position the file
pointer behind the last, or before the last record, and a negative value is interpreted as a
backspace from the current position. The return value is the resolved record number.

* recordtable

This is a read-only attribute. It returns a nested list of the attributes of the currently known
record positions in the file. Every list element is itself a list which contains, in this order, the
record number, the file offset, the line number (which is the same as the record number for
binary formats), the eor type of that record, a boolean flag indicating whether the record is
physically present in the disk file (0) or virtual (1)., and the original file name used to create
the handle. In case of multi-file handles, this is not a constant over all records. In order to
guarantee that all records of a file and their offsets are known, execute for example a
molfile count command before querying the record table.

* refcount
If the Tev interpreter is using native CAcTvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TcL object references active for this object. The attribute is read-only.

° references
Cross references of the file. This is a nested list of class UUIDs and reference type tags.

* replyto
The future recipient of a file. This is only set when the file has been extracted from a mail

message or attachment. In order to send mail messages to specific destinations via the mail
wrapper I/O module, this attribute may also be set.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 417

CACTVS Tel and Python Scripting Language Reference

e resolution
A resolution value in DPI (dots per inch). The default value is 0, meaning that it is
undefined. This information can be used by a couple of I/O modules, for example for
reading structure data from image files by performing chemical OCR via the interface to the
OSRA program.

* returnformat
The name of the desired return format if the original file was received by mail. This is only
set when the file has been extracted from a mail message or attachment.

* scandata
This is a read-only attribute which reports statistics on the lastmolfile scan command. The
returned data is a Ter dictionary with keys start _time (in seconds since 1970-1-1), stop_time
(in seconds since 1970-1-1), scan_time (in seconds), ens read (count of ensemble objects
instantiated), miniens read (count of Minimol objects decoded), reactions read (count of
reaction objects instantiated), properties read (count of property records read),
ens_screened (count of bit-screen filtering operations performed for
substructure/superstructure searches), reactions _screened (count of bit-screen filtering
operations performed for reaction matching), records examined (count of records looked
at), records_matched (number of matched records), start_record (record the scan started at),
end_record (last visited record), eof reached (boolean indicator whether the end of the file
was reached), max _mmap used (maximum used size of memory mapping arena),
max_mmap_requested (maximum requested size of memory mapping arena),
records_skipped (number of records which where skipped with need for
re-synchronization), records_repositioned (number of records which were finished without
the need for a re-synchronizing skip operation) scores computed (the number of scoring
function calls executed).

* scoped
A boolean object visibility control flag. If set, and global control flag
: :cactvs (object_scope) is also set, the object is visible only in theTcL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

o selected
Flag indicating whether the object is selected. This attribute can be changed.

e selection
This attribute is not a molfile handle attribute, but a flag attached to individual records. If
queried, the return value is a list of all record numbers for which this flag is set. Using
molfile set with a list of record numbers in any order to modify the attribute resets the
current flags, and creates a new set. Modifying the attribute via molfile append adds
selection flags without resetting the current selection. The selection flag can only be set for
existing records. If an attempt is made to set the selection flag ahead of the currently known
position set, the command scans the record structure (as inmolfile count), which can be
a problem in case of non-rewindable input. In order to facilitate resetting of selection flags,
the virtual attribute deselection can be accessed as the inverse of the selection. Setting it to
an empty list selects all records up to the end of the file (again this triggers automatic
forward scanning, if necessary), and appending a list of records removes them from the
selection. The default value of the selection flag for any record is false.

418 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° separator
A string containing one or more column separator characters. This is used for example by
the structure and reaction table I/O module. The attribute is also set when a table with an
auto-detected separator character was read via the file handle. The default separator is a
single tab character.

* sessionkey
A free-form string intended to be used to identify sessions.

° shmid
In case the memory map arena of the file is in shared memory, this is the shared memory key
as read-only value. If the file is not mapped into shared memory, or on platforms where
memory mapping is not supported, the value is always minus one.

* signature
The signature of a mail message. This is only set when the file has been extracted from a
mail message or attachment.

* similarityproperty
The name of the property which is used for bitvector similarity computation in file scans.
Its default default value is controlled by the global variable
::cactvs (default_similarity property) and is usually either E SCREEN Or
E_QUERY SCREEN. Ifa file is opened that contains information about the similarity property
set when the file was written (for example, CBS and BDB formats), this attribute is
automatically set to the value stored in the file.

* size
The file size in bytes as read-only data. In case it is not known, for example because the file
is accessed via a special stream or a pipe, zero is reported.

° sizehint
The expected maximum record count of the file. This attribute is used by some I/O modules
to pre-allocate room in files with complex storage layout, in order to avoid the need for
expensive re-organization during later record writes. The CBS format especially benefits
from this information. File formats which are simple record sequences have no use for this
information. A value of zero, which is the default, specifies an unknown future size. If the
final size is not known exactly, it is generally preferable to overestimate it somewhat than
to be slightly short.

o statusflags
A list of boolean flags which describe the status of the machinery behind the I/O operations
of'this handle. All set flags are reported. When checking for the presence of a flag, make sure
not to use simple string comparison, because other flags may also be set. While it is possible
to change the flags, this is not a common operation, and if done carelessly can disrupt the
1/0 functionality of the handle. The older attribute name flags is still a valid alias. The
following flags are commonly seen:

* append - all file output is append to the end of the file, ignoring the current write pointer
position.

* binary - the file is binary, without a line structure.

* bzip2-compressed - the file is accessed via a pipe to the bzip2 program.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 419

CACTVS Tel and Python Scripting Language Reference

* checkedbinary - the file contents were checked to determine whether they contain
non-ASCII characters.

* edited - the file contains virtual edited records, or virtual deletes.

* fakeposition - the file has no meaningful offset positions for the beginnings of records,
the offset data structures contain other forms of access information

* gzip-compressed - the file is accessed via a pipe to the gzip program.

* incomplete - the last file record was not read completely. This can be intentional in file
formats which support basic and extended data groups, or can be an indication of a
non-critical decoder problem.

* indexed - the file is accessed via an index file with record positions, not directly.

* nommap - memory-mapping of the file contents is suppressed.

* initialized - an initialization function of in the associated I/O module has been called
* locked - there is currently a flock()/lockf() style file lock active on the file.

* mapallocated - the memory mapping arena for the file was allocated and filled via some
read operation, not mmap()ed.

* memlocked - a mapping of the file are locked into memory and are not swapped out.
* readable - the file handle can be read from.

* readonly - the file has been opened for read-only access, without the possibility to switch
the handle to a different mode.

* remotefs - the physical file resides on a non-local file system.

* rewindable - the file can be rewound if necessary

 scratch - the file is a scratch file and is automatically deleted when the file is closed.
* shared - the file contents reside in shared memory.

* validcount - the current number of known positions is known to correspond to the total
of records in the file.

* virtual - the file is a virtual file build from multiple physical files.
* ucs2-encoded - the file is accessed via a pipe to the iconv program.
* url - the file is accessed via a URL, not a file system path.

* updating - the file is currently being updated

* writeable - the file handle can be written to.

e xdr - the file is associated with an xbDr encoder or decoder structure.

420 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° style
A free-format string identifying a predefined attribute bundle for graphics-oriented file
formats. This is currently supported for CDX, CDXML, SKC and TGF, where, for example, the
acs value selects settings corresponding to the “ACS Journal” settings in ChemDraw or
ISISDraw.

° structurecolumn
This attribute is the numerical index of a column in table data files which are, for example,
read by the structure table I/O module. The column is expected to contain a string notation
for the basic structure object which is returned by amolfile read operation. This string is
decoded and the content of the other columns is attached as property data to this object.
Typically the content of the structure column is a SMILES, SLN or InChl string. A negative
value of this attribute indicates that the presence of such structure data is not confirmed. In
that case, an attempt is made to determine the structure column automatically, and the
attribute is updated accordingly. However, setting it explicitly may still be required in case
there are multiple column with structure data, or there are too many unreadable or NULL row
entries to allow automatic determination.

* subformat
A enumerated value which encodes the subtype of the main file format. The most common
values are mol2d, mol3d and mol0d, to indicate structure records with 2D or 3D or no
coordinates. The type reaction can be encountered for RDF and CTX files with reaction data,
since these can also be structure files in other cases. The attribute is automatically set when
a file is read,. For some formats a explicit specification of the attribute controls the output
formatting, for example for all file formats which contain an MDL ctab block, which can
store either 2D, 3D, or OD information, but not simultaneously.

* substructurescreen
The name of the property which is used for bitvector screening in filtering records for
substructure matching. Its default default value is controlled by the global variable
: :cactvs (default_substructure_screen_property) and is usually either E_SCREEN or
E_QUERY SCREEN. If a file is opened that contains information about the screen property set
when the file was written (for example, CBS and BDB formats), this attribute is
automatically set to the value found in the file.

° superstructurescreen
The name of the property which is used for bitvector screening in filtering records for
superstructure matching. Its default default value is controlled by the global variable
::cactvs (default superstructure_ screen_ property) and is usually either
E_NO_HYDROGEN SCREENOI'E_NO HYDROGEN QUERY SCREEN.Ifafileisopened that contains
information about the screen property set when the file was written (for example, CBS and
BDB formats), this attribute is automatically set to the value found in the file.

* template
The name of a template file to be used for output formatting. At this time, only the RTF I/O
module uses this information. It switches between de novo RTF formatting and replacing
chemistry tags in the template file. If this value is set to an empty string, no template is used.

* timeout
The maximum number of seconds to spend in a molfile scan command. When the time
is exhausted, the scan terminates after the respective current record has been cleanly
processed by all query threads, even if the end of the file has not been reached. Setting the

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 421

CACTVS Tel and Python Scripting Language Reference

attribute to zero, which is the default, allows an unlimited time to be spent on a query.
Another function where the timeout value is used is in reading a record via an Internet
connection, for example an Atfp or fip URL. If the timeout expires and the record has not
been downloaded, an error results.

* tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

o url
A read-only attribute with the URL in case the file is accessed via an Internet connection.
If no such connection exists, the result is an empty string. If a URL has been set, this attribute
may be indexed using the same fields as a URL property data item in order to retrieve URL
components.

The allowed field names are hash, host, hostname, href, pathname, port, protocol, search,
user, password, directory, file, ipaddr, lastmodified and mimetype. Note that in this context
the port field name is the port the file is transferred via the Internet connection, which
generally is not the same as the listener port for remote requests (seemolfile get attribute
port). Likewise, the mimetype here is the MIME type as reported by the server, not the file
MIME type defined by the file format handler module. Example:

set ip [molfile get $fh url (ipaddr)]

° user
This is a shortcut for the user name part of a file or virtual file addressed via an URL. For
simple retrieval it is equivalent to the URL field attribute url(user). For some I/O modules,
for example the interface to access MysaL tables as virtual structure files, a change of the user
name has an effect and results in a re-authentication of the database and table access, which
can result in different access permissions. For normal files accessed via a URL a change of
the attribute is ignored after the file has been opened. Files that are not associated with an
URL have an empty user name value.

° uuid
An automatically generated UUID globally identifying the object. This attribute is
read-only, different for every object, and not dependent on the contents or format of the disk
file this object is associated with.

* valencelevel
For files which support this concept, an indicator what kind of structure (stable,
intermediate, MS ion, etc.) is stored in the file.

* version
The file format version as a string. This attribute is set automatically when a file is opened
for reading. If it is not set, files are generally read or written in the latest supported version.
If a data file contains a known version indicator, input routines in some cases adjust to older
encoding standards. The I/O modules of some file formats support the writing of old
versions. An example are the CDX and CDXML modules, which in the context of file versions
explicitly set to less than 8.0 do not write the InterpretChemically tag which is not
understood by older ChemDraw releases.

* versionuuid
The version UUID associated with this file as per its authorship attributes.

422 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* viine
The current virtual line count as a read-only attribute. For simple files, this is identical to the
standard line count (attribute /ine or /c). However, for virtual files opened by means of the
molfile lopen command, this attribute is the global line number in the virtual file, while
line/lc refers to the line count within the current physical file. The attribute name vic is an
alias.

* vrecord
The virtual record number of the next record to be read, starting with one. For simple files,
this is identical to the standard record count (attribute record or rc). However, for virtual
files opened by means of the mo1file lopen command, this attribute is the global record
number in the virtual file, while record/rc refers to the record count within the current
physical file. The attribute name vrc is an alias.

This attribute can be set and changing it results in repositioning of the file pointer, and
potentially even a change in the active physical file.

When setting the attribute, the special values end and last can be used to position the file
pointer behind the last, or before the last record, and a negative value is interpreted as a
backspace from the current position. The return value is the resolved record number.

° width
The maximum width of a structure or reaction depiction in points (1/72 of an inch). This is
only used for graphics-oriented formats, such as CDX, SKC or EMF. If the attribute is set to
anegative value, which is the default, the size is indirectly controlled by the bond length and
atom coordinates. In case this attribute is set to a positive value, and the depiction would
exceed the maximum width or height, it is automatically scaled down proportionately.

° writeend
An enumerated value indicating what kind of record end marker should be written on
output, if the file format has such a concept. Possible values are none, mol and block. The
default value is block, which translates into the standard record terminator for almost all file
formats. The mol type is only significant for CTX format output. The none value can be
useful if a programmer wants to add custom data to the end of a record and then writes an
end marker himself, as it could be done without too much effort for example for an SD file.

o writeflags
A collection of boolean flags controlling output details. When queried, this attribute returns
a list of the names of all set flags. Modification of this flag supports the standard bit
manipulation prefixes. The following flag names are currently recognized:

* none - no flags

° computeprops - attempt to compute properties in the write list if they are not yet present
in the output objects.

* contracthydrogens - whether to store displayed hydrogens as explicit atoms, or
contracted and linked to their bond partner atom as a hybrid object. This option only
applies to the CDX and CDXML formats. By default, the option is not set.

* miniheader - keep the file header as concise as possible.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 423

CACTVS Tel and Python Scripting Language Reference

* nohydrogenisotopesymbol - if set, the default isotope symbols for heavy hydrogen (D
and T) are not used in output. Instead, a simple H symbol is always written. Setting this
flag does not suppress isotope output per se - if the file supports other means to define
isotopes (e.g. M ISO lines in MDL files) these are still used.

* multiwriter - prepare the file to handle multiple simultaneous writers. The only file
format I/O module which currently supports this is BDB.

* noimplicith - do not output hydrogen atoms which were added as implicit atoms.

* nomoleculesplit - do not split the ensembles into individual sub-records when this is
normally required by the output format. This currently is only used by the MDL RXN and
RD [/O modules. RXN files usually store every reaction component as a sub-record. This
flag can be used to force writing of a single reagent and product record each, where each
part may contain multiple un-separated components.

* nopropertymapping - always synthesize property descriptions, do not attempt to map
them onto existing standard system definitions. The only module currently supporting
this feature is the PuBCHEM ASN.1 module.

* nostereo - do not write stereo information into the file, even if present in the output
structures.

* nostereoperception - do not attempt to perceive stereochemistry from the available
object data such as 2D coordinates and wedges, or 3D atomic coordinates, even if the file
format normally requires this information.

* omitct - if the inclusion of a structure connectivity table is optional, this flag can be used
to suppress the output this block.

* pedantic - perform pedantic output format checking, for example by refusing to write
long lines in text formats which exceed the exact format specification, or refusing to
write structures with more atoms than officially supported.

* rawcoordinates - do not perform any coordinate checking, scaling, and centring but
write the coordinates exactly as they are currently stored.

* recalcbaseprops - if the output file content is a single property (for example £ cIF for
GIF or PNG files, E EMF_IMAGE for EMF and WMF files), force recalculation of this
property before output.

