
CACTVS Tcl and Python Scripting Language Reference
CACTVS Tcl and Python Scripting Language Reference

The atom Command

The atom command is the generic command used to manipulate atoms. The TCL syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel. For
PYTHON, most commands are object methods.

The pseudo atom labels first or ^, last or end or $ and random are special values, which select the
first atom in the atom list, the last, or a random atom.

Atoms can also be selected via atom indices (# prefix), atom mappings (^ prefix), previous labels
(suffix %) or specific property values.

Examples:
atom get $ehandle 1 A_SYMBOL
atom get $ehandle ^1 A_SYMBOL
atom get $ehandle #0 A_SYMBOL
atom get $ehandle {A_LABEL = 1} A_SYMBOL
atom hadd $ehandle 2

This is the list of officially supported subcommands:

atom anchormatch
atom anchormatch ehandle label ss_ehandle ?ss_label? ?matchflags? ?ignoreflags?

?atommatchvar? ?bondmatchvar? ?molmatchvar?
a.anchormatch(substructure=,?substructureatom=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)

This command is a variant of the atom match command. The difference is that the full substructure
is matched, and not just its first or selected atom. A substructure match anchor between the
command atom and the first or selected substructure atom is enforced (see -anchor option of the
match ss command).

Example:
set eh [ens create CCO]
echo [atom match $eh 3 O(C)(C)]
echo [atom anchormatch $eh 3 O(C)C]

The first command matches, because only the first substructure atom is checked. The second fails,
even though the first substructure atom is a match - but then its environment does not fit.

atom angle
atom angle ehandle label label2 label3 ?property?
a.angle(atom2=,atom3=,?coordinateproperty=?)

Compute the angle between 3D atomic coordinates stored in a property between the three atom
arguments, which are considered linked in the specified sequence. The source property for atomic
coordinates is by default A_XYZ, but another property can be set, which also needs to be an atomic
float vector.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 127

CACTVS Tcl and Python Scripting Language Reference
The return value is the angle in degrees between the vectors implicitly constructed from the 3D
atomic coordinate of the second atom pointing to that of the first, and from the second atom to the
third. No bonds need to exist between the atoms. All atoms used in a statement must be different,
and possess 3D coordinates initially, or after an automatically started computation of the source
property.

atom append
atom append ehandle label ?property value?...
a.append({?property:value,?...})
a.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
atom append $ehandle 1 A_SUPERATOMSTRING “_linker”

atom atom
atom atom ehandle identifier
Atom.Ref(eref,identifier)

Standard cross-referencing command to obtain the label (or reference object, for Python) of the
atom as stored in property A_LABEL. This is explained in more detail in the section about object
cross-references.

Example:
atom atom $ehandle #0

returns the label of the first atom of the ensemble atom list.

atom bondangles
atom bondangles ehandle label ?filterset? ?filtermode?
a.bondangles(?filterset?,?mode?)

Standard cross-referencing command to obtain the labels or references of the bond angle objects the
atom is participating in. This is explained in more detail in the section about object cross-references.

atom bonds
atom bonds ehandle label ?filterset? ?filtermode?
a.bonds(?filterset?,?mode?)

Standard cross-referencing command to obtain the labels or references of the bonds the atom is
participating in. This is explained in more detail in the section about object cross-references.

Examples:
atom bonds $ehandle 1
atom bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds atom 1 is participating in. The second example
returns the number of double or triple bonds the atom is a part of.
128 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
atom change
atom change ehandle label element ?linkatom? ?removeh?
a.change(replacement=,?linkatom=?,?removeh=?)

This command is very similar to the command atom replace. The important difference is that the
element parameter is always interpreted as an element symbol encoding, and not primarily as an
ensemble handle, ensemble handle/molecule label pair or SMILES string.

The rest of the command is explained in the paragraph on atom replace.

Example:
atom change $eh 1 C
atom change $eh 2 Z

The first example changes the atom with label 1 to a neutral carbon atom. Bonds of the old atom 1
are inherited if possible. If this is not possible due to valence violations, an error is raised. The
second example changes an atom to a query specification for an electro-negative element.

atom charge
atom charge ehandle label chargedelta
a.charge(chargedelta=)

Try to change the formal charge A_FORMAL_CHARGE of the atom by the specified amount. The free
electron count A_FREE_ELECTRONS is also adjusted, and other charge- or free-electron-dependent
properties on the ensemble are recursively invalidated. Impossible final charge values are rejected.
If the desired charge state can only be reached by deprotonation, this is automatically attempted, and
a bond change property invalidation event is processed.

The command returns the atom label (for TCL) or reference (for PYTHON).

atom create
atom create ehandle ?symbol? ?bondtype atomlabel?...
Atom(eref,?symbol?,?bondtype,aref?...)
Atom.Create(eref,?symbol?,?bondtype,aref?...)

Create a new atom in the ensemble. By default, the atom is added without any bonds or charge and
the standard set of free electrons. The symbol parameter is usually an element symbol, which is
decoded in a case-sensitive fashion. If it is omitted, an unspecified atom is created. The isotopic
element symbols D and T are recognized and decoded to the corresponding hydrogen isotopes,
setting the A_ISOTOPE property.

This command may also be used to add various pseudo and query atoms. Allowable symbols for this
purpose are

• 3DPOINT or DU or BQ for points in 3D space

• POLY for polymers

• EPAIR, EP or LP for lone pairs

• * or OV for an open valence pseudo atom

• ~ for a superatom with a yet undefined identifier string
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 129

CACTVS Tcl and Python Scripting Language Reference
• HA for a generic hydrogen acceptor

• HD for a generic hydrogen donor

• A for a query atom which is not hydrogen

• Q for a query atom which is a hetero atom (not C or H)

• M for a query atom which is a metal

• ? for a query atom which can be any atom

• X for a query element list with the halogens

• Y for a query element list with the electro-negative elements N,O,Cl,Br

• Z for a query element list with the electro-negative elements N,O,F,S,Cl,Br,I

• L for a query element list with a yet undefined set of elements

• @ for a delocalization anchor

• R for a query atom of type insulator.

Instead of an element symbol, the periodic system number of an element may also be used,
optionally prefixed with a hash character (#) in SMILES style. Additionally, the standard BEILSTEIN
query atoms, such as ‘[Alk]’, as well as CCDC element groups, such as ‘[3A]’, are supported.

If the superatom symbol ~ is followed by more characters, these are copied to the superatom
identifier string (A_SUPERATOMSTRING property). If a known fragment is specified this way, it may
be expanded later.

The command returns the automatically assigned label of the new atom, or the atom reference for
PYTHON. Note that this command does not require a label parameter, since it creates new atoms.

This command updates the ensemble information and recursively purges information which is
susceptible to atom changes. For atom properties which survive this step, a default value is added,
if the property is not part of the set of properties managed actively by this command, such as the free
electron count and the atom label.

After the atom symbol, an additional sequence of (non-nested) bond type and atom label parameters
may be specified. The recognized bond types are the same as in bond create. Bonds of the
requested type are created and link the new atom to existing atoms in one step. This bond creation
process is limited by the valence restrictions of the involved atoms. Successful bond creation
triggers a bond change property data invalidation event.

The atom create command can also be accessed, for historical reasons, as atom add. This alias is
deprecated.

The return value is the label of the new atom.

Examples:
atom create $ehandle C
atom add $ehandle ?
atom expand $ehandle [atom add $ehandle ~FMOC]
atom create $ehandle N = $a1 single $a2
130 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The first example adds a carbon atom to the ensemble. The second line adds an any query pseudo
atom, which, in the context of a substructure search, matches any atom. The third example adds a
superatom named FMOC in the inner command. Since this is a fragment name the library
understands by default, it may be expanded to the full FMOC fragment with the outer command.
Finally, a nitrogen atom is added and immediately bonded via a double bond to the atom identified
by the label in variable a1, and via a single bond to the atom in a2.

atom defined
atom defined ehandle label property
a.defined(property)

This command checks whether a property is defined for the atom. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The ens valid command is used for this purpose.

Example:
atom defined $ehandle 1 A_XYZ

checks whether atom 1 is of a type for which A_XYZ is defined.

The command returns a boolean status value.

atom delete
atom delete ehandle ?label?...
atom delete ehandle all
a.delete()
Atom.Delete(eref,?alabel/aref/arefsequence?,...)
Atom.Delete(aref,...)
Atom.Delete(eref,“all”)

Delete zero or more atoms. All bonds which the atoms participate in are also deleted. The electron
counts of surviving atoms participating in deleted bonds are automatically updated. Molecule and
ring information, and other minor object classes under the control of the ensemble major object
which depend on an unchanged atom set are deleted. Any property data which depends on an
unchanged atom set is also invalidated, or, if the property is set up to do so, re-computed.

Note that this command does not delete hydrogen atoms the deleted atoms were bonded to. These
remain in the ensemble as isolated, now unbonded atoms. The atom xdelete subcommand also
deletes these hydrogen atoms.

The special atom label all requests deletion of all atoms. Usually, this is equivalent to ens clear.

The return value of the command is the number of deleted atoms.

Example:
atom delete $ehandle 1

This command is one of few atom subcommands which do not require an atom label. If no label is
given, the command does nothing. This is useful for list expansions where the list might be empty:
eval atom delete $ehandle $delatomlist
atom delete $ehandle {*}$delatomlist
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 131

CACTVS Tcl and Python Scripting Language Reference
atom dget
atom dget ehandle label propertylist ?filterset? ?parameterdict?
a.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom dget is
that the latter does not attempt computation of property data, but rather initializes the property values
to the default and return that default if the data is not yet available. For data already present, atom
get and atom dget are equivalent.

atom deprotonate
atom deprotonate ehandle label ?count?
a.deprotonate(?count=?)

Attempt to remove one ore more protons from the atom, with adjustment of formal atom charge and
processing of appropriate structure change property data invalidation events.

The command returns the atom label (for TCL) or atom reference (for PYTHON).

atom distance
atom distance ehandle label ?label2? ?property?
a.distance(?atom2=?,?coordinateproperty=?)

Compute the 3D distance between two atoms based on the values of a coordinate property. The
source property for atomic coordinates is by default A_XYZ, but another property can be specified,
which also needs to be an atom float vector.

The command returns the value as a floating point number in the unit of the source property
(Angstrom in case the default A_XYZ is used). An equivalent explicit vector arithmetic script is
vec len [vec subtract [ens get $eh $label A_XYZ] [ens get $eh $label2 A_XYZ]]

If a second atom identifier is not specified, or given as an empty string, the result is a nested list of
the distances to all bonded neighbor atoms, regardless of the bond types. Each sublist consists of the
partner atom label and the bond length from the current atom to that neighbor.

In order to obtain the topological distance between atoms, use the atom topodistance command,
or compute property A_TOPO_DISTANCE.

atom dup
atom dup ehandle ?label_list? ?datasethandle? ?position?
a.dup(?dataset=?,?position=?)
Atom.Dup(eref,aref_tuple,?dataset=?,?position=?)

Duplicate zero or more atoms, plus all the bonds existing between them, into a new ensemble. This
command is very similar to ens fragment, and the same caveats about preserved and destroyed data
in the duplicate apply.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed,
the duplicate is not made a dataset member, even if the input ensemble is in a dataset.
132 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The command returns the handle of the new ensemble object for TCL, or an ensemble reference for
PYTHON.

Example:
set ehfrag [atom dup $eh {*}$alist]

atom ens
a.ens()

PYTHON-only method to get the ensemble reference from an atom reference.

atom exists
atom exists ehandle label ?filterlist?
a.exists(?filters=?)
Atom.Exists(eref,label,?filters=?)

Check whether this atom exists. Optionally, a filter list can be supplied to check for the presence of
specific features. The command returns 0 if the atom does not exist, or fails the filter, and 1 in case
of successful testing.

Example:
atom exists $ehandle 99

atom expand
atom expand ehandle label ?allowambiguous? ?noimplicith?
a.expand(?allowambiguous=?,?noimplicith=?)

This command attempts to expand a superatom. A superatom is either an atom for which the atom
type property A_TYPE is set to super (the preferred method), or a standard atom (A_TYPE normal)
with certain property data.

For a successful expansion, the first class of explicit superatoms must have a valid
A_SUPERATOMSTRING property value which can be located in the table of known superatom
identifiers. The second class of normal atoms needs a valid A_TEXTLABEL property data with a
known superatom identifier in its label text field. The use of normal atoms as superatom surrogates
is deprecated.

If the allowambiguous flag parameter is set, superatoms of uncertain status are expanded. Some
superatom names are ambiguous, for example Al, which may both refer to the element and alanine.
The superatom table protects against unchecked expansion of such atoms by containing an
ambiguity flag which is set in such cases.

By default, the fragments from the superatom table are imported with a full set of hydrogens. If the
optional noimplicith flag is set, only hydrogens which are explicitly spelled out in the superatom
definition are included. For example, superatoms COO and COOH are expanded to the same form
with an acidic hydrogen by default, but if the flag is set, only the second form has it.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 133

CACTVS Tcl and Python Scripting Language Reference
The command returns 1 if the atom was a superatom and expansion was successful, 0 otherwise. It
may also raise an error if a superatom was found, but expansion failed, for example because of an
illegal bonding situation which does not allow the creation of the required normal bonds to the
expanded fragments.

The expanded superatom and all other atoms in the original ensemble retain their labels.

Only a single level of superatoms is expanded - if the expanded fragment contains another
superatom, it remains in its original form.

Examples:
atom expand $ehandle [atom create $ehandle ~BOC]

This command immediately expands the freshly created BOC fragment. A command sequence like
atom set $ehandle [ens create C 0] A_TEXTLABEL(label) COOMe
atom expand $ehandle 1

also works, but is deprecated.

atom expr
atom expr ehandle label expression
a.expr(expression)

Compute a standard SQL-style property expression for the atom. This is explained in detail in the
chapter on property expressions.

atom fill
atom fill ehandle label ?property value?...
a.fill({property:value,...})
a.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

Example:
atom fill $ehandle 1 B_COLOR red

sets the color of the first bond atom 1 participates in to red.

The command returns the first fill value.

atom filter
atom filter ehandle label filterlist
a.filter(filters)

Check whether an atom passes a filter list. The return value is boolean 1 for success and 0 for failure.

Example:
atom filter $ehandle 1 [list carbon doublebond]

checks whether the atom is a carbon atom with a double bond.
134 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
atom get
atom get ehandle label propertylist ?filterset? ?parameterdict?
a.get(property=,?filters=?,?parameters=?)
a[property]
a.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
atom get $ehandle 1 {A_SYMBOL A_ELEMENT}

yields the atomic symbol and the element number of atom 1 as a list. If the information is not yet
available, an attempt is made to compute it. If the computation fails, an error results.
atom get $ehandle 1 B_ORDER ringbond

will give the bond orders of all bonds of the atom which are ring bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the atom get command are atom new, atom dget, atom nget, atom show, atom
sqldget, atom sqlget, atom sqlnew and atom sqlshow.

Further examples:
atom get $ehandle 1 A_SYMBOL
atom get $ehandle 1 A_FLAGS(boxed)

In the Python case, the first variant accepts property lists/tuples containing string property names
and/or property references, or a string property list in addition to a single property. Property
references can be used instead of strings only in the first variant, both as single arguments or as part
of lists/tuples. Direct indexed access to property fields also requires the first version, as does the use
of filters or specific computation parameters.

atom groups
atom groups ehandle label ?filterset? ?filtermode?
a.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the atom is a
member of. This is explained in more detail in the section about object cross-references.

Example:
atom groups $ehandle 1

atom hadd
atom hadd ehandle label ?filterset? ?flags? ?chargedelta?
a.hadd(?filters=?,?flags=?,?chargedelta=?)

Add a standard set of hydrogens to the atom. If the filterset parameter is specified, the atom needs
to pass the filter set in order to be processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 135

CACTVS Tcl and Python Scripting Language Reference
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

• no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

• no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

• noanions
Do not add hydrogen to atoms with a negative formal charge.

• noatoms
Do not add hydrogen to atoms without any bonds.

• nocations
Do not add hydrogen to atoms with a positive formal charge.

• noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

• noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

• nofixatomtext
Do not adjust property A_TEXTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOEt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

• nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

• nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

• nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

• nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B_TYPE not normal).

• keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.
136 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• protonate
Add a single proton to the atom. The charge of the atom is increased, only a single hydrogen
is added regardless of the standard number of missing hydrogens, and this command will
issue the standard property invalidation event for atom and bond changes.

• resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

If a charge delta parameter is specified, the atomic charge and free electrons of the atom are adapted
accordingly before the hydrogens are added. The manipulation of the charge usually changes the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative.

Adding hydrogens with this command, except if the protonate flag is set, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

The command returns the number of hydrogens which were added.

Example:
set ehandle [ens create FC(F)(F)(F)]
atom delete $ehandle 1
atom hadd $ehandle 2

transforms tetrafluoromethane to trifluoromethane.

atom hdelete
atom hdelete ehandle ?label?...
atom hdelete ehandle all
a.hdelete()
Atom.Hdelete(eref,?alabel/aref/arefsequence?,...)
Atom.Hdelete(aref,...)
Atom.Hdelete(eref,“all”)

Delete zero or more atoms. All bonds which the atoms participate in are also deleted. The electron
counts of surviving atoms participating in deleted bonds are automatically updated. Molecule and
ring information, and other minor object classes under the control of the ensemble major object
which depend on an unchanged atom set are deleted. Any property data which depends on an
unchanged atom set is also invalidated, or, if the property is set up to do so, re-computed.

Additionally, and different from the simple atom delete command, all cut VB valences on the
neighbor atoms which will not be deleted with the same statement are saturated with added
hydrogen atoms. Only the cut valences are treated, this is not necessarily equivalent to a atom hadd
command on the neighbors.

Otherwise, the command performs the same actions as the simple atom delete command.

The all command variants are identical to that of the simple atom delete command since no
neighbor atoms for hydrogenation remain.

The command returns the number of deleted atoms.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 137

CACTVS Tcl and Python Scripting Language Reference
atom hdup
atom hdup ehandle ?label_list? ?datasethandle? ?position?
a.hdup(?dataset=?,?position=?)
Atom.Hdup(eref,aref_tuple,?dataset=?,?position=?)

Duplicate zero or more atoms, plus all the bonds existing between them, into a new ensemble, and
plug all open valences by adding standard hydrogens. This command is similar to ens hfragment,
and the same caveats about preserved and destroyed data in the duplicate apply.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed,
the duplicate is not made a dataset member, even if the input ensemble is in a dataset.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The command returns the handle of the new ensemble object for TCL, or an ensemble reference for
PYTHON.

atom hstrip
atom hstrip ehandle label ?flags? ?chargedelta?
a.hstrip(?flags=?,?chargedelta=?)

This command removes hydrogens from the selected atom. By default, all hydrogen atoms are
removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

• deprotonate
If this flag is set, a single proton is removed from the atom. This command variant does issue
a standard atom and bond change property invalidation event, and it always ends processing
after removing the first proton. Proton removal decreases the charge of the atom by one.

• keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

• keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

• keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note that these commands can be run in a mode which does not leave information
about automatic addition - hydrogens added this way do not survive.

• keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).
138 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

• keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

• normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

• wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

If a charge delta parameter is specified, the atomic charge and free electrons of the atom are adapted
accordingly before the hydrogens are added. The manipulation of the charge will usually change the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative.

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
in case the deprotonate flag is set. The system assumes that this operation is done as part of some
file output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that the structure may contain implicit hydrogens.

The return value of the command is the number of hydrogens removed.

Example:
atom hstrip $ehandle 1 [list keeporiginal wedgetransfer]

atom hydrogenate
atom hydrogenate ehandle label ?filterset? ?changeset?
a.hydrogenate(?filters=?,?changeset=?)

Reduce all bonds the atom participates in to single bonds except those excluded by the filter set.

If a change set is supplied, its interpretation is the same as in atom hadd.

The command returns the number of added hydrogens.

Example:
atom hydrogenate $eh 1 {!arobond !ccbond}

This reduces all non-aromatic hetero bonds atom 1 participates in to single bonds.

atom index
atom index ehandle label
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 139

CACTVS Tcl and Python Scripting Language Reference
a.index()

Get the index of the atom. The index is the position in the atom list of the ensemble. The first position
is index 0.

Example:
atom index $ehandle 99

atom invert
atom invert ehandle label
a.invert()

Invert the stereochemistry at the atom, provided it is an sp3-type atomic stereo center, which
includes those which use an electron pair as pseudo ligand and allenes with an odd number of atoms.
This command updates any atomic stereo descriptors and bond wedges to the ligands if set, but only
compute A_LABEL_STEREO. No check it made whether the atom can physically be a stereo center, but
if the A_LABEL_STEREO descriptor is zero, or describes non-sp3 types of stereochemistry such as
square planar, the command does nothing and returns 0, but will not raise an error. For odd allenes,
bond wedges at the terminal atoms are updated, not those at the center atom.

If stereochemistry was inverted, this command issues a stereo change property invalidation event
and additionally invalidates the A_STEREOGENIC and B_STEREOGENIC properties, because the stereo
potential of centers which possess two ligand groups which only differ in stereochemistry may have
changed.

If the command finds a defined stereo center and succeeds in inverting it, it returns 1, 0 otherwise.

atom isotopecheck
atom isotopecheck ehandle label ?extended?
a.isotopecheck(extended=)

Test whether the isotope label of the atom, if it exists, is physically reasonable. The command
returns boolean true if the label is OK, or is not set. If no isotope is set in A_ISOTOPE, the command
always reports no problems.

By default, a smaller isotope table is used which contains only isotopes which are sufficiently
long-lived to perform chemistry on. These include naturally occurring isotopes as well as isotopes
used for experimental labeling, such as 1T or 14C. If the extended boolean flag is set, a larger table
containing all known isotopes of the elements is used.

The isocheck command is an alias.

atom jget
atom jget ehandle label propertylist ?filterset? ?parameterdict?
a.jget(property=,?filters=?,?parameters=?)

This is a variant of atom get which returns the result data as a JSON formatted string instead of TCL

or PYTHON interpreter objects.

atom jnew
atom jnew ehandle label propertylist ?filterset? ?parameterdict?
a.jnew(property=,?filters=?,?parameters=?)
140 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This is a variant of atom new which returns the result data as a JSON formatted string instead of TCL
or PYTHON interpreter objects.

atom jshow
atom jshow ehandle label propertylist ?filterset? ?parameterdict?
a.jshow(property=,?filters=?,?parameters=?)

This is a variant of atom show which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

atom local
atom local ehandle label propertylist ?filterset? ?parameterdict?
a.local(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
atom local $ehandle 1 A_LABEL_STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to in a global re-computation.

atom match
atom match ehandle label ss_ehandle ?ss_label? ?matchflags? ?ignoreflags?

?atommatchvar? ?bondmatchvar? ?molmatchvar?
a.match(substructure=,?substructureatom=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)

Check whether the selected atom matches a substructure. Only the first substructure atom, or the
atom selected by the substructure label parameter, is tested. The substructure may be part of any
structure ensemble, and even be in the same ensemble as the primary command atom.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset the flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels (references for PYTHON). If no match can be found, the variable is set to an empty
list. In case only a bond or molecule match variable is needed, an empty string can be used to skip
the unused match variable argument positions.

Example:
set ss [ens create {[F,Cl,Br,I]} smarts]
set a_is_halogen [atom match $ehandle $label $ss 1]

atom mol
atom mol ehandle label ?filterset? ?filtermode?
a.mol(?filters=?,?mode=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 141

CACTVS Tcl and Python Scripting Language Reference
Standard cross-referencing command to obtain the label (for TCL) or reference (for PYTHON) of the
molecule the atom is a member of. This is explained in more detail in the section about object
cross-references.

Examples:
atom mol $ehandle 1
atom mol $ehandle 1 heterocycle

The first example returns the label of the molecule. Note that it is possible for pseudo atoms to be
outside of any molecule. In this case, an empty string is returned. The second example returns the
molecule label if the atom is part of a molecule which contains one or more heterocycles. If the
molecule does not contain a heterocycle, an empty string is returned. Note the use of mol in singular
- an atom can only be a member of one molecule, or of none.

atom neighbors
atom neighbors ehandle label ?filterset? ?filtermode? ?sphere? ?allowduplicates?
a.neighbors(?filters=?,?mode=?,?sphere=?,?allowduplicates=?)

This command (which can also be invoked as subcommand neighbours, or ligands) is a
cross-referencing command with some extra options and, in some filter modes, slightly different
behavior than the standard object cross-reference subcommands.

In the simplest case, it returns the labels (for TCL) or references (for PYTHON) of the immediate
neighbor atoms. A neighbor atom is an atom which is bonded via a standard (covalent, BTYPE_VB)
or complex (BTYPE_COMPLEX) bond to the originating atom. In case the filter list contains bond
filters, the bond leading to the originating atom must pass the check, not just any bond of the
neighbor atom.

Example:
atom neighbors $ehandle 1 doublebond

returns all neighbor atom labels which are bonded via a double bond. Neighbor atoms which
participate in a double bond with other atoms, but not the originating atom, are not returned.

This command supports special filtermode parameters in addition to the standard set (exists, count,
exclude, include). The notraverse parameter, followed by a list of atom labels in any of the standard
atom specification styles is a list of atoms which are not traversed during sphere expansion. The
bonds parameter, followed by a bit set combination from the allowed values ring, sidechain or
bridge can be used for topological filtering of the traversable bonds. By default, no topological bond
filtering is applied.

Example:
atom neighbors [ens create CC(C)C] 2 {} {notraverse {3 4}} 2

only returns the hydrogen atoms 5, 6, 7 on atom 1, since carbon atoms 3 and 4 are blocked. If the
atoms in the traversal block list are part of the requested sphere, they are listed.

By default atoms in the immediate neighborhood are examined, but this change be changed by the
sphere parameter. The immediate neighbors are in sphere 1 (the default for this parameter), the next
group of atom is in sphere 2, and so on. If the sphere is not 1, the special filtering of bonds is no
longer active and the normal object substitution mechanism for cross referencing is used. When
going beyond the first sphere, it is also possible that an atom may be reached by multiple paths of
the selected length. By default, these atoms are returned only once, but with the last optional
142 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
parameter this behavior may be changed. A positive sphere value only selects atoms in that sphere.
A negative sphere parameter value returns a list of all neighbors up to and including the sphere
identified by the absolute sphere value.

Example:
atom neighbors $ehandle 1 {carbon aroatom} count 2

counts the number of aromatic carbon atoms in a distance of two bonds.

atom new
atom new ehandle label propertylist ?filterset? ?parameterdict?
a.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom new is
that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

atom nget
atom nget ehandle label propertylist ?filterset? ?parameterdict?
a.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom nget is
that the latter always returns numeric data, even if symbolic names for the values are available.

atom paths
atom paths ehandle label targetlabel ?minlength? ?maxlength? ?filterset?

?atomproperty? ?maxpathcount? ?flags?
a.paths(target,?minlength=?,?maxlength=?,?filters=?,?atomproperty=?,

?maxpathcount=?,?flags=?)

This command finds all paths between a pair of atoms, walking along bonds of the types which
define molecules. By default, these are bond types normal, complex and 3center, but this can be
changed by modifying the control variable ::cactvs(molecule_bond_set).

The return value of the command is a nested list, even it only a single path is found. Every sublist
contains all the labels (for TCL) or references (for PYTHON) of the atoms in a single path, including
those of the start and end atoms. Every bond is used only once in any path, and no path crossings
through an atom are allowed. Every atom, with the possible exception of path end points, appear
only once in any single path. Paths from an atom via some bonds back to itself are allowed. The atom
must be a ring member for such paths to exist.

If the destination atom is specified as an empty string, all possible paths emerging from the source
atom and not violating any other specified constraints are returned. This includes shorter sub-paths
which are contained in a longer paths - these are reported as separate result items.

By default, all paths of length greater than zero are returned. The lengths of acceptable paths may
be specified by the optional parameters. If only the minimum length is set, this value is also used
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 143

CACTVS Tcl and Python Scripting Language Reference
for the maximum length, resulting in only paths of a specific length to be reported. The maximum
path count parameter can be used to limit the number of paths found. However, the order of the
found paths does depend on the arrangement of the atoms in the bonds, so it is generally not canonic.
Omitting this parameter or setting it to a negative value disabled the maximum path count check.

A non-empty filter set can be used to restrict the atoms that are eligible to be part of the path.
Normally, these are atom filters, such as !hydrogen, but other types may be used in special
circumstances. Bond filters are however applied to the union of all bonds of an atom, not just the
specific bond traversed in a path. For example, a doublebond filter lets an atom pass if it participates
in any double bond, and does not necessarily mean the bond the atom was reached over in the path.
Filters are not applied to the start atom of the path.

The default report value for an atom is its label, i.e. property A_LABEL. However, any other present
or computable atom property may be specified instead with the optional atom property parameter.
The parameter may also refer to a property field in case the property is indexible.

The final optional flag parameter is a list of additional keywords which further modify the path atom
selection and result reporting. Currently, the following keywords are recognized:

• noringchaincrossing
The path may not jump from a chain atom to a ring atom, or vice versa

• concatenate
The report format for each individual path is not a Tcl list, but a string where the report atom
property values are directly concatenated

• printbondorder
Every report value after that of the first path atom is prefixed with a character indicating the
bond order from the set “-=#&” for bond orders one to four, with a colon for aromatic
bonds, and a question mark for non-VB bonds. Additionally, a @ is added if the bond closes
a ring to the first path atom.

Example:
atom paths [ens create C1CCC1] 1 1

reports the paths {1 2 3 4 1} and {1 4 3 2 1}, which correspond to walking the ring clockwise and
counter clockwise, respectively.
atom paths [ens create CC=C] 1 3 3 3 {} A_ELEMENT -1 {printbondorder concatenate}

returns {6-6=6}.

atom pis
atom pis ehandle label ?filterset? ?filtermode?
a.pis(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the atom is
a member of. This is explained in more detail in the section about object cross-references.

Examples:
atom pis $ehandle 1

Get the labels of the systems the atom is participating in.  systems are a rather exotic feature and
not commonly used. These are essentially descriptions of bonding interactions which use p or d
144 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
orbitals, such as in standard covalent multiple bonds. A simple double bond is described with one
 system and one  system in this representation.

atom protonate
atom protonate ehandle label ?count?
a.protonate(?count=?)

Attempt to add one ore more protons to the atom, with adjustment of formal atom charge and
processing of appropriate structure change property data invalidation events.

The command returns the label (for TCL) or reference (for PYTHON) of the atom.

atom purge
atom purge ehandle label propertylist/stereo/isotope/query
a.purge(propertylist/stereo/isotope/query)

Reset existing property data on an atom. In case the argument is a list of property names, the value
on that atom only is reset to the default value of the property. In case the property is not present on
the ensemble, the command is ignored. The reset via a property list does not trigger a property
dependency update. If that is desired, an ens taint command must be explicitly scripted.In case
a reset property is a bond property instead of an atom property, the reset is executed for all bond
atoms. Other property object class mismatches are currently not supported.

In addition to standard properties, several special pseudo property names are recognized.

The stereo code resets all atom-centered stereo information on the atom, including wedges in
property B_FLAGS that point to the atom, and will trigger a stereo change event on the ensemble
which may invalidate additional data.

The isotope code resets property A_ISOTOPE on the atom, marks the isotope data as tainted and runs
a data dependency check.

The query code resets property A_QUERY, marks the query data as tainted and runs a data dependency
check.

The command returns the label (for TCL) or reference (for PYTHON) of the atom.

atom ref
Atom.Ref(eref,identifier)

PYTHON only method to get an atom reference. See atom atom command.

atom replace
atom replace ehandle label fragment/element ?fragmentlabel? ?removeh?
a.replace(replacement=,?linkatom=?,?removeh=?)

Replace an atom by a fragment. The fragment may be an atom, a molecule, or even a multi-molecule
ensemble. The fragment parameter is either an ensemble handle, a SMILES string, or a list of an
ensemble handle and a molecule label, identifying one molecule within that ensemble. For Python,
it may also be a molecule reference. Ensembles or molecules identified by handles will not be
destroyed, because the command works on a duplicate.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 145

CACTVS Tcl and Python Scripting Language Reference
If the fragment parameter cannot be decoded as any of those fragment definition styles, an attempt
is made to interpret is as an element or pseudo-element symbol. Deuterium and tritium isotopes may
be specified as D and T, and standard query atom and superatom specifications are also understood
with a syntax identical to the atom create command. For standard element modifications, such as
by a molecule editor, the atom change variant of this command is preferred, because that command
does not attempt to decode the fragment parameter in the other styles first and thus avoids problems
with element symbols that are at the same time valid SMILES strings.

The first atom in the atom list of the selected fragment structure (which does not necessarily
correspond to the lowest label in that structure) is the default link atom on the fragment. The link
atom is the fragment atom which replaces the original atom in the input ensemble. A different link
atom can be selected by providing a valid label (not an index) of a fragment atom as optional
parameter.

All valence bonds (B_TYPE normal), ionic (B_TYPE ionic) and complex bonds (B_TYPE complex) to
the original atom are preserved with their bond order, as are standard bond attributes (property
B_FLAGS). It is possible to replace atoms with more than one neighbor, or with multiple or aromatic
bonds. In the atom change variant of this command, it is an error if the fragment link atom cannot
provide sufficient electrons to satisfy the VB bonds of the replaced atom. In atom replace mode,
existing bonds that cannot be recreated are silently ignored. If the removeh flag is set, the program
will attempt to find required valence electrons by removing hydrogen atoms from the link atom. If
no more hydrogens can be found, electron pairs are used as a last resort, but without trying to adjust
formal charges. The 2D coordinates of the link atom (property A_XY), if present, are set to the old
coordinates of the replaced atom. Other properties are lost or adapted according to the merge
functions of the underlying property definitions.

The return value of this command is the label (for TCL) or reference (for PYTHON) of the fragment link
atom, which is the same as the label of the replaced atom. All atom and bond labels in the base
fragment are guaranteed to be preserved, with the exception of the labels of the bonds around the
replaced atom. The labels of the added fragment are generally changed, but are copied to properties
A_LABEL%, B_LABEL% etc. before the merge.

Examples:
set ehandle [ens create CCBr]
set newlabel [atom replace $ehandle 3 [ens create Cl 0]]
set newlabel [atom change $ehandle 3 Cl]
atom replace $ehandle $newlabel {FC(F)F} 2 1

The second line replaces atom 3 (bromine) with a chlorine atom. The chlorine ensemble was
generated without hydrogens, to Cl has a bonding electron. Also, the default link atom of the
fragment is the only atom, so there cannot be any question about the fragment link location. The new
label of the Cl atom is stored - but this is not really required, since it is always 3, the label of the
replaced atom. Line three is the same exchange expressed in the more efficient syntax of the atom
change command variant.

The fourth example code line replaces the chlorine atom with a CF3 group. That group is set up by
an in-line SMILES string. The fragment link atom is set to 2 (the carbon atom - labels from SMILES
decoding follow the atom order). Since this fragment was generated with an extra hydrogen atom
on carbon, the final parameter makes sure that this atom is removed before the replacement
operation, yielding an electron on the CF3 carbon atom for bonding to the main structure. If the
hydrogen removal flag is not set, the operation will fail with this fragment. Without automatic
146 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
hydrogen removal, the fragment needs to be written as F[C](F)F for successful replacement, with
explicitly suppressed hydrogen addition at the carbon atom.

atom rings
atom rings ehandle label ?filterset? ?filtermode?
a.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the atom is a
member of. This is explained in more detail in the section about object cross-references.

Examples:
atom rings $ehandle 1
atom rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the atom is a member of. If the atom is not in any
ring, an empty list is returned. Only labels of rings in the SSSR or ESSSR ring set are returned, even
if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

atom ringsystems
atom ringsystems ehandle label ?filterset? ?filtermode?
a.ringsystems(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring systems the atom
is a member of. This is explained in more detail in the section about object cross-references.

Examples:
atom ringsystems $ehandle 1
atom ringsystems $ehandle 1 [list heterocycle aroring]

The first example returns the labels of the ring system the atom is a member of. If the atom is not
in any ring, an empty list is returned. The second example filters the ring systems - a ring system
label is obtained only if that ring system contains one or more hetero aromats.

atom set
atom set ehandle label ?property value?...
a.set(?property,value?,...)
a.set({property:value,...})
a.property = value
a[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
atom set $ehandle 1 A_COLOR “blue”

The direct change of critical atom type data, such as the element A_ELEMENT, element symbol
A_SYMBOL, or atom type A_TYPE should be avoided. It is safer to create a new atom, delete the old
atom, and establish new bonds if an atom needs to be changed in its type, or to use the atom replace
command. The dedicated creation, deletion and replacement commands will automatically take care
of bookkeeping tasks such as electron counting for valence bonds. Also, direct setting of the element
data will render most structure information invalid, since most properties depend directly or
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 147

CACTVS Tcl and Python Scripting Language Reference
indirectly on the element composition. Careful manual locking and updating of property data is
required if direct element manipulation is attempted.

The command returns the first data value.

atom show
atom show ehandle label propertylist ?filterset? ?parameterdict?
a.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom show is
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, atom get and atom show are equivalent.

atom sigmas
atom sigmas ehandle label ?filterset? ?filtermode?
a.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the atom is
a member of. This is explained in more detail in the section about object cross-references.

Examples:
atom sigmas $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

atom sqldget
atom sqldget ehandle label propertylist ?filterset? ?parameterdict?
a.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The differences between atom get and atom sqldget
are that the latter does not attempt computation of property data, but initializes the property value
to the default and returns that default, if the data is not present and valid; and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

atom sqlget
atom sqlget ehandle label propertylist ?filterset? ?parameterdict?
a.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
148 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the atom get command. The difference between atom get and atom sqlget
is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

atom sqlnew
atom sqlnew ehandle label propertylist ?filterset? ?parameterdict?
a.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The differences between atom get and atom sqlnew
are that the latter forces re-computation of the property data, and that the SQL command variant
formats the data as SQL values rather than for TCL or PYTHON script processing.

atom sqlshow
atom sqlshow ehandle label propertylist ?filterset? ?parameterdict?
a.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The differences between atom get and atom sqlshow
are that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

atom stereoligands
atom stereoligands ehandle label
a.stereoligands()

Get the set of ligands which define the stereochemistry of an atom. If the atom is not stereogenic,
the result is a list of four empty strings for TCL or None values for PYTHON. If the atom is the center
atom of an odd allene, the list contains the substituents at either end of the allene, independently
sorted by atom label in ascending order for each side. If the atom is a normal tetrahedral or square
planar center, the direct ligands in sorted ascending label order are returned. If one of the ligands is
an electron pair, it is returned as an an empty or None list element in last position. If the atom is a
pyramidal or octahedral stereo center, the normal 4-element list is expanded to include the extra
atoms.

atom subcommands
atom subcommands
dir(Atom)

Lists all subcommands of the atom command. Note that this command does not require an ensemble
handle, or an atom label.

atom surfaces
atom surfaces ehandle label ?filterset? ?filtermode?
a.surfaces(?filters=?,?mode=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 149

CACTVS Tcl and Python Scripting Language Reference
Standard cross-referencing command to obtain the labels or references of surface patches the atom
is associated with. This is explained in more detail in the section about object cross-references.

Example:
atom surfaces $ehandle $label

Note that individual surface patches are not required to be associated with any atom.

atom topodistance
atom topodistance ehandle label targetlabel ?bondclasses?
a.topodistance(target=,?bondclasses=?)

Compute the minimum topological distance to the second atom. By default, only VB bonds are
traversed, but the optional argument allows the specification of a custom bit set of traversed bond
classes.

If there is no path between the atoms, the result is -1. The distance of an atom to itself is zero.

In case many topological distances within a structure are needed, it is faster to compute property
A_TOPO_DISTANCE once.

atom torsion
atom torsion ehandle label label2 label3 label4 ?property?
a.torsion(atom2=,atom3=,atom4=,?coordinateproperty=?)

Compute the torsion angle in degrees between the four atoms, which are considered to be linked in
the specified sequence, i.e. the first three atoms defined the first plane, and the last three atoms the
second plane. The torsion angle is the vector angle of the normals of the two implicitly defined
planes and is always in the +/-180 degrees range.

The source property for atomic coordinates is by default A_XYZ, but another property can be set,
which also needs to be an atomic float vector. All atoms used in a statement must be different, and
possess 3D coordinates initially, or after an automatically initiated attempt to compute 3D atomic
coordinate property. No bonds need to exist between the atoms.

atom uncharge
atom uncharge ehandle label
a.uncharge()

Perform a chemistry-smart transformation of the atom to remove or at least minimize its formal
charge. Depending on the atom charge, type and element, this involves addition or removal of
hydrogen atoms, or, if these are not available or the element has no clear hydrogen count/formal
charge rules, direct editing of the formal charge and modification of the free electron count.

The command returns the number of change operations on the atom. These are either hydrogen
additions and deletions, or direct formal charge changes.

atom valencecheck
atom valencecheck ehandle label ?nitrogenmode?
a.valencecheck(?nitrogenmode=?)
150 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Perform a valence check on the atom, comparing the current bonding situation at the atom to the list
of element-specific valence states in the system element table. This command is intentionally quite
picky, discouraging for example the use of pentavalent nitrogen by default. For the calculation of
valence, only bonds of type normal are taken into account. Complex bonds and pseudo bond types
thus do not interfere in the calculation. Some more exotic metals with many different valence states,
or few well-defined covalent compounds, such as vanadium or rhodium, always pass.

The handling of nitrogen in pentavalent or ionic form can be controlled by setting the optional
nitrogenmode argument, or modifying the global ::cactvs(nitrogen_valence_check)
variable.Possible values are xionic, ionic (the default), asis, pentavalent and xpentavalent. These are
the same values as with the ens nitrostyle command - please refer to that command for more
information. In asis mode, both ionic and pentavalent forms pass.

The return value of this command is 0 for failure, 1 for pass.

Note that this command assumes that all hydrogen atoms are in place. Processing structures with
Implicit hydrogen atoms is not supported.

Example:
atom valencecheck [ens create {CN(=O)=O}] 2
atom valencecheck [ens create {C[N+](=O)[O-]}] 2

These sample commands check the valence state of atom 2, the nitrogen atom in two different
encodings of nitromethane. The first encoding returns 0, the second 1.

atom valcheck is a short alias.

atom vicinity
atom vicinity ehandle label maxdistance ?mindistance? ?filterset? ?property?
a.vicinity(maxdistance=,?mindistance=?,?filters=?,?coordinateproperty=?)

Get a list of the labels of atoms located in a 3D distance range from a query atom. The distance is
computed from the atomic coordinates in property A_XYZ, or another float-vector atomic property
explicitly specified. Query distances are specified in Angstrom, or whatever the default unit of a
custom property is. If no minimum distance is given, it is assumed to be zero. Nevertheless, the
query atom itself is never part of the returned set.

The reported atoms do not need to be bonded to the query atom directly or indirectly. If no atoms
are found in the distance range, or none pass the optional filter set, an empty list results. If there are
no atomic 3D coordinates, and these cannot be computed, an error is raised.

atom xdelete
atom xdelete ehandle ?label?...
atom xdelete ehandle all
a.xdelete()
Atom.Xdelete(eref,?alabel/aref/arefsequence?,...)
Atom.Xdelete(aref,...)
Atom.Xdelete(eref,“all”)

This command is a variation of the atom delete command. The only difference is that it also deletes
all hydrogen atoms the deleted atoms were bonded to.

The special atom label all requests deletion of all atoms. Usually, this is equivalent to ens clear.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 151

CACTVS Tcl and Python Scripting Language Reference
The return value of the command is the number of deleted atoms.