424 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

o supergroupexpansion - If a file format can either be written with expanded or contracted
superatom groups (specified as type SUP in property ¢_TyPE and group label in G_NaME),
the default is to write them contracted. If this flag is set, the expanded form is used
instead. This option affects few file formats (currently cdx and cdxml). It does not
perform expansion of superatoms which are only present as a single pseudo atom in the
ensemble by decoding their tag (see ens expand command to achieve this). Rather, it
expects the full set of atoms of the expanded form in the ensemble, plus one or more
properly set up group objects indicating the atoms of the expanded form of a functional
group or fragment which are not shown in the contracted style. If these groups are
present, only the first atom in any group is shown, with the ¢ naME data as atom tag,
which overrides all other label information. However, the output file still contains the
hidden atoms and their data. Tools like ChemDraw use this data to support interactive
group expansion utilizing the original layout coordinates of the previously hidden atoms
and other information.

 synchronous - use synchronous writes for files which normally use buffering to increase
performance, for example in the bdb format.

* splitmol - Split output into individual ensembles and write each molecular fragment as
a separate record.

* upgrade - if this flag is set, and the format of a file is not of the most current version, but
there is an upgrade function available in the support library, invoke the upgrade function
to change the file layout to the most current version. The bdb module is the only one
which currently supports this feature.

* writeOd - write records without coordinates if possible
* write2d - write 2D records if possible
e write3d - write 3D records if possible

° writearo - write aromatic bonds instead of a Kekulé form if the file format supports this.
An example where this makes sense are SMILES files. A counterexample are MDL
Molfiles - you can enforce the encoding of aromatic bonds of non-query structures as the
aromatic query bond type with this option, but that is technically incorrect and violating
the format specification. Nevertheless, there are third party programs which require data
in that format aberration for further processing.

* writecolor - write atom and bond colouring information if this is an optional part of the
file format specification.

* writeenzymes - if the output data contains enzyme superatoms, include them in the
output if that is an option. The SDF3000 I/O module is an example for a module
recognizing this flag.

* writelabels - write explicit atom labels, as defined in the attribute atomlabelproperty, if
the file format supports it. This does not override the natural numbering of the written
atom objects. It only applies to formats which support a parallel user-defined labelling
scheme, such as CDX/CDXML.

° writename - write a structure name section if this is optional information in the output.
An example are SMILES files.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 425

CACTVS Tel and Python Scripting Language Reference

426

* writekey
This attribute is only used in certain library configurations which have been configured
to restrict write access to specific types of files. The key and data computed from the file
name must together match the signature. Usually restricted applications have a
compiled-in signature, and one or more write keys which enable write access to the same
number of specific files.

* writekeysignature
This attribute is used for certain library configurations which have been configured to
restrict write access to specific files. This signature is required to verify the write access
key.

° writekeystatus
A read-only attribute which reports the access key status for a file for which a write key
has been specified. It can be unchecked, verified or error.

o writelist
A list of properties that should be included in the output if the file format supports this.
Standard properties defining basic connectivity etc. usually do not need to be listed
because they are written out by default where needed. Normally, this list contains only
ensemble- or reaction-level properties, like SD data fields. Properties listed both in the
write list and the drop list are not written. By default properties listed here are not
computed. If they are not already present in the output objects, they are omitted. The
computeprops bit in the writeflags attribute can be used to automatically initiate a
computation attempt. Still, if a computation attempt fails, the output of that property data
is silently omitted.

° X
Ifthe toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

°y
Ifthe toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

The attribute list above is also referenced by the mo1file set command. This is the reason why it
contains information about the read-only status of the individual attributes. Only attributes that can
be set can be addressed by the molfile set command.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Filters in the optional filter set must apply directly to the file object. Filters which operate on other
object types are ignored.

Variants of the molfile get command are molfile new, molfile dget, molfile jget,
molfile jnew, molfile jshow, molfile nget, molfile show, molfile sqgldget, molfile
sqlget, molfile sqglnew, and molfile sqlshow. These commands only work on property data
and cannot be used to access attributes..

molfile getline

molfile getline filehandle ?skiprecord?

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

f.getline (?skiprecord=?)

Read a text line from the file, with repositioning of the file pointer. This operation is only possible
on text files which have been opened for reading. The command is not frequently used, because it
tends to disrupt the normal file record parsing.

If the skiprecord boolean argument is set, the file is positioned to the beginning of the next record
after the line has been retrieved.

The command returns the line read. Line termination characters are removed.

molfile getparam
molfile getparam filehandle property ?key? ?default?

f.getparam(property=, ?2key=?, ?2default="?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PyTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

Example:

molfile getparam $fhandle F QUERY GIF format

returns the actual format of the data in that property, which could be a GIF, PNG or a bitmap format.

molfile hloop

molfile hloop filehandle objvar ?maxrec? body

f.hloop (function=, ?maxloop="?, ?variable="?)

Molfile.Hloop (filename, function=, ?maxloop=7?, ?variable=?)

This command is functionally equivalent to the mo1file loop command. The difference is that for
the duration of the loop command hydrogen addition is enabled for the file handle. The original
hydrogen addition mode of the file object is restored when the loop finishes.

molfile hread

molfile hread fhandle ?datasethandle/enshandle/#auto/new? ?recordcount?

molfile hread fhandle ?datasethandle/enshandle/#auto/new? ?parameterdict?
f.hread (?target=?, ?parameters=?)

Molfile.Hread (filename, ?target=?, ?parameters=?)

This command is identical to the mo1file read command, except that standard hydrogen addition
is enabled for the duration of the command. The original hydrogen mode is reset when the command
completes.

The PyTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

Example:

set eh [molfile hread “myfile.mol”]

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 427

CACTVS Tel and Python Scripting Language Reference

This is a simple single-record structure input with hydrogen addition, using a file name instead of
a file handle. The file is automatically opened and then close for the duration of the command.

molfile jget

molfile jget filehandle propertylist ?filterset? Pparameterdict?
f.jget (property=,?filters=?, ?parameters=?)
Molfile.Jget (filename,property=,?filters=?, ?parameters=?)

This is a variant of mo1file get which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

molfile jnew

molfile jnew filehandle propertylist ?filterset? P?parameterdict?
f.jnew (property=,?filters=?, ?parameters=?)
Molfile.Jnew (filename,property=,?filters=?, ?parameters=?)

This is a variant of mo1£file new which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

molfile jshow

molfile jshow filehandle propertylist ?filterset? ?parameterdict?
f.jshow (property=,?filters=?, ?parameters="?)
Molfile.Jshow (filename,property=,?filters=?, ?parameters=?)

This is a variant of mo1file show which returns the result data as a JSON formatted string instead
of TcL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

molfile list

molfile list ?filterlist=?
Molfile.List(?filters="?)

This command returns a list of the molfile handles currently registered in the application. This list
may optionally be filtered by a standard filter list.

Example:
molfile list

lists the handles of all open molfiles in the application.

molfile lock
molfile lock filehandle propertylist/objclass/all ?compute?

f.lock (property=, ?compute=?)

428

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Lock property data of the file handle, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the file handle which would invalidate the information. Property data remains
locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

* Property names
Valid property instances on the file object are locked. If the boolean compute flag is set, an
attempt is made to compute the property if it is not yet present. Otherwise, a request to lock
non-existent data is silently ignored. It is not possible to lock individual property fields.

e all
All valid file properties are locked. The compute flag is ignored.

* molfile
This is an object class identifier. All property data which is controlled by the file major
object and attached to the specified object class is locked. Since files do not incorporate
minor objects, this identifier is equivalent to a/l.

The lock can be released by a molfile unlock command.

This command is a generic property data manipulation command which is implemented for all
major objects in the same fashion and is not related to disk file locking. Disk file locks can be set
or reset by modifying the molfile object attribute lock. This is explained in more detail in the
paragraph on the molfile get command.

The return value is the original molfile handle or reference.

molfile loop

molfile loop filehandle objvar ?maxrec? body

f.loop (function=, ?maxloop=7?, ?variable=?)

Molfile.Loop (filename, function=, ?maxrecords=?, ?variable=?)

for obj in f:

Execute a loop over the file. Objects are read from the file from the current file position onwards.
The type of object read (usually ensemble or reaction, but in principle it could also be a table or
dataset object) depends on the read scope of the file. In the TcL variant, the handle of every object
input from a file record is assigned to the specified TcL object variable. Next, the TcL script code in
the body argument is executed. The body code typically uses the value of the variable to perform
some operations with the currently read object. After the body code has been executed, the object
which was just read is deleted, and the cycle is repeated, either until EoF has been reached on the
file (the default), or the maximum number of records specified by the optional parameter has been
reached, whichever comes first. In either case, no error is generated when the end of file has been
reached. Setting the maximum record count parameter to an empty string, or to a negative value,
results in the default processing style running until the end of the file.

For TeL scripts, within the loop, the standard TcL break and continue commands work as expected.
If the body script generates an error, the loop is exited. If the loop code generates an error, the loop
is terminated and the error reported. Programs should not expect that the same object handle value
stored in the variable is reused in each iteration.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 429

CACTVS Tel and Python Scripting Language Reference

430

Since the input objects are automatically deleted after they have been processed, it is not required
to delete them in the loop code. Deletion requests on the loop object executed within the loop are
ignored. Any other operation on the structure object is allowed. The loop code may perform
repositioning operations on the input file, but not close it.

The PyTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TcL construct),
or a function reference. Functions are called with the reference of the current loop object as single
argument, and have their own context frame, so that the specification of a reference variable is not
generally useful in that call style, though is is allowed. For string function blocks the code is
executed in the local call frame, and the variable with the current object reference is visible locally.
Script code blocks must be written with an initial indentation level of zero. Within the PyTHoN
functions, the normal break and continue loop control commands cannot be used to to scope
limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can be raised. These are
automatically caught and processed in the loop body handler code.

In PyTHON, there is also an object iterator so that simple loops over structure file contents can be
written with a for statement. The molfile object iterator is of the self'style (i.e. there is one per
molfile, these are not independent objects), so nesting them is not possible on the same dataset.
There is no distinct ~loop iterator, but that can be emulated by setting the hydrogens attribute on the
molfile object.

PyTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PyTHON scripting.

The return value is the number of processed records.

Example:

set th [table create]
table addcol $th E NAME
table addcol $th E WEIGHT
molfile loop Smyfile eh {
table addrow $th #auto end [list [ens get Seh E NAME] [ens get $Seh E WEIGHT]]
}

This sample loop successively reads all records from the file and stores the ensemble handles in
variable eh. In the loop body, the handle is used to extract name and molecular weight information
from the structure and store it in a table object.

molfile lopen

molfile lopen filelist ?mode? ?attribute value?...
molfile lopen filelist ?mode? ?attributedict?
Molfile (filenamesequence, ?mode=?, ?attribute=?)

Molfile.Open (filenamesequence, ?mode=?, ?attributes="?)

Molfile.Lopen (filenamesequence, ?mode=?, ?attributes="?)

Open a list of files as a virtual file. The files identified by the file list items are implicitly
concatenated in the list order. In addition to normal files, the standard set of special input types such
as URLs, pipes, TcL file handles or standard channels may be used. This command returns a single
file handle, regardless of the number of input files passed as parameter.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

A file list can only be opened for read operations on input objects. Writing, appending, updating or
string input are not supported.

Most input file operations can be performed on virtual files. One important exception is currently
file scanning with query expressions. This only works for lists of standard sequential files, not files
which contain optimized query layouts, such as the native Cactvs CBS and BDB file formats. These
can only be used as a single file for molfile scan commands. However, simple structure input is
possible across file boundaries even with these formats.

The rest of the options are processed in the same way as the standard mol1file open command.

In the PyTHON interface, there is no distinction between the 1open and open commands, because it
can be unequivocally established whether the filename argument is a sequence (tuple or list of
filenames), or a single file name. The interpretation is performed according to the argument type.
The PytHoN command always uses a file attribute dictionary, not a keyword/value argument set.

Example:
set fhandle [molfile lopen [lsort [glob *.mol]]]

molfile max

molfile max filehandle property ?filterset?

f.max (property=,?2filters=?)

Molfile.Max (filename,property=,?2filters=?)

Scan the file for the maximum value of the specified property from the current read position to the
end of the file. If no error occurs, the file is at end-of-file after the end of the command.

If afilter set is provided, it is applied to the objects read from the file during the scan, not the molfile
object proper. Objects which do not pass the filter are ignored.

The property may correspond either to a data column in the file, or to a computable property on the
structure or reaction objects read during the scan. Read objects are transient and automatically
discarded. The property argument may contain a field specification, and in that case, only the field
value is compared.

The maximum value determination uses the standard property comparison function associated with
its data type. For properties which are implicitly defined during file I/0, an explicit property
definition with a correct data type may be beneficial. For example, when testing the values of an SD
data field, by default the data is read as an implicitly created string property. If the field content is
actually an integer, the comparison as a string value does not yield the same results as when the data
is compared as an integer. For file formats which encode a proper data type of its contents this is not
necessary.

The return value is the maximum property or property field value found, or an empty string if no
input was processed.

The PyTHON class method is a one-shot command. The transient molfile created from the

initialization items is automatically closed when the command finishes.

molfile metadata

molfile metadata filehandle property ?field ?value??

f.metadata (property=, ?2field=?, ?value=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 431

CACTVS Tel and Python Scripting Language Reference

432

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commandsmolfile setparamandmolfile
getparam can be used for convenient manipulation of specific keys in the computation parameter
field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

molfile min

molfile min filehandle property ?filterset?
f.min (property=,?2filters=?)
Molfile.Min (filename, property=,?filters=?)

Scan the file for the minimum value of the specified property from the current read position to the
end of the file. If no error occurs, the file is at end-of-file after the end of the command.

If a filter set is provided, it is applied to the objects read from the file during the scan, not the molfile
object proper. Objects which do not pass the filter are ignored.

The property may correspond either to a data column in the file, or to a computable property on the
structure or reaction objects read during the scan. Read objects are transient and automatically
discarded. The property argument may contain a field specification, and in that case, only the field
value is compared.

The minimum value determination uses the standard property comparison function associated with
its data type. For properties which are implicitly defined during file I/O, an explicit property
definition with a correct data type may be beneficial. For example, when testing the values of an SD
data field, by default the data is read as an implicitly created string property. If the field content is
actually an integer, the comparison as a string value does not yield the same results as when the data
is compared as an integer. For file formats which encode a proper data type of its contents this is not
necessary.

The return value is the maximum property or property field value found, or an empty string if no
input was processed.

The PyTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile mutex

molfile mutex filehandle mode

f.mutex (mode)

Manipulate the object mutex.

During the execution of a script command, the mutex of the major object(s) associated with the
command are automatically locked and unlocked, so that the operation of the command is
thread-safe. This applies to toolkit builds that support multi-threading, either by allowing multiple
parallel script interpreters in separate threads or by supporting helper threads for the acceleration of
command execution or background information processing.

Going beyond this automatic per-statement protection, this command locks major objects for a
period of time that exceeds a single command. A lock on the object can only be released from the
same interpreter thread that set the lock. Any other threaded interpreters, or auxiliary threads, block

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

until a mutex release command has been executed when accessing a locked command object. This
command supports the following modes:

* lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

° reset
Release all persistent locks on the object, if any exist.

° fest
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

* unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

molfile need

molfile need filehandle propertylist ?mode? ?parameterdict?

f.need (property=, ?mode=?, ?parameters="?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original file handle or reference.

Example:
molfile need $fhandle F_AVERAGE ATOM COUNT

molfile new

molfile new filehandle propertylist ?filterset? ?parameterdict?
f.new (property=,?filters=?, ?parameters="?)

Molfile.New (filename, property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see themolfile get command. The difference betweenmolfile get and molfile
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

The PyTHoON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile nget

molfile nget filehandle propertylist ?filterset? P?parameterdict?