Example:
atom xdelete $ehandle 1

This command is one of few atom subcommands which do not require an atom label. If no label is
given, the command does nothing. This is useful for list expansions where the list might be empty:
atom xdelete $ehandle {*}$delatomlist

atom xhdelete
atom xhdelete ehandle ?label?...
atom xhdelete ehandle all
a.xhdelete()
Atom.Xhdelete(eref,?alabel/aref/arefsequence?,...)
Atom.Xhdelete(aref,...)
Atom.Xhdelete(eref,“all”)

This command is a variation of the atom delete command. The difference is that it also deletes all
hydrogen atoms the deleted atoms were bonded to, and the cut bond valences to atoms which are
not hydrogen, and not deleted by the same statement, are saturated with added hydrogen atoms.

The special atom label all requests deletion of all atoms. Usually, this is equivalent to ens clear.

The return value of the command is the number of deleted atoms.
152 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The bioitem Command

Bioitems are node components of biologics objects and similar to atoms, which are the node
components of structure ensembles.

Bioitems are minor objects. Their associated properties start with an I_ prefix.

bioitem append
bioitem append bhandle label ?property value?...
i.append({?property:value,?...})
i.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

bioitem defined
bioitem defined bhandle label property
i.defined(property)

This command checks whether a property is defined for the bioitem. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The biologics valid command is used for this purpose.

The command returns a boolean status value.

bioitem delete
bioitem delete bhandle ?label?...
bioitem delete bhandle all
i.delete()
Bioitem.Delete(eref,?ilabel/iref/irefsequence?,...)
Biooitem.Delete(iref,...)
Bioitem.Delete(bref,“all”)

Delete zero or more bioitems. All biolinks which the bioitems participate in are also deleted.

The special bioitem label all requests deletion of all bioitems.

The return value of the command is the number of deleted bioitems.

Example:
bioitem delete $bhandle 1

This command is one of few bioitem subcommands which do not require an bioitem label. If no label
is given, the command does nothing. This is useful for list expansions where the list might be empty:
eval bioitem delete $bhandle $delitemlist
bioitem delete $bhandle {*}$delitemlist

bioitem dget
bioitem dget bhandle label propertylist ?filterset? ?parameterdict?
i.dget(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 153

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, biooitem get and bioitem dget are equivalent.

bioitem exists
bioitem exists bhandle label ?filterlist?
i.exists(?filters=?)
Bioitem.Exists(bref,label,?filters=?)

Check whether this bioitem exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the bioitem does not exist, or fails the filter, and 1 in
case of successful testing.

Example:

bioitem exists $bhandle 99

bioitem fill
bioitem fill bhandle label ?property value?...
i.fill({property:value,...})
i.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

bioitem filter
bioitem filter bhandle label filterlist
i.filter(filters)

Check whether a bioitem passes a filter list. The return value is boolean 1 for success and 0 for
failure.

bioitem get
bioitem get bhandle label propertylist ?filterset? ?parameterdict?
i.get(property=,?filters=?,?parameters=?)
i[property]
i.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the bioitem get command are bioitem new, bioitem dget, bioitem nget,
bioitem show, bioitem sqldget, bioitem sqlget, bioitem sqlnew and bioitem sqlshow.
154 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
bioitem index
bioitem index bhandle label
i.index()

Get the index of the bioitem. The index is the position in the bioitem list of the biologics object. The
first position is index 0.

bioitem jget
bioitem jget bhandle label propertylist ?filterset? ?parameterdict?
i.jget(property=,?filters=?,?parameters=?)

This is a variant of bioitem get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

bioitem jnew
bioitem jnew bhandle label propertylist ?filterset? ?parameterdict?
i.jnew(property=,?filters=?,?parameters=?)

This is a variant of bioitem new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

bioitem jshow
bioitem jshow bhandle label propertylist ?filterset? ?parameterdict?
i.jshow(property=,?filters=?,?parameters=?)

This is a variant of bioitem show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

bioitem item
bioitem item bhandle label
Bioitem.Ref(bref,identifier)

Return the bioitem label stored in property I_LABEL (TCL), or a minor object reference (PYTHON).
This is useful in case the label used in the command is not a straightforward numerical label or
reference but some other item identification format.

bioitem bioitem is an alias.

bioitem links
bioitem links bhandle label ?filterset? ?filtermode?
i.links(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the biolinks which connect
this bioitem fragment. This is explained in more detail in the section about object cross-references.

bioitem biolinks is a command alias.

bioitem new
bioitem new bhandle label propertylist ?filterset? ?parameterdict?
i.new(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 155

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

bioitem nget
bioitem nget bhandle label propertylist ?filterset? ?parameterdict?
i.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

bioitem ref
Bioitem.Ref(bref,identifier)

PYTHON only method to get a bioitem reference. See bioitem item command.

bioitem set
bioitem set bhandle label ?property value?...
i.set(?property,value?,...)
i.set({property:value,...})
i.property = value
i[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

bioitem show
bioitem show bhandle label propertylist ?filterset? ?parameterdict?
i.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, bioitem get and bioitem show are equivalent.

bioitem sqldget
bioitem sqldget bhandle label propertylist ?filterset? ?parameterdict?
i.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
156 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the atom get command. The differences between bioitem get and bioitem
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

bioitem sqlget
bioitem sqlget bhandle label propertylist ?filterset? ?parameterdict?
i.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The difference between bioitem get and bioitem
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or
PYTHON script processing.

bioitem sqlnew
bioitem sqlnew bhandle label propertylist ?filterset? ?parameterdict?
i.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The differences between bioitem get and bioitem
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

bioitem sqlshow
bioitem sqlshow bhandle label propertylist ?filterset? ?parameterdict?
i.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bioitem get command. The differences between bioitem get and bioitem
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

bioitem subcommands
bioitem subcommands
dir(Bioitem)

Lists all subcommands of the bioitem command. Note that this command does not require a
biologics handle, or a bioitem label.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 157

CACTVS Tcl and Python Scripting Language Reference
The biolink Command

Biolinks connect bioitems in biologics objects. Their role is similar to bonds connecting atoms in
structure ensembles.

Biolinks are minor objects. Their associated properties use a J_ prefix (mnemonical hint: these are
bioitem joins).

biolink append
biolink append bhandle label ?property value?...
j.append({?property:value,?...})
j.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

biolink defined
biolink defined bhandle label property
j.defined(property)

This command checks whether a property is defined for the biolink. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The biologics valid command is used for this purpose.

The command returns a boolean status value.

biolink delete
biolink delete bhandle ?label?...
biolink delete bhandle all
j.delete()
Biolink.Delete(bref,?jlabel/jref/jrefsequence?,...)
Biolink.Delete(jref,...)
Biolink.Delete(bref,“all”)

Delete zero or more biolinks. The bioitems the links connect remain intact.

The special biolink label all requests deletion of all links.

The return value of the command is the number of deleted biolinks.

Example:
biolink delete $bhandle 1

This command is one of few biolink subcommands which do not require an biolink label. If no label
is given, the command does nothing. This is useful for list expansions where the list might be empty:
eval biolink delete $bhandle $dellinklist
biolink delete $bhandle {*}$dellinklist

biolink dget
biolink dget bhandle label propertylist ?filterset? ?parameterdict?
j.dget(property=,?filters=?,?parameters=?)
158 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, biolink get and biolink dget are equivalent.

biolink exists
biolink exists bhandle label ?filterlist?
b.exists(?filters=?)
Biolink.Exists(bref,label,?filters=?)

Check whether this biolink exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the biolink does not exist, or fails the filter, and 1 in
case of successful testing.

Example:

biolink exists $bhandle 99

biolink fill
biolink fill bhandle label ?property value?...
j.fill({property:value,...})
j.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

biolink filter
biolink filter bhandle label filterlist
j.filter(filters)

Check whether a biolink passes a filter list. The return value is boolean 1 for success and 0 for
failure.

biolink get
biolink get bhandle label propertylist ?filterset? ?parameterdict?
j.get(property=,?filters=?,?parameters=?)
j[property]
j.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the biolink get command are biolink new, biolink dget, biolink nget,
biolink show, biolink sqldget, biolink sqlget, biolink sqlnew and biolink sqlshow.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 159

CACTVS Tcl and Python Scripting Language Reference
biolink index
biolink index bhandle label
j.index()

Get the index of the bioitem. The index is the position in the biolink list of the biologics object. The
first position is index 0.

biolink items
biolink items bhandle label ?filterset? ?filtermode?
j.items(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bioitems which are
connected by the biolink. This is explained in more detail in the section about object
cross-references.

biolink bioitems is a command alias.

biolink jget
biolink jget bhandle label propertylist ?filterset? ?parameterdict?
j.jget(property=,?filters=?,?parameters=?)

This is a variant of biolink get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

biolink jnew
biolink jnew bhandle label propertylist ?filterset? ?parameterdict?
j.jnew(property=,?filters=?,?parameters=?)

This is a variant of biolink new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

biolink jshow
biolink jshow bhandle label propertylist ?filterset? ?parameterdict?
j.jshow(property=,?filters=?,?parameters=?)

This is a variant of biolink show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

biolink link
biolink link bhandle label
Biolink.Ref(bref,identifier)

Return the biolink label stored in property J_LABEL (TCL), or a minor object reference (PYTHON).
This is useful in case the label used in the command is not a straightforward numerical label or
reference but some other item identification format.

biolink biolink is an alias.

biolink new
biolink new bhandle label propertylist ?filterset? ?parameterdict?
j.new(property=,?filters=?,?parameters=?)
160 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

biolink nget
biolink nget ehandle label propertylist ?filterset? ?parameterdict?
j.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

biolink ref
Biolink.Ref(bref,identifier)

PYTHON only method to get a biolink reference. See biolink link command.

biolink set
biolink set bhandle label ?property value?...
j.set(?property,value?,...)
j.set({property:value,...})
j.property = value
j[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

biolink show
biolink show bhandle label propertylist ?filterset? ?parameterdict?
j.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, biolink get and biolink show are equivalent.

biolink sqldget
biolink sqldget bhandle label propertylist ?filterset? ?parameterdict?
j.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 161

CACTVS Tcl and Python Scripting Language Reference
For examples, see the biolink get command. The differences between biolink get and biolink
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

biolink sqlget
biolink sqlget bhandle label propertylist ?filterset? ?parameterdict?
j.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The difference between biolink get and biolink
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or
PYTHON script processing.

biolink sqlnew
biolink sqlnew bhandle label propertylist ?filterset? ?parameterdict?
j.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The differences between biolink get and biolink
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

biolink sqlshow
biolink sqlshow bhandle label propertylist ?filterset? ?parameterdict?
j.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biolink get command. The differences between biolink get and biolink
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

biolink subcommands
biolink subcommands
dir(Biolink)

Lists all subcommands of the biolink command. Note that this command does not require a
biologics handle, or a biolink label.
162 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The biologics command

Biologics objects are a high-level representation of biological macromolecules. Internally, they are
a network of items, connected by links. Items usually are superatoms, and links a more intricate type
of bond which do not just link the superatom items, but additionally contain information about
where and how the links connect to the superatoms in expanded form. Biologics can usually be
expanded into normal structure ensembles with standard atoms and bonds.

Biologics are major objects. Associated properties start with a Q_ prefix.

biologics append
biologics append bhandle ?property value?...
b.append({?property:value,?...})
b.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

biologics assign
biologics assign bhandle srcproperty dstproperty
b.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same biologics object. Both properties must be
associated with the biologics object class. This process is more efficient than going through a pair
of biologics get/biologics set commands, because in most cases no string or TCL/PYTHON script
object representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant biolgics rename directly
exchanges the property name without any data duplication or conversion, if that is possible. In any
case, the original property data is no longer present after the execution of this command variant.

If the properties are not associated with biologics (prefix Q_), the operation is performed on all
bioitem nodes or biolinks if appropriate.

The command returns the object handle for TCL, or object reference for PYTHON.

Examples
biologics assign $bh I_IDENT I_NAME

biologics create
biologics create ?data?
biologics create attribute value...
Biologics(?data?)
Biologics(dict)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 163

CACTVS Tcl and Python Scripting Language Reference
Biologics(attribute,value,...)
Biologics.Create(?data?)
Biologics.Create(dict)
Biologics.Create(attribute,value,...)

Create a new biologics object. There are three basic styles.

Biologics items can be created as empty shells if no arguments are used. Alternatively, if a single
argument is used, they can be initialized by decoding a line notation. Supported notations currently
include pack strings (see biologics pack), and 1- or 3-letter amino acid codes. The third option is
to use an attribute dictionary - either as a single argument, or as a series or key-value pairs.

The command returns the new object handle or reference.

biologics dataset
biologics dataset bhandle ?filterlist?
b.dataset(?filters=?)

Return the dataset handle or reference of the dataset the biologics item is a member of. It the
biologics item is not member of a dataset, or does not pass all of the optional filters, an empty string
or None for PYTHON is returned.

Example:
biologics dataset $bhandle

biologics defined
biologics defined bhandle property
b.defined(property)

This command checks whether a property is defined for the biologics item. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The biologics valid command is used for this purpose.

biologics delete
biologics delete ?bhandle/bhandlelist/all?...
b.delete()
Biologics.Delete(“all”)
Biologics.Delete(?bref/brefsequence/bhandle?,...)

Delete biologics objects and all their associated bioitems and biolinks. The special parameter all
may be used to delete all biologics currently registered in the application. Alternatively, any number
of biologics handles may be specified for specific object deletions.

The command returns the number of deleted biologics.

Example:
biologics delete all
biologics delete $bhandle

biologics dget
biologics dget bhandle propertylist ?filterset? ?parameterdict?
b.dget(property=,?filters=?,?parameters=?)
164 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics dget is that the latter does not attempt computation of property data, but rather
initializes the property values to the default and return that default if the data is not yet available.
For data already present, biologics get and bioologics dget are equivalent.

biologics dup
biologics dup bhandle ?dataset? ?position?
b.dup(?target=?,?position=?)

Duplicate a biologics object with all minor objects and all attached data on the biologics object
proper and its minor objects.

The duplicate biologics object is placed into the same dataset as the source, if it is a member of a
dataset. Specifying an explicitly empty dataset argument (or None for PYTHON) places the duplicate
outside any dataset, regardless of the dataset membership of the source biologics object.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the biologics
object is inserted at the given position, starting with 0. If the requested position is larger than the
current size of the dataset, the biologics item is appended.

Example:
biologics dup $bhandle

The command returns a new biologics handle or reference.

biologics exists
biologics exists bhandle ?filterlist?
b.exists(?filters=?)
Biologics.Exists(bref,?filters=?)

Check whether a biologics handle is valid. The command returns boolean 0 or 1. Optionally, the
biologics item may be filtered by a standard filter list, and if it does not pass the filter, it is reported
as not valid.

Example:
biologics exists $bhandle

biologics expr
biologics expr bhandle expression
b.expr(expression)

Compute a standard SQL-style property expression for the biologics item. This is explained in detail
in the chapter on property expressions.

biologics fill
biologics fill bhandle ?property value?...
b.fill({?property:value,...})
b.fill(?property,value?,...)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 165

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

biologics filter
biologics filter bhandle filterlist
n.filter(filters=)

Check whether the biologics object passes a filter list. The return value is boolean 1 for success and
0 for failure.

biologics get
biologics get bhandle propertylist ?filterset? ?parameterdict?
biologics get bhandle attribute
b.get(property=,?filters=?,?parameters=?)
b.get(attribute)
b[property/attribute]
b.property/attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
biologics get $hhandle {B_IDENT B_NAME}

yields the ID and name of the biologics object as a list. If the information is not available, an attempt
is made to compute it. If the computation fails, an error results.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the biologics get command are biologics new, biologics dget, biologics
jget, biologics jnew, biologics jshow, biologics nget, biologics show, biologics
sqldget, biolgics sqlget, biologics sqlnew, and biologics sqlshow.

In addition to property data, a biologics object possesses a few attributes, which can be retrieved
with the get command (but not by its related sister subcommands like dget, sqlget, etc.). Some of
them are also modifiable via biologics set.These attributes are:

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

• deletable
Flag indicating whether the object can be deleted with a standard biolgics delete
command. This attribute is read-only. Objects which are, for example, property data values
cannot be deleted by standard means.

• failures
If the property computation failure cache is active, return a list of all properties which have
failed computation for this object after the last structural change. This attribute is read-only.

• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.
166 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

• incomplete
Boolean status flag indicating an aborted input operation during the read of the object from
file, which returned the structure intact but without the complete set of associated data. An
aborted input may be either be the result of an explicitly set input control flag, or by
encountering property data which could not be decoded. This attribute is read-only.

• invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

• modcount
Object data modification count. This attribute is read-only.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

• refcount
If the TCL interpreter is using native CACTVS objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this object. This attribute is read-only.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 167

CACTVS Tcl and Python Scripting Language Reference
• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

• uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

• y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

biologics getparam
biologics getparam hhandle property ?key? ?default?
b.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

biologics hierarchy
biologics hierarchy bhandle ?filterlist? ?root?
b.hierarchy(?filters=?,?root=?)

Return the hierarchy handle or reference of the hierarchy the biologics object is part of. If the object
is not member of a hierarchy, or does not pass all of the optional filters, an empty string or None for
PYTHON is returned. By default, the hierarchy object which directly contains the object is returned.
If the root flag is set, the root hierarchy object is reported instead, which is the same only if the
hierarchy has only a single level.

Example:
biologics hierarchy $ehandle

biologics index
biologics index bhandle
b.index()

Get the position of the biologics object in the object list of its dataset. If the object is not member
of a dataset, -1 is returned.

biologics items
biologics items bhandle ?filterset? ?filtermode?
168 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
b.items(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bioitems the biologics
object contains as minor objects. This is explained in more detail in the section about object
cross-references.

biologics bioitems is an alias for this command.

Example:
biologics items $bhandle

biologics jget
biologics jget bhandle propertylist ?filterset? ?parameterdict?
b.jget(property=,?filters=?,?parameters=?)

This is a variant of biologics get which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

biologics jnew
biologics jnew bhandle propertylist ?filterset? ?parameterdict?
b.jnew(property=,?filters=?,?parameters=?)

This is a variant of biologics new which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

biologics jshow
biologics jshow bhandle propertylist ?filterset? ?parameterdict?
b.jshow(property=,?filters=?,?parameters=?)

This is a variant of biologics show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

biologics links
biologics links bhandle ?filterset? ?filtermode?
b.links(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the biolinks the biologics
object contains as minor objects. This is explained in more detail in the section about object
cross-references.

biologics biolinks is an alias for this command.

Example:

biologics links $bhandle

biologics list
biologics list ?filterlist?
Biologics.List(?filters=?)

This command returns a list of the biologics object handles currently registered in the application.
This list may optionally be filtered by a standard filter list.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 169

CACTVS Tcl and Python Scripting Language Reference
biologics lock
biologics lock bhandle propertylist/biologics/bioitem/biolink/all ?compute?
b.lock(property=,?compute=?)

Lock property data of the biologics object, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the biologics object or its minor object components which would invalidate the
information. Property data remains locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the biologics object or biologics minor objects are locked. If the
boolean compute flag is set, an attempt is made to compute the property if it is not yet
present. Otherwise, a request to lock non-existent data is silently ignored. It is not possible
to lock individual property fields.

• all
All valid biologics, bioitems and biolinks properties are locked. The compute flag is
ignored.

• bioitem
All valid bioitems properties are locked. The compute flag is ignored.

• biolink
All valid biolink properties are locked. The compute flag is ignored.

• biologics
All valid biologics properties are locked. The compute flag is ignored.

The lock can be released by a biologics unlock command.

The return value is the original biologics handle or reference.

biologics max
biologics max bhandle propertylist ?filterset?
b.max(property=,?filters=?)

Get the maximum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values.

While it is possible to work with biologics object properties, this is pointless since there is only a
single instance of a biologics property per biologics object. Usually, bioitem or biolink minor object
properties are tested. The objects whose property values are used for the determination of the
maximum values may optionally be filtered by a standard filter set. If no objects pass the filter, the
result is an empty list.

biologics metadata
biologics metadata bhandle property ?field ?value??
b.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands biologics setparam and
170 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
biologics getparam can be used for convenient manipulation of specific keys in the computation
parameter field. Metadata can only be read from or set on valid property data.

biologics min
biologics min bhandle propertylist ?filterset?
b.min(property=,?filters=?)

Get the minimum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values.

While it is possible to work with biologics object properties, this is pointless since there is only a
single instance of a biologics property per biologics object. Usually, bioitem or biolink minor object
properties are tested. The objects whose property values are used for the determination of the
minimum values may optionally be filtered by a standard filter set. If no objects pass the filter, the
result is an empty list.

biologics move
biologics move bhandle ?datasethandle|remotehandle? ?position?
b.move(?target=?,?position=?)

Make the biologics object a member of a dataset, or remove it from a dataset. If the dataset handle
or reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed
from its current dataset. The dataset handle or reference may be the name of a remote dataset for
moving objects over a network connection.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of
dataset objects minus one, the object is appended as per the default. It is legal to use this command
for moving objects within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset. Using this mode with remote datasets is currently not supported.

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of a
dataset.

biologics mutex
biologics mutex bhandle mode
b.mutex(mode)

Manipulate the object mutex. During the execution of a script command, the mutex of the major
object(s) associated with the command are automatically locked and unlocked, so that the operation
of the command is thread-safe. This applies to builds that support multi-threading, either by
allowing multiple parallel script interpreters in separate threads or by supporting helper threads for
the acceleration of command execution or background information processing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 171

CACTVS Tcl and Python Scripting Language Reference
This command locks major objects for a period of time that exceeds a single command. A lock on
the object can only be released from the same interpreter thread that set the lock. Any other threaded
interpreters, or auxiliary threads, block until a mutex release command has been executed when
accessing a locked command object. This command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

biologics need
biologics need bhandle propertylist ?mode? ?parameterdict?
b.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original biologics object handle or reference.

biologics new
biologics new bhandle propertylist ?filterset? ?parameterdict?
b.new(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

biologics nget
biologics nget bhandle propertylist ?filterset? ?parameterdict?
b.nget(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
172 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the biologics get command. The difference between biologics get and
biologics nget is that the latter always returns numeric data, even if symbolic names for the values
are available.

biologics nnew
biologics nnew bhandle propertylist ?filterset? ?parameterdict?
b.nnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics nnew is that the latter always returns numeric data, even if symbolic names for the
values are available, and that property data re-computation is enforced.

biologics pack
biologics pack bhandle ?maxsize? ?requestprops? ?suppressedprops?
?compressionlib?
b.pack(?maxsize=?,?requestprops=?,?suppressedprops=?,?compressionlib=?)

Pack the biologics object and all its bioitem and biolink components into a base64-encoded
compressed serialized object string. This string does not contain any non-printable characters and
is a full dump of the internal state of the object, omitting only property data that was declared to be
so easily re-computed that a dump is not worthwhile. Further object relationships, such as datasets
the object might be a member in are not saved.

The maximum size of the object string (default -1, meaning unlimited size) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The other optional property parameter lists allow to request a specific property set to be part of the
package, even if it normally would not be included, and to explicitly omit properties from the dump.
No property computation is performed, and suppressed properties are not purged from the biologics
object.

Hierarchies can be restored from a packed object string by the biologics unpack or biologics
create commands.

The biologics object and its minor objects remain in existence after using this command.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.

In PYTHON, biologics objects support the standard pickle/unpickle protocol.

Example:
set dbstring [biologics pack $hhandle]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 173

CACTVS Tcl and Python Scripting Language Reference
biologics properties
biologics properties filehandle ?pattern? ?noempty?
b.properties(?pattern=?,?noempty=?)

Generate a list of the names of all properties attached to the biologics object. This includes properties
of bioitem and biolink minor objects which are part of the biologics object. Optionally, the list may
be filtered by a string match pattern.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The command may be abbreviated to props instead of the full name properties.

biologics purge
biologics purge bhandle propertylist/biologics/bioitem/biolink ?emptyonly?
b.purge(?properties=?,?emptyonly=?)

Delete property data from the biologics object. The properties may be biologics properties (prefix
Q_), or properties of the biologics minor objects, i.e. bioitems (prefix I_) and biolinks (prefix J_).
If a property marked for deletion is not found on the associated objects, it is silently ignored.

The optional boolean flag emptyonly allows to restrict the deletion to those properties where all the
values of a property associated with a biologics object (such as on all bioitems in a network for
bioitem properties, or just the single biologics property value for biologics properties) are set to the
default property value.

In addition to property names, the object class names biologics, bioitem or biolink may be
used. These delete all property data of that class from the biologics item. They do not delete the
objects proper, e.g. all bioitems are still present after a biologics purge $bh bioitem, though
without any data that was not locked.

The return value is the original object handle or reference.

biologics ref
Biologics.Ref(identifier)

PYTHON only method to get a biologics reference from a handle or another identifier. For biologics,
other recognized identifiers are biologics references, integers encoding the numeric part of the
handle string, or the UUID of the biologics object.

biologics rename
biologics rename bhandle srcproperty dstproperty
b.rename(srcproperty=,dstproperty=)

This is a variant of the biologics assign command. Please refer the command description in that
paragraph.

biologics set
biologics set bhandle ?property value?...
b.set(property,value,...)
b.set({property:value,...})
b.property = value
174 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
b[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

biologics setparam
biologics setparam bhandle property ?key value?...
biologics setparam bhandle property dictionary
b.setparam(property,?key,value?...)
b.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

biologics show
biologics show bhandle propertylist ?filterset? ?parameterdict?
b.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, biologics get and biologics show
are equivalent.

biologics sqldget
biologics sqldget bhandle propertylist ?filterset? ?parameterdict?
b.sqldget(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The differences between biologics get and
biologics sqldget are that the latter does not attempt computation of property data, but initializes
the property value to the default and returns that default, if the data is not present and valid; and that
the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

biologics sqlget
biologics sqlget bhandle propertylist ?filterset? ?parameterdict?
b.sqldget(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The difference between biologics get and
biologics sqlget is that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 175

CACTVS Tcl and Python Scripting Language Reference
biologics sqlnew
biologics sqlnew bhandle propertylist ?filterset? ?parameterdict?
b.sqlnew(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The differences between biologics get and
biologics sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

biologics sqlshow
biologics sqlshow bhandle propertylist ?filterset? ?parameterdict?
b.sqlshow(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the biologics get command. The differences between biologics get and
biologics sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TCL or PYTHON script processing.

biologics subcommands
biologics subcommands
dir(Biologics)

Lists all subcommands of the biologics command. Note that this command does not require a
biologics handle.

biologics transfer
biologics transfer bhandle propertylist ?targethandle? ?targetpropertylist?
b.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one biologics object to another biologics object or other major object,
without going through an intermediate scripting language object representation, or dissociate
property data from the network. If a property in the argument property list is not already valid on
the source network, an attempt is made to compute it.

If a target object is specified, the return value is the handle or reference of the target object. The
source and target object cannot be the same object. In case a property associated with biologics
minor objects (bioitems and biolinks), the behavior is the same as described for ensemble minor
objects in the documentation of ens transfer.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.
176 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple biologics get, i.e. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only
unlinked from the source object, but not destroyed. This means that the object handles returned by
the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

biologics unlock
biologics unlock bhandle propertylist/biologics/bioitem/biolink/all
b.unlock(property=)

Unlock property data for the biologics item, meaning that they are again under the control of the
standard data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names or references
Valid property instances on the biologics or its minor objects are unlocked. Non-existent
data is silently ignored. It is not possible to unlock individual property fields.

• all
All valid biologics object and associated minor object properties are unlocked.

• biologics
This is an object class identifier. All property data which is controlled by the biologics major
object and attached to the specified object class is unlocked.

• bioitem
This is an object class identifier. All property data which is controlled by the biologics major
object and attached to its bioitem minor objects is unlocked.

• biologics
This is an object class identifier. All property data which is controlled by the biologics major
object and attached to it biolink minor objects is unlocked.

Property data locks are obtained by the biologics lock command.

The return value is the original biologics object handle or reference.

biologics unpack
biologics unpack packstring ?compressionlib?
Biologics.Unpack(data=,?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by a biologics pack
command. The return value of this function is the handle or reference of the newly created biologics
object, which is an exact duplicate of the packed original biologics object.

Biologics objects may also be unpacked by a biologics create command.

The default compression library is zlib. For more options, see biologics pack.

Example:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 177

CACTVS Tcl and Python Scripting Language Reference
set packdata [biologics pack $bhandle]

set bhandle [biologics unpack $packdata]

biologics valid
biologics valid bhandle propertylist
b.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the biologics object or its minor objects. No attempt at computation is made. For PYTHON, where
single-item lists are syntactically not the same as a single value, the return value is a single boolean
if the argument was a string or a property reference, and only a single property was decoded.

biologics verify
biologics verify bhandle property
b.verify(property)

Verify the values of the specified property on the biologics object. The property data must be valid,
and a biologics object or biologics minor sub-object property. If the data can be found, it is checked
against all constraints defined for the property, and, if such a function has been defined, is tested with
the value verification function of the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.
178 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The bond Command

The bond command is the generic command used to manipulate bond. The syntax of this command
follows the standard schema of command/subcommand/majorhandle/minorlabel.

Examples:
bond get $ehandle 1 B_ORDER
bond atoms $ehandle 2

This is the list of officially supported subcommands:

bond align3d
bond align3d ehandle label point1 point2 ?property?
b.align3d(point1=,point2=,?coordinateproperty=?)

Align the 3D atomic coordinates (by default in property A_XYZ) of the molecule the first specified
atom of the bond is a member of in such a fashion that the first bond atom is positioned on the first
point argument, and the vector to the second bond atom points into the same direction as the vector
from the first to the second point argument.The bond lengths are not changed in this process.

The syntax of the point arguments is the generic vector syntax as documented in the vec command.
If the bond is selected with an identifier different than an atom pair, the first bond atom is the atom
moved to the first point argument. If the atom pair specification syntax is used, the first atom in the
specification list is the anchor, which may or may not be the first bond atom.

The command fails if property A_XYZ (or is explicitly specified alternative) is not present on the
ensemble and cannot be computed.

Example:
bond align3d $eh {2 1} 0 x

Atom 2 is moved to the origin, and the bond from atom 2 to atom 1 points in x-direction, i.e. it has
a 3D coordinate triple like {0.0,0.0,1.5}, with the bond length as z component. The other atomic
coordinates in the molecule are adjusted accordingly.

The command does not check for coordinate overlap with atoms in other molecules in the ensemble.

In case of special bonds, the second atom may not be in the same molecule as the first. This is legal
- its coordinates are only needed to compute the axis and degree of rotation - though the second atom
is then not moved by the command.

The command returns the label (for TCL) or reference (for PYTHON) of the bond.

The command name can be shortened to align.

bond append
bond append ehandle label ?property value?...
b.append({?property:value,?...})
b.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 179

CACTVS Tcl and Python Scripting Language Reference
Example:
bond append $ehandle 1 B_LABELCOLOR “00”

bond atoms
bond atoms ehandle label ?filterset? ?filtermode?
b.atoms(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the atoms which form the
bond. This is explained in more detail in the section about object cross-references.

Examples:
bond atoms $ehandle 1
bond atoms $ehandle 1 {!carbon !hydrogen} count

The first example returns all labels of the atoms in bond 1. The second example will compute the
number of atoms in the bond which are neither carbon nor hydrogen.

bond bond
bond bond ehandle label
Bond.Ref(eref,identifier)

Standard cross-referencing command to obtain the label (for TCL) or reference (for PYTHON) of the
bond as stored in property B_LABEL from a bond label, or another bond identifier, such as an atom
label pair. This is explained in more detail in the section about object cross-references.

Example:
bond bond $ehandle [list 1 2]

returns the label of the bond between atoms 1 and 2, or an empty string if the bond does not exist.

bond change
bond change ehandle label deltabondorder/type ?deltacharge?
b.change(deltabondorder=,?deltacharge=?)
Bond.Change(eref=,atoms=,deltabondorder=,?deltacharge=?)

This command changes the order of a bond. It may also be used to create bonds, or to delete bonds.

As in all bond commands, the bond may either be identified by its label or equivalent descriptor, or
a set of atom identifiers. In case a new bond is made, a list or tuple of atom labels or other atom
identifiers is provided as parameter instead of a single bond identifier. The distinction between atom
and bond references is performed via the list length of the label parameter. Anything with more than
one list element is interpreted as an atom-based specification. The order of atoms in an atom-based
specification is arbitrary.

The parameter deltabondorder is usually a signed integer which defines the bond order change. If
it is 0, the command does nothing, if the deltacharge parameter is also zero or omitted. If it is less
than zero, the bond order is reduced. For VB bonds, the free electron count on the atoms (property
A_FREE_ELECTRONS) is adjusted. If the bond is not a valence bond, or the change in bond order is
larger than the existing bond order, the bond is deleted. If the change in bond order is positive, and
the bond type a normal VB bond, the bond order is increased, provided that the atoms have sufficient
free electrons for bonding (again property A_FREE_ELECTRONS). A positive change in bond order for
a non-VB bond has no effect.
180 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If a bond type is specified in string form instead of a numerical bond order, the type of the bond is
changed in B_TYPE. If it originally was a VB bond, the bond electrons are added to the atom free
electron count in A_FREE_ELECTRONS. If the bond type is changed to a VB bond from another type,
an attempt to create a single bond is made and the electron count adjusted. If the count would
become negative, the operation fails. The Python interface uses the deltabondorder named argument
also for this bond type change operation, which is slightly misleading.

If the optional chargedelta parameter is used, electrons which imply formal charge (property
A_FORMAL_CHARGE) are transferred between the atoms before the bond operation. The charge
difference is applied to the first atom in the specification, and implicitly the second atom is affected
inversely. If the bond was specified by a bond label instead of an atom list, the internal order of the
atoms in the bond is used.

Examples:
bond change [ens create CC] {1 2} -1
bond change [ens create CC] {2 1} -1 1
set ehandle [ens create C=O]; bond change $ehandle {1 2} -1; ens hadd $ehandle
bond change [ens create {[H+].[OH-]}] {1 2} 1 -1

The first example line performs a radical dissociation between the carbon atom (atoms 1 and 2 -
when decoding a SMILES string, the atom labels correspond to the sequence in the SMILES string).
The bond order change is -1, which cuts the bond because it is only a single bond. Since no charge
modification was specified, both atoms end up with a radical electron.

The second line shows the same process as a heterolytic dissociation. The second carbon atom is the
recipient of a positive charge, because it was listed first, and the charge delta is +1. The first carbon
atom receives the counter-charge and bears a formal charge of -1.

The third example performs a bond order reduction on the C=O double bond, and then saturates the
molecule with hydrogen. The result is a reduction of formaldehyde to methanol.

The final example is a recombination reaction of a proton and a hydroxide anion. Because the proton
cannot provide any electrons for the new bond, the first step is a formal transfer of one electron
(charge -1) to this atom. Implicitly, it is removed from the other atom of the newly formed bond,
which is the negatively charged oxygen atom of the hydroxyl anion. The result is a neutral water
molecule.

The command returns the new or old bond label for TCL, or a bond reference for PYTHON. If the bond
was deleted, the return value is zero for TCL, or None for PYTHON.

bond create
bond create ehandle label ?type/order? ?order?
Bond(eref=,atoms=atomsequence/bond,?type=type/order?,?order=?)
Bond.Create(eref=,atoms=atomsequence/bond,?type=type/order?,?order=?)
b.create(?type/order?)

This command creates a new bond, or changes the bond order or bond type of an existing bond. In
case a new bond is made, a list of atom labels or other atom identifiers is provided as parameter
instead of a single bond identifier. The distinction between atom and bond references is performed
via the list length of the label parameter. Anything with more than one list element is interpreted as
an atom-based specification. The order of atoms in an atom-based specification is arbitrary. In case
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 181

CACTVS Tcl and Python Scripting Language Reference
a new bond is created, the atoms are entered into the bond in that order. Atom orders in existing
bonds are not changed.

The default bond type is a valence bond (B_TYPE property value is vb) of bond order 1. If this type
of bond is created, the bond type identifier may be omitted and a bond order directly specified as an
integer. Valence bonds are electron-counted. In order to succeed, the participating atoms must
provide sufficient electrons (property A_FREE_ELECTRONS) for the bond. Both atoms must provide
the same number of electrons. Charge recombination in bond formation is not supported by this
command, but can be achieved with the bond change command. The free electron counts of the
bond atoms are automatically updated. The toolkit does not try to generate more free electrons by
deleting hydrogen atoms bonded to the bond atoms or similar operations. If this kind of intelligence
is required, it must be explicitly scripted, or the bond hcreate command used.

Setting the bond order of an existing bond to 0 deletes the bond.

Besides normal valence bonds, this command can be used to create or manipulate any other bond
type which is known to the toolkit. The names of bond classes understood by this command are
parsed from the enumeration value of property B_TYPE and may be changed at runtime.

Non-VB bonds do not involve electron counting. It is possible to change the type of a bond with this
command, and in case a VB bond is changed to a non-VB bond, the electrons which were used in
the VB bond are assigned to the A_FREE_ELECTRONS properties of the atoms. In the reverse case the
command only succeeds if sufficient free electrons are present. The bond order (stored in property
B_ORDER) of non-VB bonds is zero and cannot be changed with this command. If the bond type is
changed, the bond label may also change. Changing the bond order of an existing bond without a
type change is guaranteed to preserve the bond label.

The command can be used to directly create VB bonds with attributes. In addition to a numeric bond
order, the following bond types are understood which create (or change to) a VB bond and
simultaneously set bond attributes:

• s/a
Create or set a query bond of type single or aromatic. The VB bond order is one.

• s/d
Create or set a query bond of type single or double. The VB bond order is one.

• d/a
Create or set a query bond of type double or aro. The VB bond order is one.

• up
Create or set a single bond with a up wedge from with the tip at the first atom.

• down
Create or set a single bond with a down wedge from with the tip at the first atom.

• crossed
Create or set a double bond with the B_FLAGS attribute crossed (generally interpreted as
double bond of unknown stereochemistry).

• either
This is an alias for crossed.
182 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• any
Create or set a query bond of type any. The VB bond order is one.

• dotted
Create or set a single bond with the B_FLAGS display attribute dotted.

• wiggly
Create a single bond which marks undefined double bond stereochemistry.

• wavy
An alias for wiggly.

It is also possible to spell out the bond order (single, double, etc.) instead of using a numerical value.

The attributes B_FLAGS, B_QUERY(flags) and B_QUERY(order)of bonds which are created or
edited with a standard attribute-less bond order are reset.

The atom list which serves as a bond identifier or atom set for a new bond may contain more than
two atoms. There are bond types like 3-center bonds and R-group alternative connection points, or
pseudo bond like bond angles and torsion angles which span three four, or even more atoms.

It is not possible with this command to create bonds which involve the exact same set of atoms as
an existing bond but which are of different type. It is also not possible to create bonds which include
the same atom more than once.

Changing or creating a bond triggers a bondchange invalidation event. All minor object classes
depending on an unchanged bond set (such as rings and molecules) as well as all property data on
the ensemble which is directly or indirectly sensitive to changes in the bond set is invalidated if it
is not explicitly locked.

The return value of this command is the label of the newly created or updated bond for TCL, or a bond
reference for PYTHON. If the bond was deleted, the return value is zero for TCL, or None for PYTHON.

Examples:
bond create [list 1 2] 2
bond create [list #3 #5]
bond create {3 4} complex

The first line creates a standard valence bond with bond order 2 between the atoms with labels 1 and
2, or changes the bond order to a double bond. In case of insufficient bonding electrons, an error is
raised. The second example create a single bond between atoms with index (not label) 3 and 5. The
final example creates a bond of type complex between atoms 3 and 4, using an abbreviated Tcl list
notation. This bond does not perform valence electron counting.

The simple PYTHON bond constructor syntax has one special limitation. While it is possible to delete
an existing bond via Bond.Create() with bond order zero (which then returns None), this does not
work due to syntactic reasons with the simple Bond() constructor, which must return a valid bond
reference, or throw an error. In any case, using the create subcommand for bond deletion is
counterintuitive under normal circumstances.

bond cut
bond cut ehandle label ?substituentatom1? ?substituentatom2?
b.cut(?substituent=?,?substituent2=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 183

CACTVS Tcl and Python Scripting Language Reference
Cut the specified bond and optionally add real or pseudo atoms to the cut site. If no substituent atoms
are specified, the bond is simply cut and its electrons added to the bond atoms are free electrons. This
is equivalent to a bond delete command. If substituents are specified, these are immediately linked,
via a single bond, to the cut site. If the cut bond had a multiple bond order, unused electrons are
added to the free electron count. If the cut bond was not a VB bond, no electrons are freed, and,
depending on the type of the substituents, adding a substituent can fail.

Substituents are specified as element symbols, or pseudo element identifiers. If only a single
substituent is specified, both sites receive the same substituent, otherwise the first substituent
applies to the first bond atom, and the second substituent to the second bond atom. This command
only supports bonds with two atoms.

The command returns the atom labels of the substituents. If no substituents are added to an atom,
the return value for that atom is an empty string.

Example:
bond cut [ens create CC] 1 *

This cuts the C-C bond and adds an open site pseudo atom marker to both carbon atoms. The return
value is the list {9 10} for the atom labels (references for Python) of the new pseudo atoms.

bond defined
bond defined ehandle label property
b.defined(property)

This command checks whether a property is defined for the bond. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The ens valid command is used for this purpose.

Example:
bond defined $ehandle 1 B_ORDER

checks whether bond 1 is of a type for which bond orders are defined. The return value is a boolean
status.

bond delete
bond delete ehandle label ?label?...
bond delete ehandle all
b.delete()
Bond.Delete(eref,”all”)
Bond.Delete(bref,...)
Bond.Delete(eref,?blabel/bref/brefsequence?,...)

Delete one or more bonds. The atoms which participate in the bonds are not deleted, but in case the
bond is a standard valence bond, their free electron count (property A_FREE_ELECTRONS) is updated.
Molecule and ring information, and other minor object classes under the control of the ensemble
major object which depend on an unchanged bond set are deleted. Any property data which depends
on an unchanged bond set is also invalidated, or, if the property is set up to do so, re-computed.

If the bond which should be deleted does not exist, the request is silently ignored, as long as the bond
specification is syntactically correct.

The return value of this command is the total of all bonds successfully deleted.
184 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This command does not try to save stereochemistry by transferring wedge data etc. to an adjacent
bond prior to deletion. The xdelete command variant offers this feature.

Example:
bond delete $ehandle [list 1 2]

bond delfrag
bond delfrag ehandle label ?reverse?
b.delfrag(?reverse=?)

This command deletes the bond and (if the reverse flag is not set) all atoms of the minor substituent
(as defined by property B_FRAGMENT_DIRECTION) linked by the bond. If the reverse flag is set, the
major substituent is deleted instead. The cut site remains unsubstituted, i.e. no automatic addition
of hydrogen is performed.

The command fails of the bond is a ring bond, or not a valence or complex bond.

The return value is the number of deleted atoms.

Example:
bond delfrag [ens create CCCl] {2 3}]

The command cuts the bond between atoms 2 and 3 (the C-Cl bond), and then deletes the minor
fragment (the Cl atom in this case, because it is the one with a smaller heavy atom count). The
deleted fragment is canonic, other properties besides the fragment heavy atom count are used to
break ties (see property B_FRAGMENT_DIRECTION).