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 433

CACTVS Tel and Python Scripting Language Reference

434

f.nget (property=,?filters=?, ?parameters=?)

Molfile.Nget (filename,property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The difference betweenmolfile get and molfile
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

The PyTHoON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile nnew

molfile nnew filehandle propertylist ?filterset? P?parameterdict?

f.nnew (property=,?filters=?, ?parameters="?)

Molfile.Nnew (filename,property=,?2filters=?, ?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the molfile get command. The difference betweenmolfile get and molfile
nnew is that the latter always returns numeric data, even if symbolic names for the values are
available, and that property data re-computation is enforced.

The PyTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile open

molfile open filename ?mode? ?attribute value?...

molfile open filename ?mode? ?attributedict?

Molfile (filenamesequence, ?mode=?, ?attribute=?)

Molfile.Open (filenamesequence, ?mode=?, ?attributes="?)

This command opens a structure file or other input source for input or output. The filename argument
may be any of:

e A disk file

This is the most common case. File names may be absolute or relative. On the Windows
platform, the path naming follows the TcL convention, with backslashes replaced by forward
slashes, and optional drive letters, in the same way as the standard TcL open command. Tilde
substitution is also supported and built into the command. In case a file name could possibly
collide with a reserved name, the file name can be prefixed with ./ in order to force interpretation
as a file name. File name expansion can be conveniently performed by means of the standard
TcL glob command. File names must currently be spelled in the 8-bit ISO8859-1 character set.
Unicode file names are not yet supported. On Unix platforms, named pipes and sockets may also
be opened with this command.

Examples:

molfile open ./stdout r
molfile open ~theuser/data/newleads.sdf

molfile open C:/temp/calicheaamycin.pdb w

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

e A standard channel

The file names stdout, stderr and stdin are reserved and connect the file handle to a standard I/O
channel. stdout and stderr can only be opened for output, and stdin can only be read from. The
character ’-’ (minus) is an alternative name for standard input.

Example:

molfile open stdout w format mdl
molfile open ./stdout
The first line opens an MDL file for output on standard output. The second sample line opens the

file in the current directory which is named “stdout” for input. By prefixing file names with
directory information any file with a reserved name can be opened as standard file.

e A scratch file

The name scratch is reserved as the name of a generic scratch file. The file is initially opened
for writing, but may be switched to input later by a molfile toggle command. The magic
filename is translated into the name of a platform-specific temporary file. Every invocation of
this command variant generates a new scratch file, with a different name. The true file name can
be obtained with an attribute query:

set fh [molfile open scratch]

set name [molfile get $fh name]

Scratch files are automatically deleted when they are closed, or when the program exits.
* A pipe

If a file name starts with a vertical bar character
(write mode) the commands listed after the bar.

“|”

, a pipe is opened from (in read mode) or to

Example:
molfile open “|gzip >thefile.sdf.gz” w format mdl

When the file is closed, the pipe and all programs connected to it are automatically shut down.
Pipes cannot be rewound, or switched from input to output and vice versa.

° An URL

The Cactvs toolkit supports reading from various types of URLs. Currently, the schemes fip,
http, file and gopher are supported. file URLs are just another notation for normal disk files, as
described above. From among the other URL schemes, only fip and A#fp connections may be
opened for writing. The support for fip URLSs includes username and password components. If
the server side supports it, passive fip is the preferred mode. Http connections opened for writing
use the puT A#fp command, which often is not activated in standard Web server set-ups and may
therefore be of limited practical usefulness. URL connections can be rewound and backspaced,
but this is costly because the existing connection has to be disconnected and the initial data from
the beginning of the file to the desired position needs to be re-transferred and discarded.

Examples:

set fh [molfile open http://www.yourcompany.com/repository/Jjcamp/irl.jcp]
molfile open ftp://yourid:yourpasswd@ftp.yourcompany.com/upload/ideas.sdf

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 435

CACTVS Tel and Python Scripting Language Reference

436

* A directory

If the target is a directory, all files in the directory are scanned. Those files which were identified
as structure data files by any of the built-in or currently loaded I/O module extensions are
concatenated to a virtual file which comprises all individual files. The order in which the files
are concatenated is largely unpredictable, because it is defined by the order of the file name
entries in the directory, and not any alphabetic sort criterion. The files may be of different
formats, and may be any mixture of single-record and multi-record files. Subdirectories of the
opened directory are not entered by default, but this may be activated by appending a ,d°
character to the open mode. Directories may only be opened for reading.

Example:

set fh [molfile open .]
set fh [molfile open $mydir rd]

The second example opens not only perceived structure files in the source directory, but also in
all subdirectories thereof.

A string

The Cactvs toolkit can read most file formats directly from a string. There is no need to write
structure data which was obtained as a string image to a temporary file to decode it. Data strings
are opened as structure file with mode ’s’. Only input is possible, but navigation within the
string with molfile rewind etc. works as expected. The complementary molfile string
command can be used to generate a string image of a file record.

Example:

set fh [molfile open S$thedatablob s]
set ehl [molfile read $fh]

set eh2 [molfile read $fh]

molfile close $fh

A TeL file or socket handle, or a PyTHON file reference

Any file name beginning with file or sock, and where the rest of the file name is a sequence of
digits, are interpreted as references to TcL file handles.

Example:

set tcl fh [open thefile.txt w]
set cactvs_fh [molfile open $tcl fh w]

A TcL handle can only be accessed by this command in a mode which is compatible to the mode
it was opened with, i.e. it is not possible to write to a file via a Tcl handle if it was opened for
reading. If a structure file coupled to a TcL handle is closed with amolfile close command,
the TeL handle remains valid, and my be used freely once the association to the structure file [/O
object is broken. Closing the TeL file handle while the piggybacked structure file handle is being
used is illegal. No input, output or positioning should be performed on the TcL handle with
standard TcL commands while it is being referred to by a molfile object.

In the PyTHON interface, the same mechanisms apply, except that the argument is a PyTHonN file
handle object.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The TcL handle functionality is not available on Windows, because on this platform TcL
internally uses Windows handles for I/O, while the CacTvs toolkit builds on standard Posix C
library FILE* pointers.

e A virtual file

Some I/O modules implement access to a variety of information sources as a virtual file, which
has neither a presence on the local disk, nor is one of the standard magic file names or access
methods. Such virtual file names are by convention written with pointed brackets.

Example:
set fh [molfile open <pubchem>]

This command loads the PusCHem virtual file access module, and returns a handle which may
be used in a similar fashion as, for example, a handle to a huge local SD file. Depending on the
I/0 module, various operations on the handle may be optimized to be performed remotely. For
example, the PuBCHEM module offloads as many query operations ofmolfile scan commands
as possible to the NCBI computers and downloads result structures only if they are needed as
results, or query sub-expressions were specified which cannot be processed by the NCBI
system.

The first optional parameter is the file access mode. It may be one of:

e r
Open for reading, but with the option of later changing the mode to writing or appending.
This is the default.

e 1t
As above, but automatically start a thread which immediately starts gathering file status
information, such as the record count and record positions. This mode can be useful when
operations, such as reading data for display, are to be commenced immediately, but
ultimately overall record count information needs to be displayed, which can take a while
to collect for larger files. The status thread is only started for rewindable files, and has no
effects on files which directly provide record index and total record count information.
Operations which would duplicate the efforts of the statistics thread, such as mo1file
count, are automatically blocked until the thread has completed,, and then directly use its
results. Operations which change the nature of the access to the file, or its record contents
or positions, silently terminate the status thread.

* 1o or rot
Open for read-only. If a file is opened in this mode, it is not possible to switch to write access
later via amolfile toggle command. If the file permissions do not allow write access, the
standard ‘r’ mode automatically falls back to this variant. Mode ‘rot” is also possible and
additionally starts a file status thread (see mode ‘rt’).

° W
Open for writing. If the file exists, it is overwritten. If not overridden by an explicit format
specification, the file format is inferred from the suffix of the file name, if possible.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 437

CACTVS Tel and Python Scripting Language Reference

° a
Open for appending. If the file exists, new data written to it is appended. If not overridden
by an explicit format specification, the file format is inferred from the suffix of the file name,
if possible. Not all file formats support appending.

°u
Open an existing file for updating, i.e. the replacement of specific records. Not all file
formats support this mode. It is generally useful for database-style formats such as CAcTvs
BDB and, to a limited degree, CBS. It can also be used for simple record sequence files like
SD, though in this case it can be inefficient because a lot of data copying may be required
to adjust the file layout. For single-record file formats, this command is not useful, and
multi-record files which are not simple record sequences and for which the I/O module does
not provide a special function, this mode is not supported.

° s
Open string image of a file. If the mode is used, the file name is interpreted as an in-memory
image of a structure file in any of the formats the toolkit understands, and not as a file name,
URL, or any of the other types of input objects. Binary file formats may be used with this
command.

°p
Open in pipe reader mode. The input is expected to be a pipe or socket, where sporadically
new data is posted. If an attempt is made to read from the file, a check is made if any data
is present. If no data is waiting, the input command immediately returns without blocking.
At a later time, new data may be present and the input succeed. If just a single byte of data
is present on a pipe input channel, the read routine hangs on until the record for which input
has begun has been read completely.

* R, Ro, Rot
Open the file for reading and infer the format of the file from the suffix alone, without
actually attempting to read the initial section of the file contents, which is the default method
to determine its format. This mode can be useful in case the data contains text with
embedded structure data, where the plain text is read by scripted commands and the
occasional embedded structure or reaction record is to be extracted by means of molfile
read commands. For such files, an automatic format detection would fail. The ‘0’ and ‘t’
flags may also be appended, and have the same meaning as in the standard ‘r’ mode.

For some files and file formats, two more mode characters have meaning if appended to the primary
mode: They are silently ignored if the file argument or file format do not support them.

e d
Recursive opening. This is for example useful when opening a directory as a pseudo file for
input. If this flag is set, the all files recursively found under the specified directory form the
virtual file, not just the files directly located under the specified directory.

o f
Fast mode. The file is opened for maximum performance, taking chances with respect to
data integrity in case of program or computer crashes, etc. One file format where this flag
is supported is the Cactvs Data Archive (CDA) format.

438 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The remaining parameters of the mo1file command are optional keyword/value pairs, or
alternatively a single dictionary with the same function. The processing of these parameters is
exactly the same as in the molfile set command.

In the PyTHON interface, there is no distinction between the lopen and open commands, because it
can be unequivocally established whether the filename argument is a sequence (tuple or list of
filenames), or a single file name. The interpretation is performed according to the argument type.
The PytHoN command always uses a file attribute dictionary, not a keyword/value argument set.

Example:
set fhandlel [molfile open thefile.pdb]

molfile set $fhandlel hydrogens add nitrosyle ionic
set fhandle2 [molfile open thefile.pbp r hydrogens add nitrostyle ionic]

The first two lines and file final line perform exactly the same task: Open an input file, and set up
input flags so that a complete set of hydrogens is added, and nitro groups and similar groups are
converted to an ionic (as opposed to pentavalent) representation.

When a file is opened for reading, its format is automatically determined. Do not use the format
attribute except under very special circumstances.

The command returns the file handle or reference of the opened input file. This is the handle which
is required by most other mo1file commands which refer to an opened file.

Depending on the encoding of the opened file, the actual access mode to the file may be different
than expected. In case a disk file is compressed with gzip or bzip2, the file is opened via a pipe to
the responsible decompressor program. Likewise, an UCS-2 encoded file is opened via a pipe to the
iconv program which converts the contents to the UTF-8 encoding. Files which are opened indirectly
via such helper pipes have different access characteristics than directly addressed files. For example,
backspacing is expensive, because the pipe has to be closed, re-opened, and the data stream skipped
to the desired position. This takes much longer than simply repositioning a file pointer.

molfile peek

molfile peek filehandle

f.peek ()

Molfile.Peek (filename)

This is a convenience command which combines three operations: Read the next record (molfile
read), discard whatever object is read by the command as configured by the file handle settings
(ens/reaction/dataset delete), and backspace by one record (molfile backspace).

The purpose of this command is to learn more about the contents and characteristics of the file by
performing a full parse of the next record. One of the most common applications of the command
is to detect the field structure (such as SD data fields) of that record before the read. The detected
field set is consequently the return value of the command, equivalent to a molfile get filehandle
fields statement.

This command can only be used on files which can be backspaced, or at least rewound and skipped
forward to the last position. It cannot be used on files not opened for input, on empty files, or files
which are at EOF. In all these cases, an error results.

The PyTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 439

CACTVS Tel and Python Scripting Language Reference

440

molfile properties
molfile properties filehandle ?pattern? ?noempty?

f.properties (?pattern=?, ?noempty="?)

Generate a list of the names of all properties attached to the molfile object. Optionally, the list may
be filtered by a string match pattern.

In most cases, this list is empty. Only structure file properties, such as F_COMMENT, etc., are listed,
but no object attributes, such as readflags, nitrostyle, etc. Few file formats support the concept of
storing file-level properties, and therefore an empty property set is usually reported. Since file
objects do not contain minor objects, and currently cannot be a member of other major objects such
as datasets or reactions, no properties belonging to other classes except file objects are ever listed.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The property list may become modified by input operations. In some cases, the defined file-level
properties may vary with the record position, or may become only available only after the first input
operation, not immediately after opening the file.

The command may be abbreviated to props instead of the full name properties.

Example:

set plist [molfile properties $fhandle]

molfile purge
molfile purge filehandle propertylist/molfile/all ?emptyonly?

f.purge (?properties=?, ?emptyonly="?)

Delete property data from the molfile object. Only molfile property data may be deleted with this
command (these usually have a ¢ prefix). Molfile attributes are not deletable.

If the optional flag is set, only file property values which are identical to the default of the property
are deleted. By default, or when this flag is 0, properties are deleted regardless of their values. In
case a listed property is not present, or not a file property, the request is silently ignored, but using
property names which cannot be resolved leads to an error. If the object class name molfile is used
instead of a property name, all file-level property data is deleted from the molfile object.

The command returns the original molfile handle or reference.

Example:

molfile purge $fhandle F_COMMENT
molfile purge $fhandle all

The first command deletes a specific property, the second command deletes all file property data
associated with the handle.

molfile putline

molfile putline filehandle ?lines?
f.putline(?line?,...)

Write user-specified string lines to a file, bypassing the normal record writing mechanism. This
operation is only supported on files which are opened for output and contain text data. The lines

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

should not contain end-of-line characters. These are automatically supplied depending on the file
object configuration set in the eolchars attribute.

The command returns the original file handle or reference.

molfile read

molfile read fhandle ?datasethandle/enshandle/#auto/new? ?recordcount?

molfile read fhandle P?datasethandle/enshandle/#auto/new? Pparameterdict?

m.read (?target=?, ?parameters=?)

Molfile.Read(filename, ?target=?, ?parameters="?)

This important command reads chemistry objects from a structure or reaction file. The type of
objects returned depends on the read scope of the file. They can be ensembles, reactions, or datasets.
Read scope mol returns single-molecule ensembles, but (with I/O modules supporting this feature)
reads only individual molecules into the output ensemble, splitting a multi-molecule file data
ensemble if necessary. The return value of the command is a list of the handles or references of all
objects which were generated, except when the #auto dataset creation method was used, or an
unlimited number of objects was read into a dataset. In that case, the recipient dataset handle or
reference is returned.

By default, the returned objects are not a member of any dataset. If a dataset handle is passed as
fourth parameter, the returned objects are appended to that dataset if possible. The special value
#auto or new creates a new dataset as container. This is equivalent to using the nested statement
[dataset create] as dataset handle argument. If the fourth parameter is an ensemble handle, and
the object read from the file is also an ensemble, the read data is stored in the shell of the old
ensemble, after all old ensemble data has been deleted. Its object handle remains unchanged, as is
its dataset membership. The reuse of reaction handles is currently not supported. This parameter can
be skipped by specifying an empty string.