The command can also be fully spelled out as bond deletefragment.

bond dget
bond dget ehandle label propertylist ?filterset? ?parameterdict?
b.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond dget is
that the latter does not attempt computation of property data, but rather initializes the property values
to the default and return that default if the data is not yet available. For data already present, bond
get and bond dget are equivalent.

bond ens
b.ens()

PYTHON-only method to get the ensemble reference from a bond reference.

bond exists
bond exists ehandle label ?filterlist?
b.exists(?filters=?)
Bond.Exists(eref,label,?filters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 185

CACTVS Tcl and Python Scripting Language Reference
Check whether this bond exists. Optionally, a filter list can be supplied to check for the presence of
specific features, or checking of the bond type. The command returns 0 if the bond does not exist,
or fails the filter, and 1 in case of successful testing.

Examples:
bond exists $ehandle 99
bond exists $ehandle [list 1 2]

The second example checks whether a bond between atoms 1 and 2 exists. Instead of using a single
label, all bond labels may be substituted by a list of the labels of their atoms.

bond expr
bond expr ehandle label expression
b.expr(expression)

Compute a standard SQL-style property expression for the bond. This is explained in detail in the
chapter on property expressions.

bond fill
bond fill ehandle label ?property value?...
b.fill({property:value,...})
b.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

Example:
bond fill $ehandle 1 A_COLOR red

sets the color of the first atom bond 1 participates in to red.

The command returns the first fill value.

bond filter
bond filter ehandle label filterlist
b.filter(filters)

Check whether a bond passes a filter list. The return value is boolean 1 for success and 0 for failure.

Example:
bond filter $ehandle 1 [list carbon doublebond]

checks whether the bond is a double bond with one or more carbon atoms.

bond flip
bond flip ehandle label
b.flip()

This utility command manipulates data of property B_FLAGS and possibly B_LABEL_STEREO (and
other bond stereo descriptors) plus A_XY and dependent data. If these property data are not already
present, the command does nothing.

The mode of operation depends on the bond order.
186 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For single bonds. the command inverts three bit groups in B_FLAGS.

• dashed/dotted
If the bond is a wedge bond (any of the flags highwedge or lowwedge are set), and any of
the bits dashed or dotted are set, both dashed and dotted are reset. The result for structure
display is that a dashed wedge becomes a solid wedge. If the bond is a wedge bond, but
neither dashed or dotted are set, both bits are set. The effect for display is that a solid wedge
becomes a dashed wedge. Dashed/dotted bonds which are not wedge bonds are not affected.

• left/right
If the bond has the left or right bit set (the second line of double bonds is plotted to the left
or right side of a central bond line and slightly shortened, instead of drawing two equivalent
bond lines slightly off left and right of the main axis), the currently set left/right bit is reset,
and the other bit set. Bonds without set left or right bits are not affected.

• front/back
If the bond has one of these flags set, it is cleared and replaced by the counterpart.

For double bonds, the command inverts all present bond stereo descriptors (B_LABEL_STEREO,
B_CIP_STEREO, B_CISTRANS_STEREO, B_MAP_STEREO, B_HASH_STEREO) if they are set to a value
indicating presence of stereochemistry. Stereo-dependent properties such as B_STEREOINFO and
B_STEREOGENIC are invalidated if not locked. In addition, if 2D coordinates are valid in A_XY and
the bond is not a ring bond, the smaller half of the structure is rotated around the bond axis in
pseudo-3D fashion. This involves updating A_XY and the bond display flags in B_FLAGS, and
invalidation of property data dependent on these. If the stereochemistry of a ring bond is changed,
the 2D coordinates are deleted. Currently, 3D atomic coordinates are not modified.

The command is usually employed in preparation of a pseudo-3D horizontal or vertical flip of a
structure drawing. The bond flags are set in such a way that after mirroring the 2D coordinates, the
wedge orientation and ring interior positioning of the bonds are correct in the sense that they still
describe the same stereo isomer and ring double bonds are plotted with a shortened bond inside the
ring.

The command returns 1 if any bits were changed, 0 otherwise.

Example:
bond flip $handle 1

bond get
bond get ehandle label propertylist ?filterset? ?parameterdict?
b.get(property=,?filters=?,?parameters=?)
b[property]
b.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
bond get $ehandle 1 {B_ISAROMATIC B_ORDER}

yields the aromaticity status flag and the (Kekulé) bond order of bond 1 as a list. If the information
is not yet available, an attempt is made to compute it. If the computation fails, an error results.
bond get $ehandle 1 A_ELEMENT ringatom
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 187

CACTVS Tcl and Python Scripting Language Reference
gives the elements of all atoms in the bonds which are in a ring.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the bond get command are bond new, bond dget, bond nget, bond show, bond
sqldget, bond sqlget, bond sqlnew and bond sqlshow.

Further examples:
bond get $ehandle 1 R_SIZE
bond get $ehandle 1 B_FLAGS(dashed)

bond groups
bond groups ehandle label ?filterset? ?filtermode?
b.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the bond is
related to. This is explained in more detail in the section about object cross-references. A bond is
considered to be related to a group if all the atoms in the bond are contained in the group.

Example:
bond groups $ehandle 1

bond hadd
bond hadd ehandle label ?filterset? ?flags? ?chargedelta?
b.hadd(?filters=?,?flags=?,?chargedelta=?)

Add a standard set of hydrogens to the atoms of the bonds. If the filterset parameter is specified, the
atoms need to pass the filter set in order to be processed.

This command only adds missing implicit hydrogen. It does not reduce the current bond order, or
split the bond.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

• no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

• no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

• noanions
Do not add hydrogen to atoms with a negative formal charge.

• noatoms
Do not add hydrogen to atoms without any bonds.
188 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• nocations
Do not add hydrogen to atoms with a positive formal charge.

• noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

• noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

• nofixatomtext
Do not adjust property A_TEXTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOEt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

• nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

• nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

• nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

• nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B_TYPE not normal).

• keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

• protonate
Add a single proton to the atom. The charge of the atom is increased, only a single hydrogen
is added regardless of the standard number of missing hydrogens, and this command will
issue the standard property invalidation event for atom and bond changes.

• resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

If a charge delta parameter is specified, the atomic charge and free electrons of the atoms are adapted
accordingly before the hydrogens are added. The manipulation of the charge usually changes the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative. This parameter is included for the sake of
compatibility with the atom hadd command. It is rarely useful for bonds.

Adding hydrogens with this command, except if the protonate flag is set, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 189

CACTVS Tcl and Python Scripting Language Reference
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

The command returns the number of hydrogens which were added in total to both atoms.

bond hcreate
bond hcreate ehandle label ?type/order? ?order?
Bond.Hcreate(eref=,atoms=atomsequence/bond,?type=type/order?,?order=?)
b.hcreate(?type/order?)

This is a variant of the bond create command. The difference to the normal bond creation
command is that this version attempts to delete hydrogen atoms on the bonded atoms if this prevents
illegal free electron counts or valences.

All parameters and return values are the same as for bond create.

bond hstrip
bond hstrip ehandle label ?flags? ?chargedelta?
b.hstrip(?flags=?,?chargedelta=?)

This command removes hydrogens from the atoms of the selected by. By default, all hydrogen atoms
are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

• deprotonate
If this flag is set, a single proton is removed from the bond atoms. This command variant
does issue a standard atom and bond change property invalidation event, and it always ends
processing after removing the first proton. Proton removal decreases the charge of the atom
by one.

• keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

• keepisotopes
Keep hydrogen atoms which are isotopically labeled (including enriched/depleted 1H).

• keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note that these commands can be run in a mode which does not leave information
about automatic addition - hydrogens added this way do not survive.

• keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

• keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.
190 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

• normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

• wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

If a charge delta parameter is specified, the charge and free electrons of the atoms are adapted
accordingly before the hydrogens are added. The manipulation of the charge changes the number of
added hydrogen atoms. It is not possible to change the charge in such a way that the number of free
electrons would become negative. This option is mostly provided for compatibility with the atom
hstrip command. It is rarely useful for bonds.

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
in case the deprotonate flag is set. The system assumes that this operation is done as part of some
file output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that there are implicit hydrogens.

The return value of the command is the total number of hydrogens removed from all bond atoms.

bond hydrogenate
bond hydrogenate ehandle label ?filterset? ?changeset?
b.hydrogenate(?filters=?,?changeset=?)

Reduce the bond to a single bond except if excluded by the filter set.

If a change set is supplied, its interpretation is the same as in bond hadd.

The command returns the number of added hydrogens.

Example:
bond hydrogenate $eh 1 {!arobond !ccbond}

This reduces the bond to a single bond, provided the bond is not aromatic or a C-C bond.

bond index
bond index ehandle label
b.index()

Get the index of the bond. The index is the position in the bond list of the ensemble. The first position
is index 0.

Example:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 191

CACTVS Tcl and Python Scripting Language Reference
bond index $ehandle 99

bond jget
bond jget ehandle label propertylist ?filterset? ?parameterdict?
b.jget(property=,?filters=?,?parameters=?)

This is a variant of bond get which returns the result data as a JSON formatted string instead of TCL
or PYTHON interpreter objects.

bond jnew
bond jnew ehandle label propertylist ?filterset? ?parameterdict?
b.jnew(property=,?filters=?,?parameters=?)

This is a variant of bond new which returns the result data as a JSON formatted string instead of TCL
or PYTHON interpreter objects.

bond jshow
bond jshow ehandle label propertylist ?filterset? ?parameterdict?
b.jshow(property=,?filters=?,?parameters=?)

This is a variant of bond show which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

bond local
bond local ehandle label propertylist ?filterset? ?parameterdict?
b.local(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
bond local $ehandle 1 B_LABEL_STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

bond match
bond match ehandle label ss_ehandle ?ss_label? ?matchflags? ?ignoreflags?

?atommatchvar? ?bondmatchvar? ?molmatchvar?
b.match(substructure=,?substructurebond=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)

Check whether the selected bond matches a substructure. Only the first substructure bond, or the
bond selected by the substructure bond label parameter, is tested. The substructure may be part of
any structure ensemble, and even be in the same ensemble as the primary command bond. Both the
bond atoms and the bond proper are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset the flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.
192 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels (references for PYTHON). If no match can be found, the variable is set to an empty
list. In case only a bond or molecule match variable is needed, an empty string can be used to skip
the unused match variable argument positions

Example:
set ss [ens create {[F,Cl,Br,I][C,c]} smarts]
set b_is_cxbond [bond match $ehandle $label $ss {} {} {} amap]
if {$b_is_cxbond} {

set b_xatom [lindex [lindex $amap 0] 1]
set b_catom [lindex [lindex $amap 1] 1]

}

bond mols
bond mols ehandle label ?filterset? ?filtermode?
b.mols(?filters=?,?mode=?)

Standard cross-referencing command to obtain the label(s) (references in case of PYTHON) of the
molecule(s) the bond is a member of. This is explained in more detail in the section about object
cross-references.

Examples:
bond mols $ehandle 1
bond mols $ehandle 1 heterocycle

The first example simply returns the label(s) of the molecule the bond is a part of. Note that it is
possible for bonds to span more than one molecule - this is the reason why the command name is
mols, not mol. If a bond spans more than one molecule, a list of the molecule labels is reported.

The second example returns the molecule label(s) if the bond is part of a molecule which contains
one or more heterocycles. If the molecule(s) do not contain a heterocycle, an empty list is returned.

bond neighbors
bond neighbors ehandle label ?filterset? ?filtermode? ?anchoratomlabel?
b.neighbors(?filters=?,?mode=?,?anchoratom=?)

This command retrieves neighbor atoms of the bond. The atoms which participate in the bond are
not included.

By default, a list with the labels (references in case of PYTHON) of the atoms passing the optional filter
set is the result. The retrieval mode may optionally be changed by supplying a filter mode
specification list as in the standard cross referencing commands, such as count or exclude. Both
parameters may be set to an empty list or entirely omitted if the default function is needed.

This command supports a special filtermode parameter in addition to the standard set (exists, count,
exclude, include). The bonds parameter, followed by a bit set combination from the allowed values
ring, sidechain or bridge can be used for topological filtering of the traversable bonds. By default,
no topological bond filtering is applied.

If the optional anchor atom label (or other atom specification) is provided, only atoms which are
bonded via a VB or complex bond (B_TYPE vb or complex) to this atom are listed. If the anchor atom
is one of the bond atoms, the effects is similar to using the atom neighbors command, except that
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 193

CACTVS Tcl and Python Scripting Language Reference
the other bond atom(s) are excluded. If the anchor atom is not part of the bond, other neighborhood
relationships can be explored.-

The command may also be invoked with the aliases bond neighbours and bond ligands.

Examples:
bond neighbors [ens create C=C] 1
bond neighbors [ens create c1ncccc1c1ccccc1] 6 carbon {bonds bridge count}

The first example returns the labels of the hydrogen atoms. The second example returns 1, because
the bond has one neighbor atom which is bonded via a bridge bond.

bond new
bond new ehandle label propertylist ?filterset? ?parameterdict?
b.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond new is that
the latter forces the re-computation of the property data, regardless whether it is present and valid,
or not.

bond nget
bond nget ehandle label propertylist ?filterset? ?parameterdict?
b.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond nget is
that the latter always returns numeric data, even if symbolic names for the values are available.

bond partner
bond partner ehandle bondlabel atomlabel
b.partner(aref)

Return the label (reference in case of PYTHON) of the other atom in the indicated bond. In case the
bond contains more than two atoms, the first atom which is not the specified atom is returned. Using
an atom label which is not participating in the bond results in an error.

Example:
set a2 [bond partner $ehandle $b $a1]

bond partners
bond partners ehandle bondlabel atomlabel
b.partners(aref)

Return the label (reference in case of PYTHON) of the other atom in the indicated bond. In case the
bond contains more than two atoms, a list of the atoms which are not the specified atom is returned.
Using an atom label which is not participating in the bond results in an error.
194 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
bond pis
bond pis ehandle label ?filterset? ?filtermode?
b.pis(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the bond is
related to. This is explained in more detail in the section about object cross-references. A bond is
considered to be related to a  system if all atoms of the bond are contained in the  system.

Examples:
bond pis $ehandle 1

Get the labels (references in case of PYTHON) of the systems the bond is related to.  systems are
a rather exotic feature and not commonly used. These are essentially descriptions of bonding
interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple double
bond is described with one  system and one  system in this representation.

bond permute
bond permute ehandle label ?targetbondorder?
b.permute(?targetbondorder=?)

Change the bond order by rotating the bond orders of Kekulé-style alternating single/double bond
aromatic rings the bond is a member of. This is a useful function if aromatic systems need to be
manipulated in reaction transforms and similar circumstances. If no target bond order is specified,
an attempt is made to flip the bond between single and double. If a target bond order is set, the
function does nothing if the current bond has already the desired bond order. The operation does not
change atomic charges and does not succeed if any valence violation is encountered. Sydnones and
other exotic aromatic systems can thus fail. In case the bond is a member of more than one eligible
ring, the ring which is modified should be considered arbitrary.

The function returns one if the operation succeeds (which includes doing nothing is the target bond
order is already present) and zero otherwise. An error is raised only if there are problems with the
arguments.

bond purge
bond purge ehandle label propertylist/stereo/isotope/query
b.purge(propertylist/stereo/isotope/query)

Reset existing property data on a bond. In case the argument is a list of property names, the value
on that bond only is reset to the default value of the property. In case the property is not present on
the ensemble, the command is ignored. The reset via a property list does not trigger a property
dependency update. If that is desired, an ens taint command must be explicitly scripted.In case
a reset property is an atom property instead of a bond property, the reset is executed for all bonds
of the atom. Other property object class mismatches are currently not supported.

In addition to standard properties, several special pseudo property names are recognized.

The stereo code resets all bond-centered stereo information on the bond, and will trigger a stereo
change event on the ensemble which may invalidate additional data.

The isotope code resets property A_ISOTOPE on the bond atoms, marks the isotope data as tainted
and runs a data dependency check.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 195

CACTVS Tcl and Python Scripting Language Reference
The query code resets property B_QUERY, marks the query data as tainted and runs a data dependency
check.

The command returns the label (for TCL) or reference (for PYTHON) of the bond.

bond ref
Bond.Ref(eref,identifier)

PYTHON only method to get a bond reference. See bond bond command.

bond rings
bond rings ehandle label ?filterset? ?filtermode?
b.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the bond is
contained in. This is explained in more detail in the section about object cross-references.

Examples:
bond rings $ehandle 1
bond rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the bond is contained in. If the bond is not in any
ring, an empty list is returned. Only labels of rings in the SSSR or ESSSR ring set are returned, even
if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

bond ringsystem
bond ringsystem ehandle label ?filterset? ?filtermode?
b.ringsystem(?filters=?,?mode=?)

Standard cross-referencing command to obtain the label (reference in case of PYTHON) of the ring
system the bonds is contained in. This is explained in more detail in the section about object
cross-references.

Examples:
bond ringsystem $ehandle 1
bond ringsystem $ehandle 1 [list heterocycle aroring]

The first example returns the labels of the ring system the bond is contained in. If the bond is not in
any ring system, an empty list is returned. The second example filters the ring systems - a ring
system label is obtained only if that ring system contains one or more hetero aromats.

bond rotate
bond rotate ehandle label angle ?property?
b.rotate(angle=,?coordinateproperty=?)

This command rotates one half of a molecule in 3D in property A_XYZ or another specified property
around the axis defined by the bond. The rotation angle is specified in degrees.

The section of the molecule which is rotated is not arbitrary and independent of the order of the
atoms in the bond or bond specification. If there is a difference between the centrality of the atoms
of the bond, the part which is less central is rotated. Molecules other than the one containing the
rotation bond are not affected. The static section of the molecule also retains all atomic coordinates.
196 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If any rotation is performed, (which excludes cases where the rotated bond is terminal - this is a
no-op), both the 3dop and 3dglobalop property invalidation events are generated.

The command fails if no 3D coordinates are present or can be computed, or if the bond is a ring bond.

Example:
bond rotate $ehandle [list 5 4] 15

rotates one half of a molecule around the bond between atoms 4 and 5 by 15 degrees.

The command returns the label (for TCL) or reference (for PYTHON) of the bond.

bond set
bond set ehandle label ?property value?...
b.set(?property,value?,...)
b.set({property:value,...})
b.property = value
b[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
bond set $ehandle 1 B_COLOR “blue”

The direct change of critical bond type data, such as the bond order B_ORDER, or bond type B_TYPE
should be avoided. Instead, the bond manipulation commands bond create and bond change
should be used. The dedicated creation, deletion and modification commands automatically take
care of bookkeeping tasks such as electron counting for valence bonds. Also, direct setting of the
bond data renders most structure information invalid, since most properties depend directly or
indirectly on the bond type and order. Careful manual locking and updating of property data is
required if direct bond manipulation is attempted.

The command returns the first data value.

bond show
bond show ehandle label propertylist ?filterset? ?parameterdict?
b.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond show is
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, bond get and bond show are equivalent.

bond sigmas
bond sigmas ehandle label ?filterset? ?filtermode?
b.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the bond is
participating in. This is explained in more detail in the section about object cross-references. A bond
is considered to be related to a  system if all atoms of the bond are contained in the  system.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 197

CACTVS Tcl and Python Scripting Language Reference
Examples:
bond sigmas $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

bond sqldget
bond sqldget ehandle label propertylist ?filterset? ?parameterdict?
b.sqlget(?filters=?,?mode=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The differences between bond get and bond sqldget
are that the latter does not attempt computation of property data, but initializes the property value
to the default and return that default, if the data is not present and valid; and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

bond sqlget
bond sqlget ehandle label propertylist ?filterset? ?parameterdict?
b.sqlget(?filters=?,?mode=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The difference between bond get and bond sqlget
is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

bond sqlnew
bond sqlnew ehandle label propertylist ?filterset? ?parameterdict?
b.sqlnew(?filters=?,?mode=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The differences between bond get and bond sqlnew
are that the latter forces re-computation of the property data, and that the SQL command variant
formats the data as SQL values rather than for TCL or PYTHON script processing.

bond sqlshow
bond sqlshow ehandle label propertylist ?filterset? ?parameterdict?
b.sqlshow(?filters=?,?mode=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the bond get command. The differences between bond get and bond sqlshow
are that the latter does not attempt computation of property data, but raises an error if the data is not
198 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

bond stereoligands
bond stereoligands ehandle label
b.stereoligands()

Return a list of the bond ligand atoms which define the stereochemistry of the bond. The length of
the list is always four elements. If the bond is not stereogenic, four empty strings for TCL and four
None values for PYTHON are returned. If the bond is the center bond of an even allene (including cases
where rings substitute for an allene double bond), the allene endpoint ligands are returned, each side
independently sorted by atom labels in ascending order. If the bond is a normal stereobond, the direct
bond ligands are returned, again in independently sorted atom label order for each side. If an electron
pair is part of the stereochemistry, it is included as an empty string or None after the partner ligand
at each bond side.

bond subcommands
bond subcommands
dir(Bond)

Lists all subcommands of the bond command. Note that this command does not require an ensemble
handle, or a bond label.

bond surfaces
bond surfaces ehandle label ?filterset? ?filtermode?
b.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the surface patches a bond
is related to. This is explained in more detail in the section about object cross-references. A bond is
considered to be related to a surface element if it is linked to any of the atoms in the bond.

Example:
bond surfaces $ehandle 1

bond transform
bond transform ehandle label SMIRKSlist ?direction? ?reactionmode? ?selectionmode?
?flags? ?overlapmode? ?{?exclusionmode? excludesslist}? ?maxstructures? ?timeout?
?maxtransforms? ?niterations?
b.transform(transforms=,?direction=?,?reactionmode=?,?selectionmode=?,?flags=?,?
overlapmode=?,?maxstructures=?,?timeout=?,?maxtransforms=?,?iterations=?)

This command is complex, but nearly identical to the ens transform command. Please refer to that
command for a full description of the command arguments.

The difference to ens transform is that the argument bond must be matched in the transform
pattern. If the transform matches only elsewhere, no operation is performed. It is not required that
the bond is actually modified during the course of the transform - it suffices if it is part of the source
pattern match.