In addition to passing an empty string, or a simple dataset or ensemble handle or reference, as the
fourth command argument, a list/tuple consisting of a handle or reference and a modifier flag set can
be specified. The only flag value which is currently recognized is checkroom. If that flag is set, and
the input objects are to become members of a dataset with enabled maximum size or insertion mode
control, a test is made whether the dataset has sufficient room to allow the insertion of the new
object(s), or whether a suitable alternative action is configured to handle the read object in a different
fashion, such as discarding it. If that is not the case, the command returns immediately, without
performing any input, and returns an empty string (None for PyTHoN). If the test succeeds, the input
operation is atomic, since the dataset is locked for the full duration of the command, so that no other
threads can manipulate its status between the initial check and the file input result object transfer.

The final optional parameter is either a single argument specifying the number of objects which
should be read, or a dictionary with key/value attributes. The default is equivalent to passing a
simple numerical value of one, in the first, simple format. In order to read until the end of the file,
the special value a// may be used instead of a numerical count. With an a// parameter value, the input
operation is finished when no more data is available on the file. Until this condition is met, an
unlimited number of records is read. No error is generated when EOF is met. There are also no EOF
errors reported if a numerical record count of more than one was specified, and at least one object
could be successfully read. Another magical value of the simple argument form is batch, which is
substituted by the batch record set size configured on the molfile handle (see molfile get/set).

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 441

CACTVS Tel and Python Scripting Language Reference

In the second form of the final parameter, an attribute dictionary is persistently applied equivalent
to amolfile set command before the input commences. Standard file handle attributes and an
input limit may be both set in parallel by using the special attribute name /imit as part of the
dictionary. It is only recognized in this context, but not withmolfile set ormolfile string. The
allowed values of the limit attribute are the same as in the simple command variant.

The command raises an error if input could not be completed, regardless whether the reason is a file
syntax error, or simple EOF (but see above for exceptions). If an input error occurs, the EOF attribute
of the file handle should therefore be checked in order to distinguish between these two conditions.
In case the input file was opened for pipe reading (mode ’p’), or is connected to a TcL channel, an
EOF report may only indicate that no current data is available on the pipe or TcL channel, but it could
still arrive at a future point in time.

Examples:
if {[catch {molfile read S$fhandle} ehandle]} {
if {![molfile get $fhandle eof]} {

puts “Error: $ehandle”
}
} else {
puts “Read [ens get S$ehandle E NAME]”

}

The prototypical snippet above shows the input of the next ensemble record from a previously
opened file, with proper error checking.

molfile read “acd.sdf” [dataset create] all

This sample command reads a complete input file (we are using the single-operation feature of the
molfile command to open and close the file acd.sdf automatically for the duration of this
command) into a newly created dataset in memory. Reading huge datasets is of course not
necessarily a good idea without large amounts of RAM. On typical current workstations, 10.000 or
20.000 compounds are no problem, but beyond that the risk of running out of memory is a real
problem.

In default mode, hydrogens are not automatically added to the read items with the exception of file
formats where a clearly defined hydrogen set is implied, like SMILES, but not MDL molfiles). This
is probably the most common problem developers run into when using this command. Generally,
Cactvs wants to operate on hydrogen-complete structures, and its internal file formats use explicit
hydrogen encoding. Working with hydrogen-incomplete structures is possible, and sometimes
useful, but can lead to unexpected artifacts like radical centers on atoms with missing hydrogens.
In order to continue with a standard hydrogen set, the most common options are:

* Usemolfile set to change the hydrogens attribute to a suitable automatic hydrogen
addition mode. The molfile open command can also configure this attribute directly in a
single statement, or you can use the attribute dictionary form of this command for the same

purpose.
e Usemolfile hread instead of molfile read

* Execute a ens/reaction/dataset hadd command after the input object is returned and
before processing the read objects further.

442 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

molfile ref
Molfile.Ref (identifier)
PyTHON only method to get a molfile reference from a handle or another identifier. For molfiles, other

recognized identifiers are molfile references, integers encoding the numeric part of the handle string
or the vuip of the molfile object.

molfile rename

molfile rename filehandle srcproperty dstproperty

f.rename (srcproperty=,dstproperty=)

This is a variant of the molfile assign command. Please refer the command description in that
paragraph.

molfile reorganize

molfile reorganize filehandle

f.reorganize ()

This command only has an effect for file formats for which the I/O module provides a reorganizer
function. This function typically optimizes and compacts the file for input and queries, and should
usually be called after all records have been written. Writing to a reorganized file is typically at least
initially slower than writing to a file which has not been processed.

The function returns a boolean value indicating whether any reorganization has actually been
performed. In case the command is applied to a file which is not writable, an error results.

molfile rewind

molfile rewind filehandle
f.rewind()

Reposition the file before first record, and clear all error status information. If the file is already at
the first record, and no error condition is set, this command does nothing.

Not all file channels can be rewound, and for some which can, it can be an expensive operation. For
example, standard input or pipe input channels are not rewindable, and an FTP URL channel has to
be closed and re-opened.

Rewinding a virtual file set positions the file pointer before the first record of the first file in the set.

Standard text-stream style output files can be rewound, too. This effectively truncates them. Files
which are opened for appending are truncated to their original length.

Rewinding is not necessary in all cases. The molfile scan command automatically rewinds the
input file if it is at EOF at the begin of a scan.

The return value of the command is the original file handle or reference.

molfile rewrite

molfile rewrite filehandle recordlist propertylist ?values? ?query? ?callback?

m.rewrite (records=, properties=, ?values=?, ?query=?, ?callback="?)

This command updates specific property fields in a file, without rewriting the complete record. This
is only supported if the file was opened for writing or updating, and the I/O module for the format

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 443

CACTVS Tel and Python Scripting Language Reference

444

of the file supports this operation by a special function. This typically limits the applicability of this
command to database-style file formats such as CAcTvs CBS and BDB.

The record list parameter is either a simple sequence of numerical records, with one as the first file
record, or one of the special values all (all file records are updated), current, next, previous (the
indicated record is updated), or a table handle, optionally followed by a table column name. In the
last case, the table is expected to contain the data for rewriting, and in case a column name is
specified, that column should contain the applicable record numbers. If the table version is selected
without a record column, the file records from one to the number of table rows are updated. None
of the special values can be combined with the simple numerical record sequence style. If the
parameter is a numerical record sequence, the order of the records is significant.

The values sequence can be empty, or it must match the length of the property list. In the latter case,
every specified value must be a valid value for the property in the same list index position. Note that
while it is possible to manipulate multiple records in one step with this command, it is not possible
to assign a different set of values to the data fields for each processed record. For this operation,
multiple rewrite statements must be issued. If the value list is absent, or empty, the values are
recomputed from the structure or reaction object that is temporarily read from the file record for this
purpose. This is a useful feature in case the computation function for a computable property has
changed. In case the record list references a table instead of a numerical record list or a magic record
name, the value list is ignored. Instead, the table is expected to contain table columns which match
the properties in the list, but not necessarily in the same column order, or containing exclusively the
properties in the list.

The optional query argument is a query expression in the same style as used in the molfile scan
command. If a filter expression is supplied, only records which match the expression are changed.
Non-matching records are skipped. In case no filter is used, all records selected by the record list are
processed

After processing, the file pointer is on the last processed record.

If the name of a callback procedure is specified in the T interface, it is called after each processed
record. The TeL procedure arguments depend on the processing mode. In case of table-based
processing, the arguments are the table handle, the current table row, the file handle and the current
file record. In the PyTHON interface, the callback is either a function name given as string, or a
function reference.

This command is not fully implemented yet. CBS files currently only support re-computation of
property data from object data, not updates from explicit value lists. Neither BDB nor CBS 1/O
modules currently call the TcL or PytHoN callback procedures except in table-based processing
mode.

The command returns the number of updated records.

Example:

molfile rewrite $fh current E NAME “Black tar, grade A”
molfile rewrite $fh all E XLOPG2
molfile rewrite $fh [list Smytable records] [list E_IDENT E REGID]

The first command changes the property field £ naME in the current record to the specified value.
The second variant recomputes all £ xL.oGp2 values in the file from the stored structure data - for
example after updating the computation function of that property, or having added it as a new field

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

to the file. The final version changes the fields £ 1pENT and E REGID for the records stored in table
column records, replacing them with the data found in the table columns of the same name.

A complication in the use of this command is that database-type files like the CAcTvs CBS and BDB
formats store property definitions themselves. After opening the file, a newly set up property
definition, which may for example possess an upgraded computation function, can have been
replaced by the old definition from the file. In that case, the new property definition must be
explicitly re-read to gain the upper hand again, for example with a prop read command.

molfile scan

molfile scan filehandle|remotehandle expression/queryhandle ?mode?
?parameterdict?

f.scan(query=, ?mode=?, ?parameters=?)

Molfile.Scan (filename, query=, ?mode=?, ?parameters="?)

Execute a query on the file and return results. The structure file is scanned, by default starting from
its current read position, and results are gathered until either the end of the file has been reached (or
the scan wrapped once around the file, if the wraparound file flag has been set) or a scan condition
caused the stopping of the scan procedure. If the scan finished without reaching the end of the file,
it can be resumed with another molfile scan command at a later time.

The file scan works in principle on any file, but with very different efficiency. Files managed by file
format I/0 modules which support direct field access, and can supply structure and reaction data in
binary form, can be queried much (often a factor of 1000 or more) faster than, for example, a plain
SD file. In the latter format, every record needs to be fully parsed, the structure compared against
the query expression, and most of the structure data is discarded immediately after the record has
been checked. Files in formats which support various types of indexing for numerical values,
bit-screen filtering for super- and substructure searches, hash codes for full-structure matching and
other means of acceleration can be effectively queried with typical expressions in a few seconds,
even while containing millions of compounds.

The two basic built-in CAcTvs formats for effective searching are CBS (static files, good performance
on CDROM and other linear media) and BDB (efficiently updateable, and with more advanced
indexing than CBS). In contrast the systematic reading of a million-record SD file takes a few hours.
Nevertheless, the feature of universal query support is very useful for working with typical data sets
of a few thousand records. These do not need to be converted from their original formats to a query
file for a quick exploratory data scan.

Query expression syntax classes

The toolkit currently supports two syntactically unrelated classes of query expressions: Native
Cactvs expressions, which are described below, and Bruns/Watson structure queries as described in
J. Med. Chem. 2012, 55, 9763-9772, The exact syntax supported is that of the internal Lilly suite in
October 2014, which is significantly extended from the description in the paper, but also discards
some outdated syntactic elements briefly mentioned in the paper.

Example:

set demerits [molfile scan $fh [read file 9 aminocacridine.qry] {record demerit}]

This expression returns a nested list of records which match the query, and their merit/demerit score
computed by that rule. Note that records which do not match the expression are omitted, they do not
report a zero demerit in the result. Internally, Bruns/Watson queries are mapped to the standard

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 445

CACTVS Tel and Python Scripting Language Reference

446

toolkit query expression data structure. Many of the queries in the standard Lilly rule set can be
expressed equivalently as a native query. However, at this time there are a few specific Lilly query
features which cannot be expressed in native toolkit syntax.

If a query expression cannot be parsed as Bruns/Watson code, an attempt is made to interpret is as
native Cactvs expression, and all error messages relate to that interpretation attempt. The following
paragraphs all apply exclusively to the native toolkit expression style.

Branch node expression classes

The expression argument is a tree of individual query statements. It is formatted as a nested Tcl list.
The he allowed depth of branching as well as the allowed number of leaf nodes is unlimited. The
following branch operations are supported in this tree:

and
One to any number of child branches. The branch query only succeeds if all branches match.

or
One to any number of child branches. The branch query succeeds if any of the branches
match. As soon as the first branch is a match, the other child branches are no longer
executed. This is usually desired because it accelerates the processing of the query.
However, in some circumstances, for example when computing similarity scores or coloring
matched atoms or bonds, this is not the desired behavior. The orcontinue operator has the
same query branch logic, but all branches are visited.

orcontinue
See above, an or operator variant where all child branches are always executed. This can
also be written as orcont.

xor
One to any number of child branches. The branch query succeeds if an odd number of the
child branches match. eor is an alias name of the operator.

not
Exactly one child branch. This operator inverts the match/nomatch status of the child
branch, and lets all other status conditions reported by the child branch pass unchanged.

bind objclass

One or an odd number of child branches. This is a rather unique operator. Its effect is to force
the use of the same minor object in all controlled branches. For example, if the child
branches were to contain two molecule property checks connected by an and operator, by
default the molecules of database structure ensembles which pass these conditions are
independent and can be different. If a bind node is located upstream, those two molecules
must be the same. Only when the first of a series of conditions is checked, all molecules are
iterated as potential matches. If the query continues with a match of the first condition, the
molecule is no longer unbound, and only the molecule already matched with the first
condition is tested with the other conditions. Bind nodes can be used with any ensemble
minor object class on structure queries (such as atom, mol, ring) or ensembles (ens) on
reaction queries. The objclass argument part must be set to the desired class name. Bind
nodes only affect controlled nodes which are property queries with properties belonging to
the bound object class.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If more than one branch is specified, the query expression branches (first, third, etc.
argument) are linked by an identifier which determines how these branches interact under
the umbrella of the bind node. The link argument it itself a list. Its first element is the link
type identifier (currently one of independent, singlebond or doublebond). Except in case of
the first mode, the next element is the index (starting with 0) of the query branch in the bind
node. It must refer to an existing branch index, i.e. forward declarations are not possible. For
the determination of the branch index only the query branches count. The interspersed link
arguments do not generated query branches.

If the mode is not independent, the allowed atoms or other minor objects which are tested
in the additional branches depend on the current minor object in the referred branch. In
modes singlebond and doublebond, these can only be atoms linked via the specified bond
type to the referrer object, not the full atom set of the tested ensemble. In case of linked
query branches, these are recursively checked. If a minor object in the leading branch
matches, but fails to match in a dependent linked branch, more allowed minor object
combinations are tested until they are exhausted or a combination of suitable minor objects
is found which matches all branches. In any case, a minor object is only utilized once per
bind node, so that for example a chain of three singlebond connected query branches needs
to match three different atoms - the third branch cannot go back on the bond between the
atoms selected for the first and second branch matches.

Example:

set g {

bind atom {and {A ELEMENT in {7 8 16}} {A NEIGHBORS = 2} {A RING COUNT = 0}}
{singlebond 0} - - - -

{and” {A ELEMENT = 6} {A UNSATURATION = 0} {A RING COUNT = 0}}

{singlebond 1} - - -

{and {A ELEMENT in {7 8 16}} {A NEIGHBORS = 2} {A RING COUNT = 0}}

}

molfile scan $fh $qg

This query tests for a fragment of three atoms, which are connected by single bonds and
where the individual atoms are each subject to a check on different set of atomic attribute
conditions. The same query could also be realized as a SMARTS pattern. The advantage of
this notation is that arbitrary properties can be used as attributes and an extended operator
set and the full set of comparison mode flags is available. The disadvantage is a less readable
pattern representation, and that no substructure query accelerator techniques such as
bitvector screening are automatically employed.

° passswitch
A switch where a single child node depending on the current value of the pass index is
selected. All other child nodes are ignored in that query pass. This is internally used for
smart similarity queries and of limited usefulness for normal user-written queries, but it may
be used in expert queries. In standard queries, only a single pass, with index zero, is ever
executed. The maximum number of passes of a query is determined by the largest number
of child nodes in any passswitch node in the query.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 447

CACTVS Tel and Python Scripting Language Reference

448

° range
A node which requires that the number of its children matches are within a range. The syntax
of this node is the node type keyword, followed by an (possibly open) integer range
indicating the minimum and maximum number of child matches, followed by any number
of child nodes of arbitrary type. Regardless of the range check, all child nodes are tested
because the score pseudo-property can be used in the retrieval set to get the actual number
of branch hits.