The return value is, just as with the ens transform command, a list of result ensembles.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 199

CACTVS Tcl and Python Scripting Language Reference
bond uncharge
bond uncharge ehandle label
b.uncharge()

This command attempts to combine opposing charges on the atoms of the bond by increasing the
bond order. If the bond order was increased, the result is 1, otherwise 0. The result for non-VB bonds
is always 0.

Example:
bond uncharge [ens create {C[N+]([O-])=O}] {2 3}

This example converts the single bond between the nitrogen cation (atom 2) and the oxygen anion
(atom 3) to a double bond and thus neutralizes the charges on the atoms.

The command returns the label (for TCL) or reference (for PYTHON) of the bond.

bond xdelete
bond xdelete ehandle label ?label?...
bond xdelete ehandle all
b.xdelete()
Bond.Xdelete(eref,?label?,...)
Bond.Xdelete(bref,...)
Bond.Xdelete(eref,“all”)

Delete one or more bonds, while trying to maintain stereochemistry. The atoms which participate
in the bonds are not deleted, but in case the bond is a standard valence bond, their free electron count
(property A_FREE_ELECTRONS) is updated. Molecule and ring information, and other minor object
classes under the control of the ensemble major object which depend on an unchanged bond set are
deleted. Any property data which depends on an unchanged bond set is also invalidated, or, if the
property is set up to do so, re-computed. Wedge bonds and other stereochemistry information tied
to a deleted bond is transferred to an adjacent bond prior to deletion, if possible.

If the bond which should be deleted does not exist, the request is silently ignored, as long as the bond
specification is syntactically correct.

The return value of this command is the total of all bonds successfully deleted.

Example:
bond xdelete $ehandle [list 1 2]
200 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The chemobj command

This is an utility command to help with the generalization of commands applied to the various
explicitly named chemistry objects in the toolkit.

The following subcommands are supported:

chemobj class
chemobj class objecthandle

Returns the class or TCL command name associated with the major object identified by the handle.
This command may also be invoked as chemobj tclcommand.

chemobj eval
chemobj eval subcommandname objecthandle ?args?...

Execute the TCL command associated with the object. The subcommand name, object handle and
optional arguments are all passed to that object-specific command in that order.

This command is intended to make it easier to exploit the regular structure of the chemistry TCL
commands, providing an easy method to invoke the same functionality on different kinds of major
objects without the need to inspect the handles or perform other checks to identify the object type.
This command invokes the original class command. It does not perform error checking on its own.
It is only safe to be used with subcommands which use identical syntax, or at least an identical
syntax with a specific argument set, for all object classes a script is expected to encounter.

Example:
chemobj eval purge $handle $proplist

Above command purges the properties in the list from the passed object, regardless whether the
object is, for example, an ensemble, a reaction, a dataset or a table.

chemobj get
chemobj get class/handle attribute

Query information on a chemistry object class. The identifier may either be a class name, as returned
by chemobj list, or, for major objects, a valid object handle. The following attributes are
recognized:

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 201

CACTVS Tcl and Python Scripting Language Reference
• affiliation
The institution the author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the object class.

• authorurl
A URL with information on the author, or an empty string if unset.

• class
The class name of the object class, which is also the name of the associated TCL command.
This is the same as the tclcommand attribute.

• classuuid
The base class UUID of this object class.

• comment
A free-form string comment on the object class.

• date
The data the module source was last modified.

• doi
A digital object identifier for the object class, if defined.

• email
The email address of the author of the object class.

• infourl
A URL with information on the object class, or an empty string if unset.

• keywords
A list of keywords associated with the object class.

• labelproperty
The name of the property which is used for set minor object labels, e.g. A_LABEL for the atom
class, and an empty string for ensembles.

• license
The license class associated with this object class. Setting the license to a standard type
updates the associated URL with a standard location.

• licenseurl
A URL with details about the object class license.

• literature
A free-form literature reference.
202 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• name
The primary name of the object class.

• orcid
The ORCID code of the author (see www.orcid.org).

• ownerclass
The class name of the major object which controls objects of this class, e.g ens for atom. For
major objects, the class and owner class are the same.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• propertyprefix
The standard prefix (without the underscore) for the names of properties associated with this
object class.

• references
Cross references of the object class. This is a nested list of class UUIDs and reference type
tags.

• regid
A numerical registration ID assigned to registered object classes.

• tclcommand
The same as the class attribute.

• version
The version of the object class. This is a string in a 1.2.3 (or shortened) style

• versionuuid
The UUID associated with this object class version.

chemobj list
chemobj list ?pattern?

List the currently loaded chemistry object classes with their primary name.

chemobj pythoncommand
chemobj pythoncommand objecthandle

Returns the PYTHON class associated with the major object identified by the handle. This command
may also be invoked as chemobj pythonclass.

chemobj tclcommand
chemobj tclcommand objecthandle

Returns the class or TCL command name associated with the major object identified by the handle.
This command may also be invoked as chemobj class.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 203

CACTVS Tcl and Python Scripting Language Reference
The connection Command

The connection command is used to access information about links in generic network objects (see
network command). In many respects the behavior of connection objects in networks is comparable
to that of bonds in ensembles, and the commands for handling connections are similarly structured.
For example, just like bonds can be identified by a list of the participating atoms, connections can
be selected by a list of the participating vertices.

Pseudo connection labels first, last and random are special values, which select the first connection
in the connection list, the last, or a random connection.

The command edge is an alias for connection, allowing the use of a more standard nomenclature,
but without the benefit of a matching prefix on the names of connection properties.

The following connection commands are supported:

connection append
connection append nhandle label ?property value?...
c.append({property:value,...})
c.append(?property,value?,...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
connection append $nhandle $c C_IDENT “_v2”

connection connection
connection connection nhandle label
Connection.Ref(nref,identifier)

Return the connection label stored in property C_LABEL (TCL),or a reference (PYTHON). This is useful
in case the label is not the straightforward connection label or minor object reference, but some other
specification type, such as a vertex pair.

Example:
connection connection $nh [list $v1 $v2]

connection create
connection create nhandle vertex_list ?directionality? ?property value?...
Connection(nref,vertexsequence,?directionality=?,?property,value?...)
Connection.Create(nref,vertexsequence,?directionality=?,?property,value?...)

Create a new connection which links the vertices specified in the vertex list argument. In contrast
to the handling of bonds in ensembles, there can be multiple connections with the same set of
vertices in a network, and self-links (linked the same vertex as source and destination) are allowed.
It is also possible to link more than two vertices by a connection. In some contexts the order of the
vertices registered in a connection matters, i.e. the connections are interpreted as directional.
204 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
By setting the directionality parameter, the presence of a connection duplicate can be detected and
in that case the old label (for TCL) or reference (for PYTHON) of the existing connection is returned,
instead of creating a new connection. The possible values of the directionality parameter are
undefined (or 0, the default, no duplicate checking), undirected (or 1, the vertices are matched
regardless of the order in the specified list) and directed (or 2, the vertices are matched in the same
order as in the argument list).

The magic vertex label value new can be used in the vertex list to automatically create one or more
new vertices with this command instead of referring to existing vertices. The new vertices are added
to the vertex list and have the same properties as vertices created explicitly with a vertex create
command.

An initial set of property values for the new or re-used connection can be set by the optional
property/value arguments.

The command returns the new or old connection label for TCL, or the corresponding reference for
PYTHON.

connection defined
connection defined nhandle label property
c.defined(property)

This command checks whether a property is defined for the connection. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The network valid command is used for this purpose

connection delete
connection delete nhandle ?label?...
connection delete nhandle all
c.delete()
Connection.Delete(nref,?label?,...)
Connection.Delete(cref,...)
Connection.Delete(nref,“all”)

Delete specific or all connection from the network. The vertices participating in the deleted
connections remain in the network.

The command returns the number of deleted connections.

connection dget
connection dget nhandle label propertylist ?filterset? ?parameterdict?
c.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection dget is that the latter does not attempt computation of property data, but rather
initializes the property values to the default and return that default if the data is not yet available.
For data already present, connection get and connection dget are equivalent.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 205

CACTVS Tcl and Python Scripting Language Reference
connection network
c.network()

PYTHON-only method to get the network reference from a connection reference.

connection exists
connection exists nhandle label ?filterlist?
c.exists(?filters=?)
Connection.Exists(nref=,label=,?filters=?)

Check whether this connection exists. Optionally, a filter list can be supplied to check for the
presence of specific features. The command returns boolean 0 if the connection does not exist, or
fails the filter, and 1 in case of successful testing.

Examples:
connection exists $nhandle 99
connection exists $nhandle [list 1 2]

The second example checks whether a connection between vertices 1 and 2 exists. Instead of using
a single label, all connection labels may be substituted by a list of the labels of their vertices.

connection filter
connection filter nhandle label filterlist
c.filter(filters)

Check whether a connection passes a filter list. The return value is boolean 1 for success and 0 for
failure.

connection get
connection get nhandle label propertylist ?filterset? ?parameterdict?
c.get(property=,?filters=?,?parameters=?)
c[property]
c.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Example:
connection get $nhandle [list $v1 $v2] C_ONTOLOGY_LINK

yields the ontology link type data of connection 1 as a list. If the information is not yet available, an
attempt is made to compute it. If the computation fails, an error results.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the connection get command are connection new, connection dget, connection
nget, connection show, connection sqldget, connection sqlget, connection sqlnew
and connection sqlshow.

connection index
connection index nhandle label
c.index()
206 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Get the index of the connection. The index is the position in the connection list of the network. The
first position is index 0.

Example:

connection index $nhandle 99

connection jget
connection jget nhandle label propertylist ?filterset? ?parameterdict?
c.jget(property=,?filters=?,?parameters=?)

This is a variant of connection get which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

connection jnew
connection jnew nhandle label propertylist ?filterset? ?parameterdict?
c.jnew(property=,?filters=?,?parameters=?)

This is a variant of connection new which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

connection jshow
connection jshow nhandle label propertylist ?filterset? ?parameterdict?
c.jshow(property=,?filters=?,?parameters=?)

This is a variant of connection show which returns the result data as a JSON formatted string
instead of TCL or PYTHON interpreter objects.

connection network
c.network()

PYTHON-only method to get the network reference from a connection reference.

connection new
connection new nhandle label propertylist ?filterset? ?parameterdict?
c.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

connection nget
connection nget nhandle label propertylist ?filterset? ?parameterdict?
c.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 207

CACTVS Tcl and Python Scripting Language Reference
For examples, see the connection get command. The difference between connection get and
connection nget is that the latter always returns numeric data, even if symbolic names for the
values are available.

connection ref
Connection.Ref(nref,identifier)

PYTHON only method to get a connection reference. See connection connection command.

connection set
connection set nhandle label ?property value?...
c.set(?property,value?,...)
c.set({property:value,...})
c.property = value
c[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
connection set $nhandle 1 C_IDENT “bla”

connection show
connection show nhandle label propertylist ?filterset? ?parameterdict?
c.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, connection get and connection
show are equivalent.

connection sqldget
connection sqldget nhandle label propertylist ?filterset? ?parameterdict?
c.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The differences between connection get and
connection sqldget are that the latter does not attempt computation of property data, but
initializes the property value to the default and return that default, if the data is not present and valid;
and that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

connection sqlget
connection sqlget nhandle label propertylist ?filterset? ?parameterdict?
c.sqlget(property=,?filters=?,?parameters=?)
208 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The difference between connection get and
connection sqlget is that the SQL command variant formats the data as SQL values rather than
for TCL or PYTHON script processing.

connection sqlnew
connection sqlnew nhandle label propertylist ?filterset? ?parameterdict?
c.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The differences between connection get and
connection sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

connection sqlshow
connection sqlshow nhandle label propertylist ?filterset? ?parameterdict?
c.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the connection get command. The differences between connection get and
connection sqlshow are that the latter does not attempt computation of property data, but raises
an error if the data is not present and valid, and that the SQL command variant formats the data as
SQL values rather than for TCL or PYTHON script processing.

connection subcommands
connection subcommands
dir(Connection)

Lists all subcommands of the connection command. Note that this command does not require a
network handle, or a connection label.

connection vertices
connection vertices nhandle label ?filterset? ?filtermode?
c.vertices(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the vertices which are
participating in the connection. This is explained in more detail in the section about object
cross-references.

Examples:
connection vertices $nhandle 1
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 209

CACTVS Tcl and Python Scripting Language Reference
The dataset Command

The dataset command is the generic command used to manipulate datasets. The syntax of this
command follows the standard schema of command/subcommand/majorhandle. Datasets are major
objects and thus do not need any minor object labels for identification.

Example:
dataset get $dhandle D_SIZE

As explained in the introductory section on datasets, a normal persistent dataset handle may be
substituted as third argument of the dataset command by an arbitrary list of dataset, ensemble,
reaction, table and network handles. Substitution is only allowed in that argument position, not in
case where a dataset handle is part of the command arguments of another object command, and not
in a different argument position in the context of a dataset command. Such an object list is
transformed into a transient dataset for the duration of the command execution. After the command
has completed, the elements of the transient dataset are in most cases restored to their original state
with respect to dataset membership and position, except in a few documented exceptional
circumstances.

As a means to access an embedded dataset object, its handle may be replaced by the handle of the
parent object where this is unambiguous, e.g.
ens move $eh $thandle

moves the ensemble into the embedded dataset of the table, while
dataset count $thandle

treats the table argument as part of a transient dataset as described above.

This is the list of currently officially supported subcommands:

dataset add
dataset add dhandle objhandle ?position?
d.add(object=,?position=?)
d += object

Add an object to the dataset, relocating it from a current dataset if it exists. If no position is specified,
the object is appended to the rear of the dataset object list. The position can either be a numerical
zero-based index, or any string beginning with ‘e’ to indicate the end position.

If the object handle identifies a (local) dataset, and the target dataset does not accept datasets as
members, all objects in the source dataset are instead moved to the new dataset, and then the source
dataset is destroyed. If ensembles, reactions, tables or networks are moved, they are unlinked from
any current datasets, but these original datasets themselves persist.

This dataset command is equivalent to issuing a move command from the object.

The command returns the dataset handle for TCL, or the dataset reference for PYTHON. The numerical
operator shortcut for PYTHON adds the object to the end of the dataset.

Example:
dataset add $dh $eh end
ens move $eh $dh end
210 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
These two commands are equivalent.

dataset addthread
dataset addthread dhandle ?body?
dataset addthread dhandle count body
dataset addthread dhandle count substitutiondict body
d.addthread(?count=?,?dictionary=?,?script=?)

Add one or more TCL script threads to the dataset. By default, a single thread is added, but by setting
the count parameter to a higher number multiple threads with the same script body can be added
simultaneously, up to a maximum of 32 threads per dataset. It is possible to use this command to add
additional threads to a dataset which already has attached threads. These older threads remain active.

The thread script code is always TCL code, even if the command is issued from a PYTHON interpreter.
This is due to limitations in the PYTHON thread model and described in more detail in the general
PYTHON scripting introduction.

The optional substitution dictionary contains a set of percent-prefixed keys and replacement values,
following the TK event procedure model. All such replacements are made before the script is passed
to the thread interpreters. A single default substitution replacing the character sequence %D with the
handle of the current dataset is always predefined and cannot be redefined. Replacement token keys
(but not necessarily their values) are single case-depended characters, ignoring an optional percent
prefix character. Within the script, percent signs which should be preserved as such must be doubled,
just like in TK event substitution commands.

The dataset threads are compatible to those of the standard TCL threads package. Dataset-associated
threads are automatically created in preserved state, and a thread::wait command is automatically
appended at the end of the script, so they can be sent additional tasks via the thread::send
commands. If no script body is specified, the initial script consists only of the wait command.
Threads can be canceled or joined only if they are stopped the thread::wait statement.

When a dataset is deleted, all threads associated with this dataset need first to be joined, and this can
only happen if they have finished processing the main body script and are all in their idle state in
the thread::wait command. Object deletion is postponed until this condition is met. A global join
on all currently executing dataset threads is automatically performed when the program exits, before
any object clean-up tasks are run. An application where dataset threads are stuck and do not reach
their thread::wait cancellation points cannot be cleanly exited.

Duplicating datasets does not duplicate any associated threads.

The presence of threads on a dataset has consequences for the behavior of the dataset wait and
dataset pop commands, as well as object insertion commands associated with other major object
classes (e.g. ens move, or molfile read). Please refer to the respective paragraphs for details. The
size control mechanism of datasets in the auto mode is also dependent on the presence of absence
of linked dataset threads.

Example:
dataset addthread $dh 1 [dict create %T $th] {

while {1}
set eh [dataset pop %D]
if {$eh==""} break
if {[catch {ens get $eh E_CANONIC_TAUTOMER} eh_canonic]} {
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 211

CACTVS Tcl and Python Scripting Language Reference
ens delete $eh
continue

}
if {[catch {ens get $eh_canonic E_DESCRIPTORS}]} {

ens delete $eh
continue

}
table addens %T $eh_canonic
ens delete $eh

}
}

This code creates a processing thread on the dataset which computes properties on newly arriving
ensembles, stores the data in a table (note the table handle substitution via the replacement
dictionary) and then deletes the ensemble. The dataset pop command returns an empty string
when it is known no more data will arrive, and otherwise blocks until an object for popping is
available. This is managed by setting the eod dataset attribute from feeder threads.

The return value of the command is a list of the TCL thread IDs of the newly created threads. These
are suitable for use in the dataset jointhreads command or any standard TCL thread package
command.

dataset append
dataset append dhandle ?property value?...
d.append({?property:value,?...})
d.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
dataset append $dhandle D_NAME “_new”
dataset append $dhandle eod 1

dataset assign
dataset assign dhandle srcproperty dstproperty
d.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same ensemble. Both properties must be associated
with the same object class. This process is more efficient than going through a pair of dataset
get/dataset set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.
212 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The original property data remains valid. The command variant dataset rename directly exchanges
the property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

If the properties are not associated with datasets (prefix D_), the operation is performed on all dataset
member objects.

The command returns the object handle for TCL, or object reference for PYTHON.

Example:
dataset assign $dhandle A_XY A_XY%

This code snippet creates backup atomic 2D layout coordinates on all dataset ensembles or
reactions.

dataset biologics
dataset biologics dhandle ?filterset? ?filtermode? ?recursive?
d.tables(?filters=?,?mode=?,?recursive=?)

Return a list of all the handles or references of the biologics in the dataset. Other objects in the
dataset (ensembles, reactions, datasets, networks) are ignored. The object list may optionally be
filtered by the filter list, and the result further modified by a standard filter mode argument.

If the recursive flag is set, and the dataset contains other datasets as objects, biologics in these nested
datasets are also listed.

Example:
set n [dataset biologics $dhandle {} count]

dataset cancelthreads
dataset cancelthreads ?all?
dataset cancelthreads dhandle ?all?
dataset cancelthreads dhandle threadid...
Dataset.Cancelthreads()
d.cancelthreads(“all”)
d.cancelthreads()
d.cancelthreads(?threadid?,...)

Cancel (or more precisely, wait for and join) one or more threads associated with the dataset. Dataset
threads can only be canceled when they are idle, executing the implicitly added thread::wait
command at the end of their script. Therefore, this command is not just used for clean-up, but also
useful for ascertaining that the threads have finished their tasks. The IDs of the threads associated
with a dataset can be retrieved as the threads dataset attribute, or saved from the return value of the
original dataset addthread command. The special all thread ID value can be used to cancel all
threads of the dataset. This can also be achieved by setting an empty thread ID parameter, or omitting
it altogether. If a dataset does not possess threads, this command does nothing. If a thread marked
for cancellation has not yet finished, the cancellation command is suspended until it has.

This command can also be invoked without specifying an explicit or transient dataset argument, or
passing it as all. In that case, the thread join cleanup is run on all threads of all currently defined
datasets. This function is also implicitly run when a a script exits, before performing other
application cleanup operations.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 213

CACTVS Tcl and Python Scripting Language Reference
Thread cancellation for all dataset threads is implicitly invoked when a dataset is deleted, so an
explicit clean-up is not required. However, this also means that a dataset deletion blocks if there are
still active threads. It is not possible to forcefully cancel an thread which has entered an infinite loop,
so careful programming is required.

The command returns the number of canceled threads.

dataset jointhreads is an alias to this command.

Example:
dataset jointhreads $dh
dataset cancelthreads $dh [lindex [dataset get $th threads] 0]
dataset jointhreads

The first example waits for all threads on the specified dataset to finish. The second command waits
for the completion of one specific thread, and the last command waits for all threads on all currently
defined datasets.

dataset cast
dataset cast dhandle dataset/ens/reaction/table ?propertylist?
d.cast(objectclass=,?properties=?)

Transform the dataset into a different object. Depending on the target object class, the result is as
follows:

• dataset
Only supplied for the sake of completeness. This mode does nothing.

• ens
The first ensemble contained in the dataset, or a newly created empty ensemble if no such
object exists. The dataset and all its other contents are destroyed in the process.

• reaction
The first reaction contained in the dataset, or a newly created empty reaction if no such
object exists. The dataset and all its other contents are destroyed in the process.

• table
A new table with automatically set up columns which are the union of all valid
ensemble-class (E_*) and reaction-class (X_*) properties of the ensembles and reactions in
the dataset, and rows with the data of these objects. In addition, these objects are moved into
the internal table dataset. The input dataset, and its remaining contents which were not
moved to the table, are destroyed.

If the optional property list is specified, an attempt is made to compute the listed properties before
the cast operation, so that they may become a part of the new object. No error is raised if a
computation fails.

The command returns the handle (reference for PYTHON) of the new object, or the input object in case
of mode dataset.

dataset clear
dataset clear dhandle
d.clear()
214 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Delete all objects in the dataset, but keep the dataset object. The return value is the number of deleted
objects.

dataset count
dataset count dhandle|remotehandle ?filterlist?
d.count(?filters=?)
Dataset.Count(dataset=,?filters=?)

Get the number of objects in the dataset. If the filter parameter is specified, only those objects which
pass the filter are counted.

Example:
dataset count $dhandle astereogenic

counts the number of ensembles or reactions in the dataset with one or more potential atom stereo
centers.

dataset size is an alias to this command.

This command can be used with remote datasets. In the case of PYTHON, this requires the use of the
class method.

In case a simple count on a local dataset is required, without any filters, the dataset size can also be
queried as attribute, as in
set n [dataset get $dhandle size]

dataset create
dataset create ?objecthandle/objectlist?...
Dataset(?objectref/objectsequence?,...)
Dataset.Create(?objectref/objectsequence?,...)

This command creates a new dataset and returns the handle of the new dataset. If the optional object
handle lists are provided as arguments, the specified objects (in case of ensemble, reaction, network
or table handles), or elements of the object (for a dataset handle, with default accept flags) are moved
to the new dataset. In case the accept flags of the target dataset are configured to allow datasets as
primary dataset objects, the source dataset argument is not implicitly replaced by its content objects
but added as a single object, retaining its objects as content. Otherwise, the source dataset is emptied
but remains a valid object.

Besides handles of ensembles, reactions, networks, tables, molfiles and of other datasets, which are
identified with priority, any string which can be decoded in an ens create statement is also allowed
as member initialization identifier.

If the dataset create statement references objects which are not usually accepted by the default
settings of the accept dataset attribute, that attribute is automatically adjusted to allow for these
objects. The accept flag modification is persistent.

Molfile objects in the object handle list are treated different from other objects. The latter are directly
moved into the dataset. In the case of molfile objects, the file is read from the current position to
the end (or until a termination condition configured on the molfile handle is met), and the newly
read objects are moved into the dataset.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 215

CACTVS Tcl and Python Scripting Language Reference
The command always returns the handle of the new dataset (or a reference for PYTHON), never the
handles of any objects which may have been placed into the dataset

Examples:
dataset create [list $eh1 $eh2] $dh1

creates a new dataset and move the two specified ensembles $eh1 and $eh2, as well as everything
contained in the dataset $dh1, into the new dataset.
dataset create [molfile open myfile.sdf r hydrogens add]

creates a dataset from the file contents, with hydrogen addition configured on the molfile handle.
dataset create VXPBDCBTMSKCKZ

Above command matches a partial InChI key, and puts all structures from the NCI resolver which
matches the non-stereo/isotope-specific part of their full InChI key, into the new dataset.
set ::cactvs(lookupmode) „name_pattern“
dataset create [list "+morphine +methyl"]

This command performs a name pattern lookup and puts all structures from the NCI resolver which
contain both name fragments in one of their known names into the dataset. The name pattern string
needs to be explicitly packed into a list, because otherwise it would be split into two independent
list elements.

dataset dataset
dataset dataset dhandle ?filterlist?
d.dataset(?filters=?)

Get the handle (or, for PYTHON, a reference) of the container dataset the dataset is a member of. If
the dataset is not itself a dataset member, or does not pass the optional filters, an empty string is
returned, or None for PYTHON.

This command is not equivalent to dataset datasets!

dataset datasets
dataset datasets dhandle ?filterset? ?filtermode? ?recursive?
d.datasets(?filters=?,?mode=?,?recursive=?)

Return a list of all the handles or references of the datasets that are members in the dataset identified
by the command argument handle. Other objects (ensembles, reactions, tables, networks) are
ignored. The object list may optionally be filtered by the filter list, and the output further modified
by a standard filter mode.

If the recursive flag is set, and the dataset contains other datasets as objects, datasets in these nested
datasets are also listed.

This command is not equivalent of the dataset dataset command!

Example:
set dlist [dataset datasets $dhandle]

dataset defined
dataset defined dhandle property
d.defined(property)
216 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This command checks whether a property is defined for the dataset. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The dataset valid command is used for this purpose.

The command returns a boolean result.

dataset delete
dataset delete ?datasethandle/datasethandlelist/all?...
d.delete()
Dataset.Delete(“all”)
Dataset.Delete(?dref/drefsequence/dhandle?,...)

This command destroys datasets and everything contained therein. The special handle value all may
be used to delete all datasets in the application at once.

The command returns the number of datasets which were successfully deleted.

Transient datasets cannot be used with this command. Neither can be datasets which are a
component of another object, e.g. the internal datasets of tables or factories. These are only and
automatically deleted when their parent object is destroyed. Datasets which are a property value are
also undeletable by this command.

It is a common programming error to delete a dataset, or its parent object if one exists, without
protecting its current member ensembles or reactions. If they are still needed in later processing they
need to be explicitly transferred into another dataset or outside of it.

Examples:
dataset delete all
dataset move $dhandle {}; dataset delete $dhandle

The first example destroys all datasets defined in the current script and everything contained in
them. The second example shows how to delete a dataset and preserve its contents by moving all
dataset elements out prior to deletion.

dataset dget
dataset dget dhandle propertylist ?filterset? ?parameterdict?
d.dget(property=,?filters=?,?parameters=?)
Dataset.Dget(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, dataset get and dataset dget are equivalent.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset dup
dataset dup dhandle ?targethandle? ?cleartarget?
d.dup(?target=?,?cleartarget=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 217

CACTVS Tcl and Python Scripting Language Reference
If the optional arguments are not supplied, the dataset with all data attached to the dataset and all
objects which are contained in it are duplicated. The command returns a new dataset handle for TCL,
or reference for PYTHON. All duplicated objects in the new datasets also are assigned handles which
can be obtained by commands such as dataset list $dhandle.

It is possible to specify a target dataset as an optional argument. In that case, no new dataset is
created, and dataset-level property data on the source dataset is not copied. All objects in the source
dataset are duplicated and appended to the end of the target dataset. In case the boolean target
clearance flag is set, which is also the default if the parameter is omitted, the target dataset is cleared
before the new objects from the source dataset are added. In this command variant, the return value
of the command is the target dataset handle or reference.

Examples:
dataset dup $dhandle
dataset dup [list $eh1 $eh2] $dtarget 0

dataset ens
dataset ens dhandle ?filterset? ?filtermode? ?recursive?
d.ens(?filters=?,?mode=?,?recursive=?)

Return a list of all the handles or references of the ensembles in the dataset. Other objects (reactions,
tables, datasets, networks) are ignored. The object list may optionally be filtered by the filter list, and
the output further modified by a standard filter mode.

If the optional boolean recursive argument is set, ensembles which are a component of a reaction in
the dataset are also listed. Furthermore, if the dataset contains datasets as elements, these are
recursively traversed, and ensembles in these, as well as ensembles in reactions in these datasets, are
listed. If the output mode of the command is a handle list, items found by recursion are appended
to the result list in a straight fashion, without the creation of nested lists. By default the recursion
flag is off. Regardless of the flag value, ensembles which are associated with rows of a table in the
dataset, but are not themselves dataset members, are not output.

Example:
set elist [dataset ens $dhandle astereogenic]

lists those ensembles in the dataset which have one or more atoms which are potential atom stereo
centers.
set cnt [dataset ens $dhandle {} count 1]

returns a count of all ensembles which are either directly members of the dataset, or indirectly as
component objects of reactions in the dataset, or which are contained in datasets which are a
themselves a member of the primary dataset.

dataset exists
dataset exists dhandle ?filterlist?
d.exists(?filters=?)
Dataset.Exists(dref,?filters=?)

Check whether a dataset handle or reference is valid. The command returns boolean 0 or 1.
Optionally, the dataset may be filtered by a standard filter list, and if it does not pass the filter, it is
reported as not valid. This command cannot be used with transient datasets.
218 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
dataset exists $dhandle

dataset expr
dataset expr dhandle expression
d.expr(expression)

Compute a standard SQL-style property expression for the dataset. This is explained in detail in the
chapter on property expressions.

dataset extract
dataset extract dhandle propertylist ?filterset? ?filterprocs?
d.extract(property=,?filters=?,?filterfunctions=?)

This command is rather complex and closely related to the dataset xlabel command. It was
designed for the efficient extraction of major or minor object data for filtered subsets of the dataset.

The property list parameter determines the property data which is extracted. Multiple properties may
be specified, but they can only be associated with major objects and one arbitrary minor object class.
So it is possible to simultaneously extract an ensemble and an atom property, but not an atom and
a bond property.

The return value is a nested list of data items for every object which is encountered while traversing
the dataset on the level of the minor object associated with the extraction property, or just ensembles
or other major objects if no such property is selected. Every list element is itself a list which contains
the extracted property values in the order they are named in the property list parameter.

The objects for which data is returned can further be filtered by a standard filter set, and additionally
by a list of filter procedures (for TCL, specified as procedure names) or functions (for PYTHON,
specified as function names or function references). These procedures or functions are called with
the respective object handles/references and object labels as arguments. For example, a callback
function used in an atom retrieval context would be called for each atom with its ensemble handle
or reference and the atom label as arguments. If major objects without a label are checked, such as
complete ensembles, 1 is passed as the label. The callback procedures are expected to return a
boolean value. If it is false or 0, the object is not added to the returned list, and the other check
procedures are no longer called.

The command currently only works on ensembles in the dataset, ignoring any reactions, tables,
datasets or networks which may be present.

Because this command is primarily intended for numerical data display, the returned values are
formatted as with the nget command, i.e. instead of enumerated values the underlying numerical
values are returned.

Example:
set dhandle [dataset create [ens create CO] [ens create CN]]
dataset extract $dhandle [list E_NAME A_SYMBOL] !hydrogen

This example first creates a dataset with methanol and methylamine. The second line performs the
actual extraction and returns
{CH4O C} {CH4O O} {CH5N C} {CH5N N}
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 219

CACTVS Tcl and Python Scripting Language Reference
This kind of extracted data is useful for the display of filtered atomic (and other minor object’s)
property values.

dataset filter
dataset filter dhandle filterset
d.filter(filters)

Check whether a the dataset passes a filter list. The return value is boolean 1 for success and 0 for
failure. Note that only filters operating on dataset objects are applicable, not any filter for objects
contained in the dataset (such as ensembles or reactions).

dataset find
dataset find dhandle objecthandle
d.find(objectref)

Get the index of the dataset object. If it cannot be found in the dataset, the result is minus one.

dataset forget
dataset forget dhandle ?objectclass?
d.forget(?objectclass=?)

This command is essentially the same as the ens forget (or reaction forget, etc) command.
It is applied to all objects in the dataset.

If the object class is dataset, all dataset-level property data is deleted.

The command returns the dataset handle or reference, or, for TCL only, an empty string if the dataset
was transient.

dataset get
dataset get dhandle propertylist ?filterset? ?parameterdict?
dataset get dhandle attribute
d.get(property=,?filters=?,?parameters=?)
d.get(attribute)
d[property/attribute]
d.property/attribute
Dataset.Get(items,property=,?filters=?,?parameters=?)
Dataset.Get(items,attribute)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

In addition to retrieving property data, it can also be used to query dataset attributes. The set of
supported attributes is detailed in the paragraph on the dataset set command.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

Examples:
dataset get $dhandle {D_NAME D_SIZE}

yields the name and size of the dataset as a list. If the information is not yet available, an attempt is
made to compute it. If the computation fails, an error results.
220 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
dataset get $dhandle [list E_FORMULA E_WEIGHT]

gives the formula and molecular weight of all dataset ensembles. The result is delivered as a nested
list. The first list are the formulas, the second list contains the weights.

Currently, it is not possible to use filters with this command (and the other retrieval command
variants) which are not operating directly on the dataset object, but on objects lower in the hierarchy
such as ensembles or atoms.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the dataset get command are dataset new, dataset dget, dataset jget,
dataset jnew, dataset jshow, dataset nget, dataset show, dataset sqldget, dataset
sqlget, dataset sqlnew, and dataset sqlshow.

dataset getparam
dataset getparam dhandle property ?key? ?default?
d.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

Example:
dataset getparam $dhandle E_GIF format

returns the actual format of the image, which could be GIF, PNG, or various bitmap formats.

dataset hadd
dataset hadd dhandle ?filterset? ?flags? ?changeset?
d.hadd(?filters=?,?flags=?,?changeset=?)

Add a standard set of hydrogens to all ensembles and reactions in the dataset. If the filterset
parameter is specified, only those atoms which pass the filter set are processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

• nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B_TYPE not normal).

• no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 221

CACTVS Tcl and Python Scripting Language Reference
• no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

• nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

• noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

• nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

• resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

• nocations
Do not add hydrogen to atoms with a positive formal charge.

• noanions
Do not add hydrogen to atoms with a negative formal charge.

• nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

• noatoms
Do not add hydrogen to atoms without any bonds.

Adding hydrogens with this command is less destructive to the property data set of the ensembles
or reactions than adding them with individual atom create/bond create commands, because
many properties are defined to be indifferent to explicit hydrogen status changes, but are invalidated
if the structure is changed in other ways.

If the effects of the hydrogen addition step to the validity of the property data set should not be
handled with this standard procedure, it is possible to explicitly generate additional property
invalidation events by specifying a list as the optional last parameter, for example a list of atom and
bond to trigger both the atom change and bond change events.

The command returns the total number of hydrogens added to all ensembles and reactions in the
dataset.

Example:
dataset hadd $dhandle

dataset hdup
dataset hdup dhandle ?targethandle? ?cleartarget?
d.hdup(?target=?,?cleartarget=?)
222 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If the optional arguments are not supplied, the dataset with all data attached to the dataset and all
objects which are contained in it are duplicated with hydrogen addition. The command returns a new
dataset handle for TCL, or reference for PYTHON. All duplicated objects in the new datasets also are
assigned handles which can be obtained by commands such as dataset list $dhandle.

It is possible to specify a target dataset as an optional argument. In that case, no new dataset is
created, and dataset-level property data on the source dataset is not copied. All objects in the source
dataset are duplicated with hydrogen addition and appended to the end of the target dataset. In case
the boolean target clearance flag is set, which is also the default if the parameter is omitted, the target
dataset is cleared before the new objects from the source dataset are added. In this command variant,
the return value of the command is the target dataset handle or reference.

Examples:
dataset dup $dhandle
dataset dup [list $eh1 $eh2] $dtarget 0

dataset hierarchies
dataset hierarchies dhandle ?filterset? ?filtermode? ?recursive?
d.tables(?filters=?,?mode=?,?recursive=?)

Return a list of all the handles or references of the hierarchies in the dataset. Other objects in the
dataset (ensembles, reactions, datasets, networks) are ignored. The object list may optionally be
filtered by the filter list, and the result further modified by a standard filter mode argument.

If the recursive flag is set, and the dataset contains other datasets as objects, hierarchies in these
nested datasets are also listed.

This is not the same as dataset hierarchy - the latter reports the hierarchy the dataset is a member
of. This command lists the hierarchies in the dataset.

Example:
set n [dataset hierarchies $dhandle {} count]

dataset hierarchy
dataset hierarchy dhandle ?filterlist? ?root?
d.hierarchy(?filters=?,?root=?)

Return the hierarchy handle or reference of the hierarchy the dataset is part of. If the dataset is not
member of a hierarchy, or does not pass all of the optional filters, an empty string or None for PYTHON
is returned. By default, the hierarchy object which directly contains the dataset is returned. If the root
flag is set, the root hierarchy object is reported instead, which is the same only if the hierarchy has
only a single level.

This command is not the same as dataset hierarchies, which reports hierarchies in the dataset.

Example:
dataset hierarchy $dhandle

dataset hread
dataset hread dhandle ?datasethandle|enshandle? ?#recs|batch|all?
d.hread(?target=?,?limit=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 223

CACTVS Tcl and Python Scripting Language Reference
This command provides the same functionality as dataset read, but additionally adds a stand set
of hydrogen atoms to the read duplicate objects.

The command arguments are explained in the section on dataset read.

dataset hstrip
dataset hstrip dhandle ?flags? ?changeset?
d.hstrip(?flags=?,?changeset=?)

This command removes hydrogens from the dataset ensembles and reactions. By default, all
hydrogen atoms in the dataset ensembles or reactions are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

• keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

• keeporiginal
Hydrogen atoms which were not automatically added via a hadd command are retained.
Note that hydrogen addition commands can be run in a mode which does not leave
information about automatic addition - hydrogens added this way will also survive.

• keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

• wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

• keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

• keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

• normalize
Normalize the wedge pattern for standard cases, removing wedges from hydrogens if the
result is still stereochemically defined. Hydrogens which lose their wedge in this process are
no longer protected by the keepwedge flag.

• keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!
224 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If the changeset parameter is given, all property change events listed in the parameter are triggered.

Hydrogen stripping is not as disruptive to the ensemble or reaction data content as normal atom
deletion. The system assumes that this operation is done as part of some file output or visualization
preparation. However, if any new data is computed after stripping, the computation functions see the
stripped structure, and proceed to work on that reduced structure without knowledge that there are
implicit hydrogens.

Example:
dataset hstrip $dhandle [list keeporiginal wedgetransfer]

dataset index
dataset index dhandle
dataset index dhandle position
d.index(?position=?)

This command comes in two variants. The tree-word version is the generic command to check
dataset membership, which is the same for all objects which can be dataset members. The second
version is specific to datasets objects and retrieves object references from this dataset.

This first version gets the position of the dataset in the object list of its parent dataset. If the dataset
is not part of a parent dataset, -1 is returned. This is the generic dataset membership test command
variant.

This second command variant obtains the object handle or reference of the object at the specified
position in this dataset. Position counting begins with zero. If the index is outside the object position
range, an empty string is returned. The special value end may be used to address the last object. The
indexed object remains in the dataset.

Note that this index command is not equivalent to the standard index command on minor objects
which is used to obtain the position of the minor object in the minor object list of the controlling
major object. This kind of functionality is not needed for major objects, because they are not
contained in any minor object list.

Example:
dataset index $dhandle end

dataset intersect
dataset intersect dhandle1 dhandle2 ?property?...
d.intersect(dref2,?pref?...)

Perform an intersection check between two datasets. The result is a list of zero-based dataset index
pairs (as in dataset index) of all identical corresponding dataset entries in both datasets, as judged
by the value of the comparison property. The default comparison property is
E_ISOTOPE_STEREO_HASH for full structural identity check of ensembles.

In case the first dataset contains duplicates, the index of the matching second dataset element is
identical for all duplicates, and, in case the second dataset also contains corresponding duplicates,
a (pseudo-)random element from among these duplicates, and the other duplicates in the second
dataset are reported as not matched in the dataset intersect3 command variant (see below).
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 225

CACTVS Tcl and Python Scripting Language Reference
The comparison property object class must match the class of the compared dataset objects (i.e. the
default property is only suitable for comparison of ensembles in the datasets, but not for reactions,
etc.). Objects of mismatching classes in the datasets are ignored.

Example:
set dh1 [dataset create CC CCC CCCC]
set dh2 [dataset create CCC CCCC CCCCC]
dataset intersect $dh1 $dh2

The result is {1 0} {2 1}, meaning the second (if we start counting with 1) element of the first
dataset corresponds to the first element in the second, and the third element to the second.

dataset intersect3
dataset intersect3 dhandle1 dhandle2 ?property?...
d.intersect3(dref2,?pref?...)

This command is an extended variant of dataset intersect. The return value is a 3-element list
comprising of a simple list of the element indices in the first dataset which are not matched, the
match pair list as in dataset intersect of the equivalent elements, and a simple list containing the
element indices of the second dataset which are not matched.

Example:
set dh1 [dataset create CC CCC CCCC]
set dh2 [dataset create CCC CCCC CCCCC]
dataset intersect3 $dh1 $dh2

The result is 0 {{1 0} {2 1}} 2. The middle element of the result list is the same as in the example
for the dataset intersect command. The first element indicates that the first (starting the count
with 1) element of the first dataset was not matched, and the third element indicates that the third
element of the second dataset was not matched.

dataset jget
dataset jget dhandle propertylist ?filterset? ?parameterdict?
d.jget(property=,?filters=?,?parameters=?)
Dataset.Jget(items,property=,?filters=?,?parameters=?)

This is a variant of dataset get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset jointhreads
dataset jointhreads ?all?
dataset jointhreads dhandle ?all?
dataset jointhreads dhandle threadid...
Dataset.Jointhreads()
d.jointhreads(“all”)
d.jointhreads()
d.jointhreads(?threadid?,...)

This is an alias for the dataset cancelthreads command. Please refer to its documentation.
226 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
dataset jnew
dataset jnew dhandle propertylist ?filterset? ?parameterdict?
d.jnew(property=,?filters=?,?parameters=?)
Dataset.Jnew(items,property=,?filters=?,?parameters=?)

This is a variant of dataset new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset jshow
dataset jshow dhandle propertylist ?filterset? ?parameterdict?
d.jshow(property=,?filters=?,?parameters=?)
Dataset.Jshow(items,property=,?filters=?,?parameters=?)

This is a variant of dataset show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset ldup
dataset ldup ?dhandlelist?...
Dataset.Ldup(?dref/drefsequence?,...)

Duplicate all datasets in the handle list(s) in default mode.

The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TCL) or None (for
PYTHON) at its position, without raising an error.

This command cannot be used with transient datasets.

dataset lhdup
dataset lhdup ?dhandlelist?...
Dataset.Lhdup(?dref/drefsequence?,...)

Duplicate all datasets in the handle list(s) in default mode, and add hydrogens.

The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TCL) or None (for
PYTHON) at its position, without raising an error.

This command cannot be used with transient datasets.

dataset list
dataset list ?dhandle?
Dataset.List(?filters=?)
d.list()
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 227

CACTVS Tcl and Python Scripting Language Reference
Without a handle argument (for TCL), or called as the class method (for PYTHON) the command returns
a list of the handles of all existing datasets.

If (in TCL) a dataset handle or transient dataset is passed as third argument, or the object method is
used (for PYTHON) the command returns a list of all major objects in the dataset. In the TCL case, this
function is different from the behavior of the list subcommand for other major object classes, where
the optional argument is a filter list. In PYTHON, the filter list variant is supported.