Example:

range {0-1} [list structure >= $ssl] [list structure >= $ss2] \
[list structure >= $ss3]

This expression requires that zero or one of the three test substructures match.

Here are a few simple expression patterns:

molfile scan $fh S$leafexpressionl

molfile scan $fh [list “and” $11 $12]

molfile scan $fh [list “or” $11 [list “and” $12 $13 $147]

molfile scan $fh [list “orcontinue” [list not $11] [list “xor” $12 $13]]
[

molfile scan $fh [list bind mol [list and $11 $12]]

All branch nodes need to end in leaf expression nodes. An empty query expression is valid and
matches every input record. Also, it is legal and actually a common case to have an expression which
is just a single leaf node expression. The order of the branches does not matter. An automatically
invoked optimizer sorts the branches, and simplify them, in order to achieve maximum
performance.

Leaf node expression classes
These are the supported classes of leaf node expressions:

* all (or true)
This is just a placeholder. It will matches every record.

° false
This node never matches.

e filename
A condition on the name of the current physical file. This is only useful for scans involving
virtual files.

* formula
A molecular formula expression.

o isnull
Check whether property data is absent.

° notnull
Check whether property data is present.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

° property
A condition of a property value. If possible, this is evaluated without reading a full structure
or reaction object from the file. However, if necessary, the checked property data is
extracted from, or even computed on, the full record data item. The first word of a property
leaf node expression is the name of the property, not the class name.

* reaction
A reaction query to find records with reactions containing specific bond transformations.

* record
A condition on the file record of the current physical file. For simple single-file scans, this
is the same as the virtual record.

° smartsearch
A special variant on the structure search node. This node is internally expanded into four
internal alternative queries controlled by a pass-dependent switch node. The expanded
queries are a full structure query, a substructure query, and Tanimoto similarity queries with
thresholds of 95% and 90%. The complete query is automatically re-run with the next
branch of the series of alternative queries until at least one hit has been found. This query
mode only works on data sources where the file or other input source can be repositioned
to the original start position if a second or later pass is required.

o structure
A structure match operation on the primary database structure, a derived version thereof, or
a reaction component. This type of query supports a variety of full-structure, substructure,
superstructure and similarity matching methods. Some of these expressions, such as
full-structure queries, are internally rewritten to property queries. For full-structure queries,
these are hash code checks. Others, such as substructure matching, are handled by special
routines. The first word of the leaf node specification can either be structure, for the main
record structure, which is expected to be cleaned up and standardized, or any other of the
recognized structure file ensemble classes (reagent, product, solvent, catalyst, parent,
scaffold, original, deprotected, salf). If a tested file record does not contain the requested
structure variant, an attempt is made to derive it from the main record structure. This works
with, for example, the parent structure, but not, for example, for obvious reasons with the
original.

* frue
An alias for all.

* vrecord
A condition on the virtual file record. For simple files, this is the same as the physical record.

The various leaf expression classes have different syntax schemes, which are explained in the next
paragraphs.

record and vrecord expressions

The record and vrecord expression classes are always written with three list elements: The
expression class name, the operator, and the value or value list. The operators can be from the
standard six numerical types, the range operator (<->), and the in or notin set operators. Numerical
comparisons require a single comparison value, the range operator a pair of values, and the set
operators a list. Examples:

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 449

CACTVS Tel and Python Scripting Language Reference

450

“record <= 100”
“vrecord <-> {1 1000}”
“record in {1 7 19 230}”

filename expressions

The filename expression class is even simpler. It always consists of three elements: The expression
class name, the operator (which can only be = or !=), and the file name. The actual file comparison
operation uses device and inode identifiers on Linux/Unix platforms if the file is accessible, so the
exact spelling of any path components does not matter. Example:

“filename = partl.sdf”
isnull and notnull expressions

The isnull and notnull expression classes are written with two elements. The first element is the
expression class name, and the second a property name. The property name may be qualified with
an ensemble class modifier. If the modifier is not specified, the query applies to the main database
structure. Otherwise, the property of the specified ensemble class is addressed. Examples:

“isnull E NAME”
“notnull product:E_ASSAY RESULT”

random/subset expressions

random or subset node expression classes (these names are aliases) are written with two elements.
The first element is the expression class name and the second a floating point value between zero

and one. When this node is encountered for evaluation, a random number between zero and one is
generated. Ifit is less than or equal to the specified value, the node is considered to match. Example:

,Subset 0.6"

This expression will match 60% of the time and let the query proceed for further evaluation or result
output.

property expressions

The property query expression class is a little bit more complex. It has a variable number of
elements, between three and eight. The general syntax scheme is

property {operator ?modifiers?..} value ?threshold? ?multimode? ?filter? ?cl? ?c2?

The first three elements are always the property name, which can be qualified with an ensemble
class, the comparison operator, and one or more values. The number of required values is dependent
on the operator. The comparison operator can be a nested list. It needs to contain as a list element
the basic comparison operator (numerical, range or in/notin set operators) and may additionally
contain modifier words, which are translated into flags potentially influencing the datatype-specific
comparison functions. It depends on the data type of the property whether any flag word has an
effect.

If the object flag word is supplied as part of the operator list, the value part of the query is parsed
as a chemistry object handle, more specifically an ensemble handle, a decodable string
representation of an ensemble, a reaction handle, or a decodable string representation of a reaction.
The ensemble variants are accepted if the query property is attached to an ensemble or an ensemble
minor object, and the reaction variants can be used if the property is reaction-related. The value of
the query is then automatically extracted, even computed if needed, from the object. Properties with

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

fields can be entered with the basic name, or any qualified field name. In addition, the property name
may be prefixed by a structure class designator (see paragraph on structure queries). By default a
property is assumed to be data of the main structure of the file record, or the main reaction.

Examples:

“E_NAME = methane”

“solvent:E NAME {in ignorecase} [list benzene toluene ethylbenzene]”
“E IRSPECTRUM (source) {= shell nocase} *bruker*”

“E_WEIGHT {<= object} S$ehtest”

“E CAS {= ignoredashes ignorecase} 88337-96-6"

These are the comparison flag words which are recognized:

* absolute
Use absolute numerical values for comparison.

° alternative
Use alternative variant of comparison algorithm, if supported. For example, the
bitset/bitunset comparison methods by default report 0 (equality) only if all bits are
identical. The alternative version reports 0 when there is any common bit.

* approximate
Use an approximate version of the comparison operator. For strings, this means that case,
whitespace, numbers and punctuation are ignored. For floating point data, it means that the
comparison employs rounded integer values. This can also be specified by an af @ character
directly attached to the operator.

* asnumber
Extract number from, for example, a string and use that for numerical comparison instead
of literal comparison.

* Ditset
Interpret the query expression value as bit mask and check whether all bits in that mask are
also set in the file value.

* bitunset
Interpret the query expression value as bit mask and check whether all bits in that mask are
unset in the file value.

* contained
Test whether the query expression value is contained in the file value. For strings, this is
simple substring matching. For vectors, this is an element match.

* cosine
Compute cosine similarity coefficient percentage from query expression and file value and
remember this as score. This comparison is only supported for bit vectors.

° correlation
Compute correlation coefficient from numerical vector types.

* dice
compute Dice similarity coefficient on bit vectors, bit sets or strings (via bigraphs).

* euclidean
Compute Euclidean distance from numerical vector types.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 451

CACTVS Tel and Python Scripting Language Reference

452

extended
Use an extended version of a comparison method. For example, in conjunction with regular
expressions, this enables extended regexp syntax.

glob
Interpret query value as shell expression. This can also be specified by an asterisk *
character directly attached to the operator.

ignorecase
Ignore case for string-related comparisons. This can also be specified by an i character
directly attached to the operator.

ignoredashes
Ignore dash/minus characters in string-related comparisons

ignorewhitespace
Ignore whitespace in string-related comparisons

ignorezero
For numerical vector comparisons, ignore zero elements.

needelementmatch

For vector comparisons with the contained flag, the default method is to check whether all
elements of the query vector value compare to one element in the file vector data, but not
necessarily in the same position. If this flag is supplied additionally, any single element
match will suffice for a positive comparison result.

needelementmismatch

For vector comparisons with the contained flag, the default method is to check whether all
elements of the query vector value compare to one element in the file vector data, but not
necessarily in the same position. If this flag is supplied additionally, there needs to be at least
one element mismatch for a positive comparison result.

object

Decode value as object, and compute comparison value from it The the object is a string
representation, the object is only created temporarily and discarded as soon as the value was
obtained. Persistent objects that are addressed via their handles remain valid and unchanged,
except that their property data set is potentially extended by the computation.

precision
Use the precision as defined in the property description to check for equality. By default, full
CPU precision is used.

regexp
Interpret query value as regular expression. This can also be specified by a tilde ~ character
directly attached to the operator. Starting with toolkit version 3.352, the regular expression
syntax on all platforms is that of the PCRE library, also known as the Perl style.

swap
Swap left and right side of the expression in the comparison. This makes especially sense
for asymmetric operations such as regular or shell expressions. With a swap word, the
regular or shell expression is the string from the file, not the written query value.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* tanimoto
Compute Tanimoto similarity coefficient percentage from query expression and file value
and remember this as score. This comparison is only supported for bitsets and bit vectors.

° tversky
Compute Tversky similarity coefficient percentage from query expression and file value
and remember this as score. This comparison is only supported for bitsets and bit vectors.

* trim
Ignore leading and trailing whitespace. Spaces in the middle of a string are still significant.

* unique
Hint for the query processor that the value is expected to match only once in the file, if at
all. This is useful for query optimization. If a hit has been found, additional records need not
to be checked.

* vectorrange
For numerical vector comparisons. The query expression value vector is expected to contain
twice as many elements as the file values. Every pair of values in the query vector is
interpreted as a required upper and lower bound for the file values.

° withdigits
In conjunction with the approximate modifier, make digits significant again.

If the operator is the in or notin word, the value part is interpreted as a list. The value, or value list
item, must be parseable according to the property data definition. Enumerated values and similar
encodings may be used if properly defined in the property descriptor record.

If the comparison function computes a score (for example, the Tversky or Tanimoto variants), the
next optional argument is a threshold value which needs to be exceeded to register as hit. If the
threshold parameter is not specified, or given as a negative value, any score passes. Example:

“E_SCREEN {>= tanimoto object} $eh 95~

The next two optional arguments concern the case when there is more than one file data value to
compare against the expression value. This generally happens when the tested property is not a
major object property, but a minor object property, such as an atom or molecule property. In that
case, the database record often contains multiple values, because there is more than one atom, or
more than one molecule in the structure in the record. The first argument is the general match
criterion. It can be set to one, all, none, or both. The default is one. Mode one means that it is
sufficient if one of the record values matches. Mode all requires all to match, mode none requires
that none matches, and mode both requires that there are both matches and mismatches.

The next optional parameter is a filter which can be used to restrict the values tested. If it is not
present, or an empty string, no filter is applied. Example:

“A ELEMENT = 6 {} all ringatom”

Above expression checks whether all ring atoms in the structure are carbon. Any record with a
hetero ring atom fails the test.

The final two optional arguments are integer constants which may be used by the comparison
operation. If they are not specified, both are implicitly passed as zero. If the first is specified, but
not the second, the second is set to 100 minus the first value. Almost all comparison operations on
the various data types ignore these.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 453

CACTVS Tel and Python Scripting Language Reference

454

One comparison mode which does make use of them is the Tversky bit vector similarity score. Here
cl and ¢2 are the weights of the bits in the first and second compared value. For scoring, both
parameters are divided by one hundred and the floating point results are used as weight multipliers.
Example:

“E_SCREEN {>= tversky object} S$Seh 90 {} {} 30 70"

Above expression computes a Tversky score on the standard structure search screen E_SCREEN with
30% weight for the database structure features and 70% of the query structure features (i.e.
imbalanced towards a substructure rating), and report the record if the score is 90% or higher.

Starting with version 3.358 of the toolkit, property expressions where the data type of the query
property is structure or reaction are no longer parsed as standard property expression, but as
structure or reaction query expressions, respectively. Example:

"V_ONTOLOGY TERM (substructure) {>= swap stereo isotope charge} Seh"

Since the data type of the field of v_oNTOLOGY TERM is structure, the syntax rules of normal property
expressions no longer apply. Instead, the syntax for structure expressions explained below is
substituted.

structure expressions

Structure expressions are used to invoke structure comparison operations, such as sub- and
superstructure search. The expression is a list, with three to eight elements. A structure expression
starts with the structure identifier, followed by the operator, which, as in property queries, may be
written as a list with auxiliary modifier words, and as third mandatory argument the comparison
structure source.

The structure identifier is the name of a structure class. Usually it is present as part of the record in
the queried file, but some structure classes can be computed from the main structure if necessary. If
a structure class can neither be found in a file record, nor computed, the node will not match. The
following structure classes are supported:

* Structure
The main structure. Usually expected to be a standardized, normalized form.

* original
An original structure, un-standardized. deposited is an alternative name.

e salt
A salt form

* deprotected
A variant without protective groups

* parent
A parent compound. There is a standard computation function for this form.

* scaffold
A structure core, isolated by some algorithm.

* reagent
A reagent ensemble. Usually this is a part of a reaction record, but it can be present also on
its own.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* product
A product ensemble. Usually this is a part of a reaction record, but it can be present also on
its own.

* solvent
Solvent for a reaction. Usually this is a part of a reaction record, but it can be present also
on its own.

* catalyst
Catalyst for a reaction. Usually this is a part of a reaction record, but it can be present also
on its own.

At minimum, the operator section (the second, mandatory argument) contains a standard numerical
operator symbol. Additionally, modifier words may be present as additional list elements. The
following operators are supported.

L] =
Structure identity, i.e. full-structure search. This is internally re-written to an equivalent
hash code search as a property comparison node. A suitable hash code is automatically
selected depending on the operator modifiers such as stereo and isotope.

o I=
Structure inequality, i.e. a negated full-structure search. This is internally re-written to an
equivalent hash code search as a property comparison node. A suitable hash code is
automatically selected depending on the operator modifiers such as stereo and isotope.

o >=
Substructure search.

o >
Substructure search, excluding identity.

° <=
Superstructure search. This operation ignores hydrogens on the database structures (see
below).

o <
Superstructure search, excluding identity. Superstructure search ignores hydrogens on the
database structures when the database entries are used as sub-graphs - otherwise a normal,
fully specified database molecule will not match much. For the identity check, hydrogens
are significant.

° ~>=0r~>
Tanimoto similarity search with a reporting limit. This is internally re-written to an
equivalent property search.

* %>=or %>
Tversky similarity search with a reporting limit. This is internally re-written to an equivalent
property search.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 455

CACTVS Tel and Python Scripting Language Reference

o < >
Substructure match count range search. This automatically changes the default substructure
match mode to distinctinneratoms (see match ss command and the count modifier below).
The optional fourth argument can be used to set a range condition for this mode. If only a
single number is supplied, the match count for a successful node match must be exactly this
number. If a list of two numbers is used, these define a range of acceptable match counts.
Ifno explicitrange is set, its implied value is one to 65535. It is possible to use a lower bound
of zero which lets structure mismatches pass the query condition. This can be useful when
match-dependent data is retrieved, for example the matchcounts pseudo property (see
below).

The default substructure match mode has the bondorder, useatomtree and usebondtree flags set (see
match ss command). The initial flag set can be modified with modifier words linked to the operator.
As far as it makes sense, the modifier words also change the operation of derived query modes, such
as full-structure matching via hash codes.

These are the modifier words which can be used in structure expressions:

* absolutestereo
Perform absolute stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties A QUERY
and B_QUERY as part of the query substructure specification. An alternative syntax is to
directly attach an uppercase S character to the operator.

* allowmissingstereo
If set, absent stereochemistry descriptors in file structures can be matched by explicit stereo
centers in the query structure. However, stereo center mismatches still lead to a match
failure.

* anyfragment
Report a match for full-structure search if any molecule of the file structure is identical to
the query structure. For substructure/superstructure queries, this flag has no effect, since
their default operation mode already covers the effects of the flag.

* anyoverlap
If the substructure contains multiple fragments, they may match overlapping parts of the
structure ensembles. By default, matched substructure fragments cannot overlap. This flag
cannot be combined with atomoverlap.

* arotautomer
A more aggressive form of the fautomer mode. In this mode, tautomers involving the
dissolution of aromatic systems are also found, in addition to the more low-energy tautomer
forms matched with the normal tautomer mode.

* atomoverlap
If the substructure contains multiple fragments, they may match overlapping atoms, but not
overlapping bonds. By default, matched substructure fragments cannot overlap at all. This
flag cannot be combined with anyoveriap.

456 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* charge
Match formal charges of query atoms. By default, charges are not compared, except if set
up explicitly as atom-specific query attribute in property A QUERY in the query substructure
specification.

* count
For substructure and superstructure matching, check not only for the presence of a match,
but count the number of distinct matches equivalent to the match mode distrinctinneratoms
in the match ss command. The normal substructure match mode is equivalent to the first
mode in the match ss command, yielding only counts zero or one.

* distinctatoms
Set the substructure match mode to this value (see match ss command). Has an effect only
for substructure matches. The default substructure match mode is first, except if the match
operator is range for counted pattern matches. In that case, it is distinctinneratoms.

* distinctfgatoms
Set the substructure match mode to this value (see match ss command). Has an effect only
for substructure matches. The default substructure match mode is first, except if the match
operator is range for counted pattern matches. In that case, it is distinctinneratoms.

* distinctheavyatoms
Set the substructure match mode to this value (see match ss command). Has an effect only
for substructure matches. The default substructure match mode is first, except if the match
operator is range for counted pattern matches. In that case, it is distinctinneratoms.

° emptyssismismatch
By default, a substructure without any atoms matches anything. If this flag is set, it matches
nothing instead.

* exactaro
Match aromatic bonds exactly. By default, simple single or double query structure bonds
match structure file record aromatic bonds.

* exactringsystem
Rings in substructure fragments must match complete ring systems only. For example, with
this flag a benzene substructure no longer matches naphthalene, anthracene, etc. Non-ring
parts of the substructure can still, if other query attributes do not prevent this, match both
ring and chain parts of file structures. For full-structure queries, this flag has no effect.

* extended
Use extended versions of the match procedures. For similarity queries, this enables the
PuBCHEM extended scoring mechanism. If the query structure is identical to a file structure
both in stereochemistry and isotope labels, an artificial score of 104 is computed, 103 if
isotopes or stereochemistry match, but only one of these, 102 for basic equivalence of
connectivity without isotopes or stereochemistry, and 101 for a tautomer. Compounds
which are not structurally identical to the query structures using one of these criteria are
scored normally.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 457

CACTVS Tel and Python Scripting Language Reference

° fragmentsplit
Treat every molecule in the query structure as a separate fragment. The query ensemble is
implicitly split, and every component therein is stored in an independent structure
expression node. These nodes are then connected with an or or orcontinue branch mode.
This is similar to using a file handle pointing to a file with multiple records as query
structure data source (see below).

* framework
Substructure carbon atoms cannot have any unmatched, directly bonded carbon or hetero
atom neighbors in the structure. Unmatched bonded hydrogen is allowed. This flag has an
effect only for sub- and superstructure match modes.

o implicitsinglearo
If this flag is set, bonds which were created with an implicit bond order when the query
structure was decoded are matched as if they were explicit single/aro query bonds. This is
a useful mode for emulating Daylight software.

* isotope
Perform isotope matching. By default, isotope labels are not used in the queries, except if
set up explicitly as atom-specific query attribute in property A QUERY in the query structure
specification. An alternative syntax is to directly attach an i character to the operator.

* matchallheavyatoms
Require that all heavy atoms in the file structures are matched. This feature generates
matches of file structures similar to full-structure matches while allowing the use of
substructures with variable match conditions, such as atom lists.

* nobondorder
Do not compare bond orders. This flag has an effect only for sub- and superstructure match
modes.

* nochainonaro
Do not match chain parts of the query substructure on aromatic bonds in the file structures.
This flag has an effect only for sub- and superstructure match modes.

* nochainonring
Do not match chain parts of the query substructure on ring bonds in the file structures. This
flag has an effect only for sub- and superstructure match modes.

e nodoubleonaro
Do not match otherwise unmarked double bonds in the substructure onto aromatic bonds of
the structures.

° noquerytree
Deactivate extended matches requiring full checks of the query tree fields in the A QUERY
and B_QUERY properties in the query structures. Certain query inputs need these trees for
precise matching, because the query cannot be expressed as a flat set of query attributes.
Examples for queries requiring tree matching for proper execution are complex SMARTS
expressions beyond those using only simple explicit or implicit and in atomic or bond
expressions, and Recursive SMARTS. Disabling the flag may lead to a small speed-up for
simple substructure queries.

458 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* nosingleonaro
Do not match otherwise unmarked single bonds in the substructure onto aromatic bonds of
the structures.

* nosubstructureh
For substructure match, ignore any hydrogens present in the query structure. This is a
convenient shortcut to allow the use of hydrogen-complete structures as simple
substructures. A similar scheme is automatically invoked for superstructure search, where
hydrogens in the file structures are ignored in matching.

* reactionflags
Match reaction transform flags in the substructure. Both query and file structures need to
have data for property B REACTION CENTER set. The supported set of comparisons is
compatible with MDL’s ISIS database. Note that this flag can be used gainfully in structure
expressions for half-reaction matching. It is not limited to full reaction queries. This flag is
on by default in reaction queries, but off for structure queries.

* relativestereo
Perform relative stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties 2 _QUERY
and B_QUERY in the query structure specification. An alternative syntax is to directly attach
a lowercase s character to the operator.

o sethighlight
In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles with the highlight flags in properties 8 F1.AGs and
A_FLAGS. In case multiple matches occur, the highlight set is an union of all processed
matching substructure mapping. This flag is also automatically set if the property retrieval
setin themolfile scan command includes related pseudo properties, such as matchatoms
or matchbonds.

° setmatchproperty
In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles by attached properties A ssmaTcH and B ssMaTcH. These
are set to the labels of the matching substructure atoms or bonds. Unmatched structure
ensemble parts have match property values of zero. In contrast to the sethighlight flag, this
option attaches a new match property instance for any successful and processed match.
Returned ensembles may therefore possess series of property instances like o ssvaTcH,
A SSMATCH/2... and so on.

° swap
Swap the left and right structures in the query. This means, for example, that the database
is expected to contain substructure definitions, and the query value argument a fully defined
structure. This is not exactly the same as a superstructure search because of the different
style how hydrogens are handled. For superstructure search, hydrogen atoms in the file
records are ignored, generating a simplified structure from the record data for matching, but
in case of a swapped substructure search, the file record is submitted as substructure for
matching without any processing.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 459

CACTVS Tel and Python Scripting Language Reference

460

tautomer

Match tautomers of the query structure. If this flag is active, non-aromatic single and double
bonds in tautomer systems need not to be matched exactly, as long as the overall bond order
count is a match. Mobile hydrogens can either be specified explicitly, or a full implicit set
can be used if the useimplicith flag of property 8_1sTauTOMERIC is set. The standard mode
does not consider tautomeric forms which destroy aromatic systems. If you need to find
matches between aromatic and non.aromatic tautomer systems, use the more aggressive
arotautomer mode.

unique

Hint for the query processor that the query ensemble is expected to be matched only once
in the file, if at all. This is useful for query optimization. If a hit has been found, additional
records need not to be checked.

Many of these global flags can be overridden, or activated on a local level, for individual atoms or
bonds, inthe A QuERY and B_QUERY properties. For example, o_QuERY has fields for flags which can
request the matching of stereo or charges for specific atoms, or to allow missing stereochemistry at
a specific center. These per-atom or per-bond requests override global query flag settings.

The third mandatory expression list element is the structure source. It can be one of

an ensemble handle
The ensemble is directly decoded.

a list of ensemble handle and molecule label
The fragment indicated by the molecule label is extracted from the ensemble and used for
the query as isolated entity. If the molecule label cannot be found, an error is reported.

structure line notation string

For example, a SMARTS/SMILES/SLN/INCHI/CID string or a packed CAcTvs ensemble -
anything which can be decoded by the ens create command. The string is decoded into a
transient ensemble, which is automatically discarded when it is no longer needed. The exact
decoding specifications depend on the operator. For full-structure search, a fully specified
structure is created, while for substructure-type queries implicit hydrogens are not attached,
and the full range of query specifications of the encoding format is allowed.

a dataset handle or reference

A dataset containing at least one ensemble. All dataset ensembles are checked, and
internally for every ensemble a separate expression node is created. The nodes are then
linked via an or or orcontinue (in case a scoring operator is used) branch node. Dataset
objects which are not ensembles are silently ignored. The hydrogen status of the dataset
ensembles is not changed. In case there is only a single ensemble in the dataset, this
command is indistinguishable from using the ensemble handle directly. In case the dataset
does not contain any ensembles, an error is raised.

a reaction handle or reference

A reaction containing as least one ensemble. All reaction ensembles are checked, and
internally for every ensemble a separate expression node is created. The nodes are then
linked via an or or orcontinue (in case a scoring operator is used) branch node. The hydrogen

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

status of the reaction ensembles is not changed. In case there is only a single ensemble in
the reaction (i.e. a half-reaction), this command is indistinguishable from using the
ensemble handle directly. In case the reaction does not contain any ensembles, an error is
raised.

e a molfile handle or reference
An opened structure file. All remaining records are read, and internally for every record a
separate structure expression node is created. The nodes are then linked via an or or
orcontinue (in case a scoring operator is used) branch node. If the match operation is
full-structure, the file is read with automatic hydrogen addition (see molfile set),
otherwise without any conversion flags. However, since the hydrogen addition flag is the
only file attribute which may be temporarily overridden, other molfile object attributes may
be set before the file is used in the query expression. Of course, using a file with a huge
number of records in this fashion may cause problems. In case the file does not contain any
records behind the read pointer at the time the command is parsed, an error is raised.

Query specifications found in structure sources are understood in a variety of formats. DAYLIGHT and
MDL formats are decoded and translated into an internal representation in an almost completely
compatible fashion. That includes RECuRsIVE SMARTS, ISIS 3D queries, MDL stereo groups and MDL
reaction queries. A significant range of SyByL SLN and CAMBRIDGESOFT CHEMFINDER query expressions
are also understood, as well as features found in the CSD CoNQuEsT software. Finally, in CAcTvs there
is no fundamental difference between a query fragment and a normal structure object. Query
structures are just structures with additional information stored in properties A QUERY, B QUERY and
possibly B REACTION CENTER. For basic matching, any structure object will do, even if they do not
possess these query attribute properties. However, an eye should be kept in the hydrogen status of
query fragments. If no specific flags are set, substructure matches attempt to match hydrogen atoms
just like any other atom. Example:

set ehss [ens create C]

set ehss [ens create C smarts]

The upper substructure ensemble does not, in the absence of hydrogen ignore flags, match any
structure ensemble except those which contain a full methane (one C plus four H) molecule as
fragment, because that is what the substructure represents. The second code line decodes the
substructure in full SMARTS mode. Not only now the full range of SMARTS expressions can be
parsed (though absent in this example), but the structure is also be created without implicit
hydrogens. The first substructure could still be used in amol1£file scan command as a simple carbon
match test if the nosubstructureh modifier flag were supplied.

In order to read query structures from a file, the following generic open statement is the standard
approach:

molfile open $file r hydrogens asis readflags noimplicith

Simple query formats, such as MDL ISIS query Molfiles, are read into a flat set of attributes. More
complex formats, such as SMARTS, may require the use of a tree of expressions on individual atoms
and bonds, similar to the overall query tree with branch and leaf nodes described here for the
molfile scan command. These complex formats are nevertheless also translated, to the degree
possible, to the flat model. For example, a SMARTS expression with only uses simple atom lists or
atom and bond query attributes all connected just by and can be fully represented in this way. This
also means that, format translation into other query file formats is also possible for these simple
expressions. The use of the full query trees in matching can in some cases be a performance issue.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 461

CACTVS Tel and Python Scripting Language Reference

462

The noquerytree flag is available to restrict the match to those parts of the full query which can be
expressed in the flat model.

The fourth and optional expression list element in the query expression is used only for a few match
modes. If it is not set, the default value is minus one.

* similarity queries: The minimum score required to report a hit

 substructure count ranges: A list of the acceptable minimum and maximum occurrence
counts of the substructure. If only a single value is supplied, is
is used both as minimum and maximum value. If not set, the
implicit range is 1 to 65535.

Example:

“structure ~=> $eh 90”
“product <-> C(=0)\[OH\] {2 3}”

The first sample expression is a standard Tanimoto similarity query, with a 90% threshold. The
second query matches product structures with two to three carboxyl groups.

Optional expression list elements five and six correspond to the ¢/ and ¢2 parameters in property
query expressions. These are currently only used in Tversky similarity queries:

“structure %>= $eh 90 30 70”

This is an expression for a skewed Tversky similarity (70% query structure, 30% file structure
weight) with a 90% reporting threshold.

The seventh optional structure expression list element can be used to specify exclusion
substructures. It only applies to substructure matching. In this mode, the parameter encodes a list of
substructures which are matched first on the test structure, before the actual substructure match. All
atoms which are matched by the exclusion substructures are blocked from consideration in the main
match operation. Every exclusion list element can either be an ensemble handle, a list consisting of
an ensemble handle and a molecule label, or a structure line notation string (usually a SMARTS
string) which is decoded in default pattern mode. Exclusion substructures are for example useful to
hide structure parts which are already matched by a different pattern, without actually removing
structure atoms. Exclusion substructures are always matched exhaustively, so a single exclusion
fragment can block multiple matched structure locations.

An example:

set ss [ens create {C=C=C.C=C} smarts]

set g "and {structure {<-> exactaro distinctfgatoms} {$ss 1} 1} {not {structure
{>= exactaro} {$ss 2} {} {} {} {{$ss 1}}}}"

echo [dataset scan [list C=C C=C=C C=C=CCCCC=C] $q reclist] (2)

The example scan only matches the second test structure. It first tests that the first (allene) fragment
is matched exactly once (under application of the distinctfgatoms duplicate filter, so two different
possible positionings of the substructure on the structure count only once) by the test structure, and
then checks that the second (ethylene) fragment does not match the sane structure. Without an

exclusion substructure on the second substructure match node, the test would always fail because
the ethylene fragment also matches part of the larger allene fragment. In order to prevent this, the
negative ethylene query also uses the allene fragment as exclusion fragment. In that case, all carbons
in the second test structure are covered, and the query succeeds. In the third test structure, the allene

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

exclusion fragment also covers part of the test structure, but the true simple ethylene part remains
unblocked and matches the negative structure query, which results in overall rejection.

An optional eighth argument can be used to fine-tune how exclusion matches are processed. It can
be a bitset combination of the enumerated values burnatoms, burncarbon, burnterminals,
burnringsystems and burnaroringsystems. The default burn mode is burnatoms. In any case, the
exclusion processing only applies node-locally - every node is independent. Exclusion marking does
not apply to the matching of other exclusion fragments in the node in case more than one fragment
is tested, so these may overlap in their matched structure parts.

The effects are:

* burnatoms:
All structure atoms matches by the exclusion fragments can no longer be matched by the
main match.

* burncarbon:
All structure carbon atoms matches by the exclusion fragments can no longer be matched by
the main match. Hydrogen or hetero atoms matched by exclusion fragments are still
matchable.

* burnterminals:
All terminal structure atoms (those with less than two bonds) matched by the exclusion
fragments are excluded from future matching.

* burnringsystems:
All structure atoms which are in a ring and are matched by the exclusion fragments are
marked. In addition, any other atom in structure ringsystems where one or more of the ring
atoms has been matched are also marked. The excluded atom set is thus usually larger than
the test fragment.

* burnaroringsystems:
All structure atoms which are in a aromatic ring and are matched by the exclusion fragments
are marked. In addition, any other atom in aromatic structure ringsystems where one or more
of the ring atoms has been matched are also marked. The excluded atom set is thus usually
larger than the test fragment. In case a ring system consists of both aromatic and aliphatic
rings, only the atoms of the aromatic rings are marked.

Example:

set g {structure >= [c][OH] {} {} {} {{[n]}} burnaroringsystems}
echo [dataset scan {clccccclO clcccnclO} $g reclist]

Above query for a phenolic substructure only matches the phenol (first) molecule. The
hydroxypyridine (second) molecule is excluded because the exclusion fragment (aromatic nitrogen)
not just blocks the nitrogen with the nonstandard burn mode, but the whole aromatic ring it is part
of so the aromatic carbon in the main test structure can no longer match. If a test structure had both
non-annealed phenol and hydroxypyridine moieties, the match would again succeed because only
the aromatic carbons of the hydroxypyridine would have been excluded.

If exclusion fragments are used, the test structures must be fully expanded, i.e. a direct accelerated
match on Minimols is not possible.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 463

CACTVS Tel and Python Scripting Language Reference

464

If the file format supports it, bitvector screening is automatically be applied to reduce the number
ofrecords for which structures need to be loaded and sent to graph-based atom-by-atom substructure
matching. The default structure match screening property is £_scrReEN. The standard versions of
E_SCREEN implement three predefined fragment sets. The higher sets are identical to the lower ones
in the leading bits. Sets zero to two, which yield bit vectors of increasing length and selectivity, but
also storage requirements can be requested by setting

prop setparam E_SCREEN extended 0/1/2

The bit set read from the query file must correspond to the parameter setting for E_SCREEN in the
current TcL interpreter, if the screen bits are automatically computed on the query structure. The CBS
and BDB file formats, which are optimized for structure query operations, contain screen bit version
information in the file header and automatically configure the property parameter setting when the
file is opened. For other file formats with screen bits this needs to be done explicitly in the
application script. It is also possible to change the structure bit-screen property associated with a file
by setting the appropriate molfile handle attribute, so it is easily possible to use custom screen bit
sets instead of the default property.

Starting with version 3.358 of the toolkit, property query expressions where the data type of the
property is structure are automatically parsed as structure expressions.

smartsearch expressions

This query expression takes the same arguments as a structure expression. It is internally expanded
into four alternative queries, linked by a pass-dependent switch control node. The four alternative
queries are a full-structure query (equivalent to operator = in a structure query), a substructure query
(operator >=), and two Tanimoto similarity queries with thresholds of 95% and 90% (operator ~>=).

When such a query expression is a component of query expression tree, the query is first run with
the full-structure query. If that query yields less results than the pass match limit (by default one, i.e.
the query does not match anything, this can be configured via the molfile pass/imit attribute), the

input data source is repositioned to the original start record and then the substructure query is run,
and if that run also does not yield sufficient hits, the two similarity queries are tried one after another.

Running the second and later alternatives is only possible of the data source can be repositioned to
the original start position of the first pass. If that fails, the query is silently terminated early. The pass
match limit comparison triggering the possible re-execution of the query is with the global hit count
of the query, not the number of hits returned by the smartquery branch. If other parts of a complex
query produce sufficient hits, the query is not re-run even if a smartquery branch did not return any
hits.

Hits returned in different passes can be distinguished by including the pass pseudo-property in the
retrieval data.

By convention, smartsearch expressions are written with an = operator. The actual operator in a
smartsearch expression is ignored, but modifiers are not. So specifying options like the use of
stereochemistry or isotopes is supported and useful.

It is possible to have multiple smart search expressions in a query. The query pass index for these
is incremented in parallel, not independently.

The smart search feature was inspired by a similar functionality in the Accelrys Isentris system.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

Examples:

“smartsearch = clnccccl”
“smartsearch {= stereo} \“L-lysine\””

formula expressions

Formula expressions are used to match file structures by element composition. Conceptionally, this
is a special syntax for a complex property match on file structure properties E_ ELEMENT COUNT and
M ELEMENT COUNT. A formula search expression is always a list of three elements. The first element
is always formula, the second element the comparison operator, and the third word the formula
specification. The following operators are supported:

Match the formula specification. There cannot be any elements present in the structure
which are not mentioned in the formula.

° >=
Match the formula specification. Elements which are not mentioned in the formula may be
present in the tested structure.

o >
Match the formula specification. At least one element which is not mentioned in the formula
must be present in the tested structure.

For formula queries, there are no modifier words for the operator.

The syntax of the formula is built on the lowest level by element or pseudo-element symbols, which
may be grouped into sum or difference expressions and may possess a prefixed count multiplier. The
symbol or symbol group can then be suffixed by a simple count, or an open or closed count range.
Ifno count range is specified, the default count is one. In case an element is entered more than once,
all counts for that element are added. Finally, the expression may be grouped by period characters
into sub-expressions to be applied to different molecular fragments in the tested structures.

Besides normal elements, the following pseudo-elements, which are compatible to the set of the CSD
ConQuest software, are recognized:

e ?
An atom in the tested structure which is not a simple element.

* [Any]
Any atom which is a simple element (SLN syntax)

* [Hev]
Any atom which is a simple element and not hydrogen (SLN syntax)

* [Het]
Any atom which is a simple element and neither carbon nor hydrogen (SLN syntax)

© [1A]
Elements from the first PSE main group, excluding hydrogen (Li, Na, ..).

© [2A]
elements from the second PSE main group (Be, Mg, ..)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 465

CACTVS Tel and Python Scripting Language Reference

© [3A]
Elements from the third PSE main group (B, Al ..)

© [4A]
Elements from the fourth PSE main group (C, Si, ..)

© [5A]
Elements from the fifth PSE main group (N, P, ..)

© [6A]
* Elements from the sixth PSE main group (O, S, ..)

* [7A] or [Hal]
Elements from the seventh PSE main group (F, Cl, ..)

° [8A]
Elements from the eighth PSE main group (He, Ne, ..)

* [1B]
Elements from the first PSE minor group (Cu, Ag, ..)

* [2B]
Elements from the second PSE minor group (Zn, Cd, ..)

* [3B]
Elements from the third PSE minor group (Sc, Y, ..)

* [4B]
Elements from the fourth PSE minor group (Ti, Zr, ..)

¢ [5B]
Elements from the firth PSE minor group (V, Nb, ..)

* [6B]
Elements from the sixth PSE minor group (Cr, Mo, ..)

* [7B]
Elements from the seventh PSE minor group (Mn, Tc, ..)

* [8B]
Elements from the full eighth PSE minor group (Fe, Co, Ni, Ru, Rh, ..)

°© [8X]
Elements from the first column of the eighth PSE minor group (Fe, Ru, ..)

© [8Y]
Elements from the second column of the eighth PSE minor group (Co, Rh, ..)

© [8Z]
Elements from the third column of the eighth PSE minor group (Ni, Pd, ..)

© [IM]
Metals from the first and second main groups (Li, Na, Mg, K, Ca, ..)

466 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

© [2M]
Metals from the third to sixth main groups (Al, Ga, Ge, Sb,..; but not Si, As, Se, Te)
© [3M]
All main group metals (union of [1M] and [2M])
* [TR]
1l transitions group metals, no main group elements or lanthanides/actinides
* [LN]
Lanthanides
* [AN]
Actinides (no, this is not [AC]!)
© [4M]
All metals in the PSE
* [NM]

All non-metallic elements

Element items can be grouped with round brackets into sums or differences. However, this is no full
arithmetic expression parser. Element symbols can only be used as stand-alone syntactic elements,
bracketed all-sum expressions, or bracketed all-difference expressions.

An element or an arithmetic group can have an appended count. This count can be:

° missing
The default count is one.

* asimple integer
The count must be matched exactly.

 a full integer range
The count must lie between the minimum and maximum values.

° an open range
Left-open ranges have an implicit minimum count of zero, right-open ranges an implicit
maximum count of infinity.

* an asterisk
This is the same as a right-open range starting with zero, i.e. zero to any number of
occurrences.

e aplus character
This is the same as a right-open range starting with one, i.e. one to any number of
occurrences.

* astandard numerical comparison operator, followed by a number
The value is compared according to the specification. This is a CSD compatibility feature.

Examples:

“formula = C6H6”
“formula = C5-6H6-"
“formula >= (Cl+Br)2”

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 467

CACTVS Tel and Python Scripting Language Reference

468

“formula > \[4M\]>=3"” or {formula > [4M]>=3}

“formula = (2C-H)-6"
“formula = CH3COOH”
“formula = \[Het\]>1"“ or {formula = [Het]>1}

“formula = N1-{0.25C}I™“

The first expression is a simple test which matches any ensemble with a composition of six carbon
and six hydrogen atoms. The second looks for compounds with five to size carbon and six or more
hydrogens, but no other elements. The third example finds compounds where the sum of chlorine
and bromine atoms is two. Other elements may be present but are not required, so this expression
matches Cl,, Br, and CIBr as well as dichlorobenzene. The fourth expression finds structures with

three or more metal atoms. The fifth expression finds compounds where twice the carbon atom count
minus the count of hydrogen atoms has a value up to six. Element sum and difference multiplier
factors may be floating point numbers, but the ultimate comparison step is performed with the
rounded sum or difference by integer comparison. The next line finds compounds with a formula of
C,H40,. The counts for elements repeated in the formula string are summed up. The next example

matches any compound with one or more hetero atoms. The square brackets in the first writing style
are properly escaped to survive standard Tel command parsing

The final example shows how to use computed comparison values, which are specified within curly
braces. This expression matches compounds which contain at least one nitrogen, but the number of
nitrogens cannot be more than a quarter of the carbon count. For computed comparison values, only
natural elements and the [Hev], [Het] and [Any] pseudo elements are currently recognized. At this
time, only a single element, optionally prefixed by a floating-point multiplier and adjusted by a
positive or negative floating-point offset, is supported in the specification of a computed comparison
value.

Vertical bars can be used to define separate formula match sections. These are applied to individual
molecules in the tested structures, not the full ensemble. If a single bar is specified at the beginning
or end of the expressions, it signifies a single expression section to be applied to a molecule. When
a test for formula sections is applied, all permutations of possible matches between the molecules
in an ensemble and the formula expression sections are tried. It is neither required that there is any
specific order of the molecules in the ensemble, nor a specific order in the formula expression
sections, not is there a need for a match between the molecule and formula section count. However,
every expression section in a formula needs to match a different molecule in the tested ensemble for
a final match.

Examples:
“formula = C6H6|CT7H8”
“formula = |H20”

The first expression looks for ensembles which contain one molecule with the formula C¢Hg, and
another with formula C;Hg. The second expression matches ensembles with one or more water

molecules. In both cases, molecules/fragment with different composition may be present in the
record. In order to test for two or more formulae with the additional conditions that there are no other
molecules/fragments, use two formula expression nodes connected with an and branch node, as in

and “formula = CoH6|C7H8” “formula = CoH6C7H8"”

Element symbols which stand for specific isotopes, such as D for deuterium, are currently not
processed. D and T are read as a simple alias for hydrogen, disregarding the isotope label.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

It is possible to use an ensemble handle instead of a formula expression. In that case, the elemental
formula of that ensemble is used in the query, as computed by property E_FORMULA.

reaction expressions

Reaction expressions are the construct used for reaction substructure searches, for example when
looking for certain bond transformations in a database of reactions. Obviously, the scanned file
needs to contain reaction information for this to succeed.

An important aspect for reaction searches are atom mapping numbers, which link atoms in the
reagent ensemble to the product ensemble, and likewise in the transformation scheme which needs
to be matched. The central property for this is A MmappING. If this property is present, it is used to
restrict matches to those reactions which embody a certain transformation, and are not a simple pair
of ensembles which match substructures of the left and right part of the query transformation
somewhere in their connectivity. Nevertheless, it is still possible to query reaction without a
mapping scheme. That is identical to a pair of substructure searches. Also, individual parts of a
reaction (the reagent and product ensembles, but potentially also the catalyst or solvent entries) can
be used as targets for single-ensemble sub/super/full-structure searches via structure query
expressions (see above).

A reaction expression is a list of three to six elements. The first element is always reaction, the
second element the operator, and the third element the reaction source. The following operators can
be used:

Reaction identity, i.e. full-structure reaction search. This is internally re-written to an
equivalent hash code search as a property node.

o |=
Reaction inequality, i.e. a negated full-structure reaction search. This is internally re-written
to an equivalent hash code search as a property node.

o >—
Reaction substructure search.

o >
Reaction substructure search, excluding identity.

o <=
Reaction superstructure search.

o <
Reaction superstructure search, excluding identity.

° ~>0r~>=
Reaction Tanimoto similarity search with a reporting threshold.

* %> or %>=
* Reaction Tversky similarity search with a reporting threshold.

Similar to structure query expressions, the operator can be modified by adding flag words as
additional list elements to the operator list element. The following flags are recognized:

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 469

CACTVS Tel and Python Scripting Language Reference

470

absolutestereo

Perform absolute stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties A QUERY
and B QUERY. An alternative syntax is to directly attach an update S character to the operator.

allowmissingstereo

If set, absent stereochemistry descriptors in file structures can be matched by explicit stereo
centers in the query structure. However, stereo center mismatches still lead to a match
failure.

anyfragment

Report a match for full-structure search if any molecule of the file structure is identical to
the query structure. For substructure/superstructure queries, this flag has no effect, since
their default operation mode already covers the effects of the flag.

anyoverlap

If the substructure contains multiple fragments, they may match overlapping parts of the
structure ensembles. By default, matched substructure fragments cannot overlap. This flag
cannot be combined with atomoverlap.

atomoverlap

If the substructure contains multiple fragments, they may match overlapping atoms, but not
bonds. By default, matched substructure fragments cannot overlap. This flag cannot be
combined with anyoveriap.

bidirectional
If the query reaction does not match, try to match it also in the reverse reaction direction.

charge
Match formal charges of query atoms. By default, charges are not compared, except if set
up explicitly as atom-specific query attribute in property 2 QUERY.

emptyssismismatch
By default, a substructure without any atoms matches anything. If this flag is set, it matches
nothing instead.

exactaro
Match aromatic bonds exactly. By default, simple single or double query structure bonds
match structure file record aromatic bonds.

exactringsystem

Rings in substructure fragments must match complete ring systems only. For example, with
this flag a benzene substructure no longer matches naphthalene, anthracene, etc. Non-ring
parts of the substructure can still, if other query attributes do not prevent this, match both
ring and chain parts of file structures. For full-structure queries, this flag has no effect.

extended

Use extended versions of the match procedures. For similarity queries, this enables the
PubChem extended scoring mechanism. If the query structure is identical to a file structure
both in stereochemistry and isotope labels, an artificial score of 104 is computed, 103 if

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

isotopes or stereochemistry match, but only one of these, 102 for basic equivalence of
connectivity without isotopes or stereochemistry, and 101 for a tautomer. Compounds
which are not structurally identical to the query structures using one of these criteria are
scored normally.

* framework
Substructure carbon atoms cannot have any unmatched, directly bonded carbon or hetero
atom neighbors in the structure. Unmatched bonded hydrogen is allowed. This flag has an
effect only for sub- and superstructure match modes.

* implicitsinglearo
If this flag is set, bonds which were created with an implicit bond order when the query
structure was decoded are matched as if they were explicit single/aro query bonds. This is
a useful mode for emulating Daylight software.

* isotope
Perform isotope matching. By default, isotope labels are not used in the queries, except if
set up explicitly as atom-specific query attribute in property 2 QUERY. An alternative syntax
is to directly attach an i character to the operator.

* matchallheavyatoms
Require that all heavy atoms in the file structures are matched. This feature generates
matches of file structures similar to full-structure matches while allowing the use of
substructures with variable match conditions, such as atom lists.

* nobondorder
Do not compare bond orders. This flag has an effect only for sub- and superstructure match
modes.

* nochainonaro
Do not match chain parts of the query substructure on aromatic bonds in the file structures.
This flag has an effect only for sub- and superstructure match modes.

* nochainonring
Do not match chain parts of the query substructure on ring bonds in the file structures. This
flag has an effect only for sub- and superstructure match modes.

e nodoubleonaro
Do not match otherwise unmarked double bonds in the substructure onto aromatic bonds of
the structures.

° noquerytree
Deactivate extended matches requiring full checks of the query tree fields in the A QUERY
and B_QUERY properties in the query structures. Certain query inputs need these trees for
precise matching, because the query cannot be expressed as a flat set of query attributes.
Examples for queries requiring tree matching for proper execution are complex SMARTS
expressions beyond those using only simple explicit or implicit and in atomic or bond
expressions, and Recursive SMARTS. Disabling the flag may lead to a small speed-up for
simple substructure queries.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 471

CACTVS Tel and Python Scripting Language Reference

472

noreactionflags

Do not match reaction transform flags in the substructure. If reaction flags are checked,
which is the default for reaction queries but not for structure queries, both query and file
structures need to have property B REACTION CENTER set for this to work. The supported set
of comparisons is compatible with MDL’s ISIS database. For standard reaction queries which
check for specific bond changes, this flag should ot be set.

nosingleonaro
Do not match otherwise unmarked single bonds in the substructure onto aromatic bonds of
the structures.

nosubstructureh

For substructure match, ignore any hydrogens present in the query structure. This is a
convenient shortcut to allow the use of hydrogen-complete structures as simple
substructures. A similar scheme is automatically invoked for superstructure search, where
hydrogens in the file structures are ignored in matching.

relativestereo

Perform relative stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties A QUERY
and B QUERY. An alternative syntax is to directly attach a lowercase s character to the
operator.

sethighlight

In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles with the highlight flags in properties B_FLaGs and
A_FLAGS. In case multiple matches occur, the highlight set is an union of all processed
matching substructure mapping. This flag is also automatically set if the data retrieval set
inthe molfile scan command includes related pseudo properties, such as matchatoms or
matchbonds.

setmatchproperty

In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles by attached properties A_ssMaTcH and B ssMaATCH. These
are set to the labels of the matching substructure atoms or bonds. Unmatched structure
ensemble parts have match property values of zero. In contrast to the sethighlight flag, this
option attaches a new match property instance for every successful and processed match.
Returned ensembles may therefore possess series of properties like o ssMATCH,

A SSMATCH/2... and so on.

unique

Hint for the query processor that the query reaction is expected to be matched only once in
the file, if at all. This is useful for query optimization. If a hit has been found, additional
records need not to be checked.

The third mandatory parameter is the query reaction source. It can be any of

A reaction handle
The handle is decoded directly.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* A dataset handle

A dataset containing at least one reaction. All dataset objects are checked, and internally for
every reaction a separate expression node is created. The nodes are then linked via an or or
orcontinue (in case a scoring operator is used) branch node. Dataset objects which are not
reactions are silently ignored. The hydrogen status of the dataset reactions is not changed.
In case there is only a single reaction in the dataset, this command is indistinguishable from
using the reaction handle directly. In case the dataset does not contain any reactions, an error
is raised.

* reaction line notation string
A string representation of a reaction, in any format that can be decoded by the reaction
create statement, for example a Reaction SMILES, SMIRKS, RINCHI or a CAcTvs serialized
reaction object string. This query reaction is only temporarily instantiated and automatically
deleted when the command finishes.

Reading one or more query reactions from a file handle directly in the query statement, as it is
possible for structure queries, is currently not supported. Also, the tautomer match mode is not
available for reaction matching because it interferes with atom map processing.

The optional query list items four to six are identical to those for structure query expressions. They
represent a reporting threshold value and the ¢/ and ¢2 comparison algorithm parameters. Please
refer to the paragraph on structure match expressions for more details.

The general approach to reaction sub- and superstructure matching is as follows:

* Perform bit vector screening for acceleration, if supported by the file format. The default
reaction screen property is x_SCREEN. The name of the reaction screen bit property can be
changed by setting the appropriate molfile handle attribute, so it is easily possible to use a
custom reaction screen.

e Match the reagent side from the file record onto the reagent side of the query reaction, just
like a structure query expression. If possible, structure screening (see paragraph on structure
match expressions) is used as an acceleration filter in addition to the reaction screen.

* If atom mapping information is available, use it to set up a match constraint table for the
product side, i.e. allow the product side substructure atoms with an atom mapping label
which has a counterpart in a reagent substructure atom mapping value to match only the atom
in the file product structure which has the same mapping label as the reagent side atom which
was matched by the reagent substructure. For this to work, there need to be two matching
pairs of mapping values on the reaction substructure and file reaction, though they of course
can be different in both reactions. In case a 1:1 relationship cannot be established for an
atom, the matching of this atom is not restricted.

* Match the product side, using mapping constraints where possible, and also using structure
screens if available.

 If any of the previous steps fail, abort the sequence early, but if bidirectional matching is
allowed, try again with the roles of the reaction substructure reagent and product ensembles
swapped.

Besides the ensemble-level query attribute properties 2 QUERY and B_QUERY, reaction matches also
make use of B REACTION CENTER (for constraints on the type of transformation a bond undergoes)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 473

CACTVS Tel and Python Scripting Language Reference

and E_ReEACTION ROLE (for the identification of reagent and product ensembles in the reaction
object).

Reaction similarity queries use the reaction screen set (by default, property x_scrREEN) instead of the
structure screen that is used for structure similarity. This operation returns a single score. There is
no scoring of the reagent or product ensembles.

Full-structure reaction matches are performed via hash code checks both the reagent and product
sides. Atom mapping information is not used for this query operation. The suitable hash code is
automatically selected depending on the operator modifiers (stereo, isotopes).

Starting with version 3.358 of the toolkit, property query expressions where the data type of the
property is reaction are automatically parsed as reaction expressions.

Scan modes

The return value of the molfile scan command depends on the query mode. The default mode is
enslist for themolfile scan command, but may be different when scanning other objects, such as
datasets, networks or tables. The following modes are supported for file queries via the mol1file
scan command. Scan modes for other objects may include specific additional modes, while
disallowing others.

* array (or alias tclarray, dict, pythondict)
The mode parameter is a list consisting of the mode selector array and a nested list of
properties and pseudo-properties. Each property item can be a list of one to three elements.
The first element is a property or pseudo-property, the second element a name, and the third
element again a property or pseudo property. The the second property item list element is
omitted, the name is the same as the first element. If the third element is missing, it is
assumed to be the pseudo-property record.

In this mode, the molfile scan command returns a list of the names of the created arrays.
For each name, a global TcL array variable or PyTHoN dictionary is created, and for each
match, a TcL array element with an element name equal to the value of the first item
specification index and an element value equal to the value of the third item specification
is created (or a dictionary entry with key and value for PytHon). For example, the scan mode
specification

{array {E_NAME name2rec} {record recZname E NAME}}

results in the creation of two global TcL arrays or PYTHoN dictionaries in the current
interpreter, called nameZ2rec and rec2name. The first has array elements (for PYTHON,
dictionary keys) where the element name is the name of the matching structure (property
E_NAME), and the value the file record number (because it is the default). The second array
has elements where the record number is the array element name, and the corresponding
value the structure name. The return value of the scan statement is the list (tuple for PyTHON)
“name2rec rec2name”, containing the names of the two variables created.

474 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If array or dictionary elements for a specific key already exist, the new value is appended
as a list or tuple object. The result registration procedure does not overwrite the existing
content. So, for example in above case, if there are multiple records with the same structure
name, the array element indexed by name would contain a list or records, not just a single
record. Since the global arrays or dictionaries are persistent, data is also appended over
multiple scan statements. If this is not desired, a statement like unset -nocomplain
$arrayname should be executed before the scan is started. It is legal to use the same array
or dictionary name for the registration of multiple properties. In this case, each match
appends a new list element for every reported property, though these lists will not be nested.

* bitvector
Return a bit vector (series of Os and 1s in compact format) indicating the match status of
every visited record. Internally, these bit are stored efficiently in 32-bit words. To the
scripting interface they appear as a sequence of 0 and 1 without a space separator.

* boolean
Return a boolean value indicating whether the next record matches or not.

* booleanvector
Return a boolean vector (series of Os and 1s as vector elements) indicating the match status
of every visited record. The difference to the bitvector mode is that in the scripting interface
the vector elements are already isolated elements, for example they appear space-separated
in the string form.

* count
Just count the number of hits, but do not report details. The result value is an integer.

* delete
Delete hits from the file, if this is possible. This operation is performed after the scan has
completed, not during the scan, so that file record numbers etc. do not change within a query.

° ens
Return the handle or reference of the first matching ensemble. The query is stopped at that
point. If no hits are found, an empty string is returned.

* enslist
Return the handles or references of all matching ensembles. If no hits are found, an empty
list is the result.

* exists
Return a boolean flag indicating whether any hit exists. This is very similar to the count
mode, except that query processing is stopped after the first match.

* index
The file position index of the first matching object. This is the same as the record mode,
except that each hit value is one less, since indices start at zero. The query is stopped after
the first hit.

e indexlist
A variant of the recordlist mode. The returned values are one less than the records, since
indices start at zero.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 475

CACTVS Tel and Python Scripting Language Reference

* molfile
The mode parameter list consists of the mode selector molfile and a structure file handle or
reference, which must have been opened for writing, appending, or updating. The first
matching structure is written to the file. After this, the query stops. The output file attributes
determine format, selection of data written, structure encoding conventions such as
hydrogen status, etc. If no matching structure is found, nothing is written. In this mode, the
return value of the command is the matching record number of the input file, just as in the
record mode.

* molfilelist

The mode parameter is a list consisting of the mode selector molfilelist and a structure file
handle or reference, which must have been opened for writing, appending, or updating.
Matching structures are written to that file. The output file attributes determine format,
selection of data written, structure encoding conventions such as hydrogen status, etc. [f no
matching structures are found, nothing is written. This mode is also implicitly selected if a
structure file handle is directly provided as mode argument. In this mode, the return value
of the command is a list of the matching record numbers of the input file, just as in the
recordlist mode

° property
The mode parameter is a list consisting of the mode selector property and a sequence of
names (or references, for PYTHoN) of properties and pseudo-properties. The selected
properties for the first match are returned as a list. If there are no hits, an empty string is
returned. The query stops after the first match.

* propertylist
The mode parameter is a list consisting of the mode selector propertylist and a sequence of
names (or references, for PytHoN) of properties and pseudo-properties. The selected
properties for all matches are returned as a nested list. If there are no hits, an empty string
is returned. This mode is also selected if the mode argument is simply a list of property and
pseudo property names without an identifiable mode keyword as first list element.

* reaction
Return the handle or reference of the first matching reaction. The query is stopped at that
points. If no hits are found, an empty string is returned.

* reactionlist
Return the handles or references of all matching reactions. If no hits are found, an empty list
is the result.

* record
The record number of the first file record which matches. In case a single physical file is
searched, this is the same as vrecord, but if the scanned file is a virtual file consisting of
multiple physical component files, this is the record number in the matching physical file.
The scan is stopped when the first match has been found. If there are no matches, an empty
string is returned.

476 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* recordlist
The same as the record mode, except that more than one match is potentially reported. In
case a virtual file is searched, it is possible that duplicate values are returned, because the
same record number from different physical files may be a hit. For unique record numbers,
use the vrecordlist variant.

° table
The mode parameter is a list consisting of the mode selector table and a sequence of
properties and pseudo-properties. This scan mode returns a table handle or reference. The
table is automatically configured with properly typed columns corresponding to the
requested properties. For each hit, one row is added. If there are no hits, a table handle or
reference is still returned, but the table does not have any rows. This retrieval mode is only
available if the toolkit has been compiled with table support.

The individual properties may also each be specified as a list consisting of the property
name, and an arbitrary string. In that case, the string is used as the column name. By default,
the column names are the same as the name of the property they store. Example:

{table {E NAME name} {E CAS casno} record}

sets up a table with three columns called name, casno and record. The first two columns
contain property data from the matching file records, the last one the record in the file which
matched.

Instead of the keyword table, an existing table handle or reference may also be used. In that
case, any existing matching table columns are automatically re-used to store result data.
Additionally specified properties are added as new columns to the right of the previously
existing columns. New table rows generated by matches are appended to the bottom of the
table.

The row names of added table rows are set to Record%u, with the file record number as
variable part.

* tablecollection

This mode is mostly identical with the table mode, and takes the same column specification
parameters. The important difference is that this scan mode always retrieves the full objects
associated with the filled table rows (ensembles or reactions). They are preserved and their
relationship with the table marked. This can be useful if at a later stage in handling the table
additional data needs to be computed or retrieved from an object. On the other hand this
mode can be memory-intensive if many objects are created. Referral to associated objects
may happen indirectly, for example with image columns where the exact image property is
unknown until output time when the storage format is selected.

The scan command mode returns the table handle or reference as result. The associated row
objects are stored in the general namespace, and are not be a member of any dataset. They
are visible like any other object of their type, for example via ens list Or reaction list
commands. Commands table ens and table reaction are useful to get the object subset
associated with this table. Note that these table-associated objects are not automatically
deleted when the table is destroyed - only their association is severed. If they are no longer
needed, they should be destroyed explicitly.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 477

CACTVS Tel and Python Scripting Language Reference

478

vrecord

If the scan is executed on a single file, this is the same as record. In case a virtual file which
consists of multiple physical files is searched, this is the virtual file record number, i.e. the
overall record number in the concatenated component files.

vrecordlist

If the scan is executed on a single file, this is the same as recordlist. In case a virtual file
which consists of multiple physical files is searched, this is a list of the virtual file record
numbers, i.e. the overall record numbers in the concatenated component files.

If requested property data is not present on the object representing a hit, an attempt is made to
compute it. If this fails, the retrieval modes table and tablecollection generate NULL cells, and
property retrieval as list data produces empty list elements, but no errors. For minor object
properties, the property list retrieval modes produces lists of all object property values instead of a
single value. In table-based mode, only the data for the first minor object associated with the major
object is retrieved, which makes this mode less suitable for direct minor object property retrieval.

Pseudo properties for retrieval

The following pseudo properties can be retrieved in property/properylist scan modes or as table
values, in addition to standard property data:

avgscore
The average value of all computed scores, such as Tanimoto or Tversky similarity scores,
in the matching query for this result.

conformerindex
The index of the matching conformer in case of 3D queries with multiple conformations, -1
if no matching conformer index was determined.

conformer

A list of the atomic coordinates of the matching conformer, if a 3D query was performed.
If this is not the case, an empty vector is the result. The data type of this vector is coorvec
(x,y,z-triples as vector elements).

filename

The name of the physical file the match occurred in. For normal, single-file scans, this is not
interesting. However, for virtual files, only the combination of the pseudo properties
filename and record is a complete reference.

image

A structure GIF image (property £_GIF) with highlighted matching substructure atoms and
bonds. A normal £_G