Examples:
dataset list
dataset list $dhandle

dataset lock
dataset lock dhandle propertylist/dataset/all ?compute?
d.lock(property=,?compute=?)

Lock property data of the dataset handle, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the dataset handle which would invalidate the information. Property data
remains locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names (or references, in PYTHON)
Valid property instances on the file object are locked. If the boolean compute flag is set, an
attempt is made to compute the property if it is not yet present. Otherwise, a request to lock
non-existent data is silently ignored. It is not possible to lock individual property fields.

• all
All valid dataset properties are locked. The compute flag is ignored.

• dataset
This is an object class identifier. All property data which is controlled by the dataset major
object and attached to the specified object class is locked. Since datasets do not incorporate
minor objects, this identifier is equivalent to all.

A lock can be released by a dataset unlock command.

This command does not recurse into the objects contained in the dataset.

The return value is the dataset handle (for TCL) or reference (for PYTHON) or, if the dataset was
transient, an empty string (for TCL only).

dataset loop
dataset loop dhandle objvar ?maxrec? ?offset? body
d.loop(function=,?maxloop=?,?offset=?,?variable=?)
for obj in d:

Loop over the elements in a dataset. This command is similar to molfile loop. On each iteration,
the variable is set to the handle of the current member object, and then the body code is executed.
The variable refers to the original dataset element, not a duplicate. This is different from dataset
read.
228 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
All operations on the current loop item are allowed, including deletion. However, the next object
after the current item must not be deleted or moved, because it is needed for the iteration process.

If a maximum record count is set, the loop terminates after the specified number of iterations. If the
maximum record argument is set to an empty string, a negative value, or all, the loop covers all
dataset elements. This is also the default.

For TCL scripts, within the loop, the standard TCL break and continue commands work as expected.
If the body script generates an error, the loop is exited.

If no offset is specified, the loop starts at the first element. Within the loop body, the dataset attribute
record is continuously updated to indicate the current loop position. Its value starts with one, like
file records in the molfile loop command.

The PYTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TCL construct),
or a function reference. Functions are called with the reference of the current loop object as single
argument, and have their own context frame, so that the specification of a reference variable is not
generally useful in that call style, though is is allowed. For string function blocks the code is
executed in the local call frame, and the variable with the current object reference is visible locally.
Script code blocks must be written with an initial indentation level of zero. Within the PYTHON
functions, the normal break and continue commands cannot be used to to scope limitations. Instead,
the custom exceptions BreakLoop and ContinueLoop can be raised. These are automatically caught
and processed in the loop body handler code.

In PYTHON, there is also an object iterator so that simple loops over dataset elements can be written
with a for statement. The dataset object iterator is of the self style (i.e. there is one per dataset, these
are not independent objects), so nesting them is not possible on the same dataset.

PYTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PYTHON scripting.

Example:
dataset loop $dh eh {

puts „[ens get $eh E_NAME] at position[ens index $eh]“
}

dataset match
dataset match dhandle ss_ehandle ?matchflags? ?ignoreflags?
d.match(substructure=,?matchflags=?,?ignoreflags=?)

Perform a substructure match on all eligible objects in the dataset. The return value is the match
count.

The arguments are the same as with ens match. The specification of variables to capture match
locations is not possible in this command variant.

dataset max
dataset max dhandle propertylist ?filterset?
d.max(property=,?filters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 229

CACTVS Tcl and Python Scripting Language Reference
Get the maximum value of one or more properties in from the elements in the dataset. The property
argument may be any property attached to dataset members, or minor objects thereof. If the filterset
argument is specified, the maximum value is searched only for objects which pass the filter set.

Examples:
dataset max $dhandle E_WEIGHT
dataset max [list $ehandle1 $ehandle2] A_SIGMA_CHARGE carbon

The first example finds the highest molecular weight in the dataset. The second example finds the
largest (most positive) Gasteiger partial charge on any carbon atom in the two argument ensembles,
which form a transient dataset.

dataset metadata
dataset metadata dhandle property ?field ?value??
d.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands dataset setparam and dataset
getparam can be used for direct manipulation of specific keys in the computation parameter field.
Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

Examples:
array set gifparams [dataset metadata $dhandle D_GIF parameters]
dataset metadata $dhandle D_QUALITY comment “This value looks suspicious to me”

The first line retrieves the computation parameters of the property D_GIF as keyword/value pairs.
These are read into the array variable gifparams, and may subsequently be accessed as
$gifparams(format), $gifparams(height), etc. The second example shows how to attach a
comment to a property value.

dataset min
dataset min dhandle propertylist ?filterset?
d.min(property=,?filters=?)

Get the minimum value of one or more properties from the elements in the dataset. The property
argument may be any property attached to dataset sub-elements, or minor objects thereof. If the
filterset argument is specified, the minimum value is searched only for objects which pass the filter
set.

Examples:
dataset min $dhandle E_WEIGHT
dataset min [list $ehandle1 $ehandle2] A_SIGMA_CHARGE carbon

The first example finds the smallest molecular weight in the dataset. The second example finds the
smallest (most negative, or smallest positive) Gasteiger partial charge on any carbon atom in the two
argument ensembles, which form a transient dataset.

dataset molfile
dataset molfile dhandle ?filterset?
d.molfile(?filters=?)
230 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Return the handle or reference of the molfile object associated with the dataset as backing page file.
If no such file object exists, an empty string (for TCL) or None (for PYTHON) is returned.

Example:
set fh [dataset molfile $dh]
set fh [dataset get $dh pagefile]

The two commands are equivalent.

dataset move
dataset move dhandle datasethandle|remotehandle ?position?
d.move(target=,?position=?)

Move, depending on the acceptance flags of the destination dataset, either the objects in the dataset
or transient dataset into another local or remote dataset, or move the dataset itself. If the destination
dataset handle is an empty string (or None for PYTHON), the dataset objects are removed from the
original dataset, but not moved into any other dataset. If the destination dataset accepts datasets as
members, which is not the default (see the accept attribute in the section on dataset set) the dataset
is directly moved as object. Otherwise, its contained objects are moved, under preservation of the
object order from the source dataset, and the source dataset is emptied, but not deleted.

Optionally, a position in the new dataset for the first moved object may be specified. This parameter
is either an index (beginning with 0), or end, which is the default. If the contents of a dataset are
spliced into another at a specific position, objects after the first element of the source dataset follow
as a block.

Another special position value is random or rnd. This value moves to the dataset, or dataset contents,
to a random position in the target dataset. Use of this mode with remote datasets is currently not
supported.

In case of a transient command dataset the original dataset memberships of the dataset objects are
not restored when the command completes.

The return value of the command is the dataset of the ensemble prior to the move operation. It is
either a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of
a dataset.

A dataset cannot be moved into itself.

Examples:
dataset move $dhandle $dhandle2 0
dataset move $dhandle {}
dataset move [ens list] [dataset create]

The first line moves all objects in the source dataset into the first (and following) positions in the
destination dataset. The second example removes all elements from the dataset. This is often useful
in order to avoid dataset member destruction with the dataset delete command. The final
example shows how to move a set of ensembles (here: all ensembles currently defined in the
application) into a newly created dataset via an intermediate, transient dataset.
dataset move $dhandle vioxx@server55:10001

This command moves all objects in the first dataset to the remote dataset on host server55, which
listens on port 10001 and requires the pass phrase vioxx for access.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 231

CACTVS Tcl and Python Scripting Language Reference
dataset mutex
dataset mutex dhandle mode
d.mutex(mode)

Manipulate the object mutex.

During the execution of a script command, the mutex of the major object(s) associated with the
command are automatically locked and unlocked, so that the operation of the command is
thread-safe. This applies to toolkit builds that support multi-threading, either by allowing multiple
parallel script interpreters in separate threads or by supporting helper threads for the acceleration of
command execution or background information processing.

Going beyond this automatic per-statement protection, this command locks major objects for a
period of time that exceeds a single command. A lock on the object can only be released from the
same interpreter thread that set the lock. Any other threaded interpreters, or auxiliary threads, block
until a mutex release command has been executed when accessing a locked command object. This
command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

dataset need
dataset need dhandle propertylist ?mode? ?parameterdict?
d.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results. In
the common case of threaded computation, this starts a compute thread whose results or error status
can be collected later. This command is explained in more detail in the section about retrieving
property data.

If the dataset is not transient, the return value is the original dataset handle or reference.

Example:
dataset need $dhandle D_GIF recalc
232 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
dataset networks
dataset networks dhandle ?filterset? ?filtermode? ?recursive?
d.networks(?filters=?,?mode=?,?recursive=?)

Return a list of the handles or references of all the networks in the dataset. Other objects (ensembles,
reactions, datasets, tables) are ignored. The object list may optionally be filtered by the filter list, and
the result further modified by a standard filter mode argument.

If the recursive flag is set, and the dataset contains other datasets as objects, networks in these nested
datasets are also listed.

Example:
set n [dataset networks $dhandle {} count]

dataset new
dataset new dhandle propertylist ?filterset? ?parameterdict?
d.new(property=,?filters=?,?parameters=?)
Dataset.New(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset nget
dataset nget dhandle propertylist ?filterset? ?parameterdict?
d.nget(property=,?filters=?,?parameters=?)
Dataset.Nget(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset nnew
dataset nnew dhandle propertylist ?filterset? ?parameterdict?
d.nnew(property=,?filters=?,?parameters=?)
Dataset.Nnew(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 233

CACTVS Tcl and Python Scripting Language Reference
For examples, see the dataset get command. The difference between dataset get and dataset
nnew is that the latter always returns numeric data, even if symbolic names for the values are
available, and that property data re-computation is enforced.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset nitrostyle
dataset nitrostyle dhandle style
d.nitrostyle(style=)

Change the internal encoding of nitro groups and similar functional groups in the ensembles and
reactions in the dataset. Possible values for the style parameter are:

• asis No change

• ionic Change to encoding to a positive charge on the center atom, and a negative on one
of the oxygens

• xionic As above, but also change the encoding of azides, etc.

• neutral Change the encoding to the neutral form with extended valence. pentavalent is an
alias.

• xneutral As above, but also change the encoding of azides, etc.

The command returns the dataset handle or reference.

dataset objects
dataset objects dhandle ?pattern?
d.objects(?pattern=?)

This is a non-standard cross-referencing command. The result is a list of all the objects in the dataset,
where each result list element is a list or tuple consisting of the object type (ens, reaction, table,
network, dataset), and the object handle or reference. Optionally, the dataset objects may be filtered
by the pattern argument which applies to the object handle.

Example:
dataset objects $dhandle ens*

is roughly equivalent to
dataset ens $dhandle

except that the latter only lists the ensemble handles, not pairs of object class name and handle.

dataset pack
dataset pack dhandle ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?
d.pack(?maxsize=?,?requestprops=?,?suppressedprops=?,?compressionlib=?)

Pack the dataset and all objects it contains into a base-64 encoded, compressed string as a serialized
object. The string does not contain any non-printing characters, quotation marks or other
problematic characters and is thus well suited for storage in database tables and similar applications.
These packed strings are portable and platform-independent.
234 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The maximum size of the object string (default -1, meaning unlimited) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The two optional parameter lists allow to request a specific property set to be part of the package,
even if it normally would not be included, and to explicitly omit properties from the dump. No
property computation is performed, and suppressed properties are not purged from the source
ensemble.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.

In PYTHON, datasets support the standard pickle/unpickle protocol.

Example:
dataset pack $dhandle

dataset pop
dataset pop dhandle|remotehandle ?position? ?timeout?
d.pop(?position=?,?timeout=?)
Dataset.Pop(dref/remotehandle,?position=?,?timeout=?)

Remove an object from a dataset. The handle or reference of the selected object is returned, and the
object is no longer a member of the dataset when the command completes. If a timeout is specified,
it is transferred to the dataset attribute of the same name before the command is executed, as with
a dataset set command.

By default the first object in the dataset, at index zero, is returned. A different object can be selected
by means of the optional position argument. It can be a numerical index, end for the last object,
rnd/random for a random selection. If the object index if larger than the maximum index of any
object, it is silently rewritten to end. Random pops are not supported on remote datasets.

This command works with remote datasets. In that case, the object is transferred via an intermediate
serialized object representation over the network. It is unpacked on the local interpreter, and deleted
on the remote interpreter.

If the desired dataset object cannot be found, and a timeout is set, including a negative value for an
unlimited wait time, the command suspends execution until the object appears in the dataset, for
example from a different script thread or as result of a remote object insertion. If a wait would be
executed, but the eod/targeteod parameter pair of the dataset indicate that no further data can be
expected, the command returns an empty string (for TCL) or None (for PYTHON) instead of the object
handle or reference, but does not trigger an error. Otherwise, if the object cannot be delivered
immediately or after the timeout, an error results.

Example:
set eh [dataset pop $eh end]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 235

CACTVS Tcl and Python Scripting Language Reference
dataset properties
dataset properties dhandle ?pattern? ?intersectionmode?
d.properties(?pattern=?,?intersectionmode=?)

Get a list of valid properties of the dataset proper and the dataset objects. By default, both dataset
properties (prefix D_) as well as the properties of the objects in the dataset (prefix E_ for ensembles,
X_ for reactions, T_ for tables, N_ for networks, D_ for datasets as members) and the properties of
their minor objects (atoms, bonds, etc.) are listed. Property subsets may be selected by specifying a
string filter pattern. In case of dataset element properties which are not present in all dataset
members, the default intersect mode is union, meaning that all properties are reported for which at
least a single instance in any member exists. The alternative mode intersect only lists those dataset
member properties which are present at all dataset members.

This command may also be invoked as dataset props or d.props().

Example:
dataset properties $dhandle D_*
dataset props $dhandle E_* intersect

The first example returns a list of the currently valid dataset-level properties. The second example
lists ensemble properties which are present in all dataset objects.

dataset purge
dataset purge dhandle propertylist ?emptyonly?
d.purge(?properties=?,?emptyonly=?)

Delete property data from the dataset. The properties may be both dataset properties (prefix D_) or
properties of the dataset members, such as ensemble or atom properties. If a property marked for
deletion is not present on an object, it is silently ignored.

If an object class name, such as ens or atom, is used instead of a property name, all properties of that
class set on the objects in the dataset are deleted, if they are not locked, or filtered out by the optional
empty-only flag.

Besides normal property names, a few convenient alias names for common property deletion tasks
of ensembles in a dataset, or the reaction ensembles of reactions in the dataset, are defined and can
be used as a replacement for the property list. These include:

• atomquery
Delete atom query information.

• atomstereochemistry
Delete all atomic atom stereo descriptors, but keep those for bonds.

• bondquery
Delete bond query information.

• bondstereochemistry
Delete all bond stereo descriptors, but keep those for atoms.

• dataset
Delete all dataset properties (prefix D_).
236 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• ens
Delete all ensemble properties on the dataset objects (prefix E_).

• isotopes
Delete isotope information in A_ISOTOPE and other isotope properties which may be defined
in future software versions.

• query
Delete atom and bond query information.

• radicals
Delete atomic radical information in A_RADICAL and other radical-related properties which
may be defined in future software versions.

• reaction
Delete all reaction properties on the dataset objects (prefix X_).

• stereochemistry
Delete all stereochemistry descriptors, including 2D wedges, but not 3D coordinates. The
implicit property list includes A_LABEL _STEREO, B_LABEL_STEREO, A_CIP_STEREO,
B_CIP_STEREO, A_DL_STEREO, B_CISTRANS_STEREO, A_HASH_STEREO, B_HASH_STEREO,
A_MAP_STEREO, B_MAP_STEREO, A_STEREOINFO, B_STEREOINFO, A_STEREO_GROUP,
M_STEREO_COUNT, E_STEREO_COUNT and B_FLAGS (only wedge bits, the property remains
valid if present).

• wedges
Delete wedge bond flags in property B_FLAGS. If B_FLAGS is not present, the command is
ignored and no computation attempt is made.

The optional boolean flag emptyonly restricts the deletion to those properties where all the values
for a property associated with a major object (such as on all atoms in an ensemble for atom
properties, or just the single ensemble property value for ensemble properties) are set to the default
property value.

The return value is the original dataset handle or reference.

Examples:
dataset purge $dhandle D_GIF
dataset purge [ens list] E_IDENT 1
dataset purge $dhandle stereochemistry

The first example deletes the property data D_GIF for the selected dataset if it is present. The second
example deletes property E_IDENT from all ensembles in the current application if their property
value is equal to the default value of E_IDENT. The third examples removes stereochemistry from all
dataset ensembles.

dataset reactions
dataset reactions dhandle ?filterset? ?filtermode? ?recursive?
d.reactions(?filters=?,?mode=?,?recursive=?)

Return a list of all the handles or references of the reactions in the dataset. Other objects (ensembles,
tables. datasets, networks) are ignored. The object list may optionally be filtered by the filter list, and
the output further modified by a standard filter mode.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 237

CACTVS Tcl and Python Scripting Language Reference
If the optional boolean recursive argument is set, reactions of which ensembles in the dataset are a
component are also listed. Furthermore, if the dataset contains datasets as elements, these are
recursively traversed, and reactions in these, as well as reactions as components of ensembles in
these datasets, are listed. If the output mode of the command is a handle list, items found by
recursion are appended in a straight fashion, without the creation of nested lists. By default the
recursion flag is off. Regardless of the flag value, reactions which are associated with rows of a table
in the dataset, but are not themselves dataset members, are not output.

Example:
set xlist [dataset reactions $dhandle]

Return a list of the handles of the reactions in the dataset.
set cnt [dataset reactions $dhandle {} count 1]

returns a count of all reactions which are either directly members of the dataset, or indirectly because
ensembles in the dataset are part of a reaction, or which are contained in datasets which are a
themselves a member of the primary dataset.

dataset read
dataset read dhandle ?datasethandle/enshandle? ?#recs|batch|all?
d.read(?target=?,?limit=?)

This command returns handles or references of duplicates of one or more objects from the current
dataset iterator position (record attribute). Its arguments mimic those of the molfile read
command. The iterator record attribute is automatically incremented. When the end of the dataset
is reached, an empty result is returned, but no error is raised.

The return value is usually the handle or reference of the object duplicated from the dataset member
at the current read position. If an optional target dataset has been specified. the object is appended
to that dataset, and the return value is the target dataset handle. It is also possible to use the magic
dataset handles new or #auto, which create a new receptor dataset.

If instead of a target dataset an existing target ensemble is specified, the recipient ensemble is
cleared, and the read dataset object placed into its hull without changing its handle. This requires that
the read object is an ensemble, and not a reaction, table, dataset or network, and that only a single
item is read. It is also possible to use an empty argument to skip these options.

By default, a single object is duplicated and the iterator record attribute of the dataset incremented
by one. With the optional third argument, a different number of objects can be selected for reading
as a block. The special value all reads all remaining objects, and batch copies a number of objects
corresponding to the batchsize dataset attribute. If there are insufficient objects in the dataset to read
all requested records, only the available set is returned, and no error results.

The dataset contents are not changed by this command. All extracted items are object duplicates. In
order to fetch original objects from the dataset, use the dataset pop command, or the various
object move commands.

The command variant dataset hread provides the same functionality as this command, but
additionally adds a standard set of hydrogen atoms to the duplicates.

dataset ref
Dataset.Ref(identifier)
238 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
PYTHON only method to get a dataset reference from a handle or another identifier. For datasets, other
recognized identifiers are dataset references, integers encoding the numeric part of the handle string,
the dataset UUID or name, or a table handle (which returns the dataset embedded in the table).

dataset remove
dataset remove dhandle ?handle?...
d.remove(?handle/ref?,...)

Remove objects from a dataset. The removal objects must be in the dataset.

If the dataset is not virtual, the command returns the dataset handle or reference.

dataset rename
dataset rename dhandle srcproperty dstproperty
d.rename(srcproperty=,dstproperty=)

This is a variant of the dataset assign command. Please refer the command description in that
paragraph.

dataset request
dataset request dhandle propertylist ?reload? ?modelist?

Request property data for a dataset when the dataset is not maintained locally, but a partial shadow
copy of a remotely managed dataset. It is assumed to have been only partially transferred via RPC
to a slave from a master controller application, for example for display purposes, but without the full
data content, which resides on the master.

If the requested property data is already present on the slave, and the reload flag is not set, this
command is equivalent to a dataset need command and does not invoke communication with the
master. Otherwise, the master is asked to provide the information, which may be calculated on the
master only after receiving the request, or even delegated by the master to another remote server for
computation.

Once the requested data has been received by the slave, it is added to the property data set of the local
dataset copy. The optional modelist parameter is the same as in the dataset need command. This
command is used to guarantee that critical or non-computable property data is obtained from the
master. Local, unsynchronized data may still be computed by the slave using standard property data
access commands. It is currently not possible to send data back to the master.

This command is only available on toolkit versions which have been compiled with RPC support.

In the absence of errors, the command returns a boolean status code. If it is zero, the request failed
in a non-critical way. This for example happens in case the dataset is not under control of a remote
application.

Example:
if {![dataset request $dhandle A_XY]} {

dataset need $dhandle A_XY
}

is a bullet proof method of guaranteeing that correct atomic 2D display coordinates are present for
the dataset structures even if the script is run in a master/slave context.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 239

CACTVS Tcl and Python Scripting Language Reference
This command is not supported in the PYTHON interface.

dataset rewind
dataset rewind dhandle
d.rewind()

Reset the dataset iterator record. This is equivalent to setting the record attribute to one.

dataset scan
dataset scan dhandle expression/queryhandle ?mode? ?parameterdict?
d.scan(query=,?resultmode=?,?parameters=?)
Dataset.Scan(items,query=,?resultmode=?,?parameters=?)

Perform a query on the dataset or transient dataset. The syntax of the query expression is the same
as that of the molfile scan command and explained in more detail in its section on query
expressions. Essentially, this command behaves like an in-memory data file version of the molfile
scan command. However, currently queries work on ensembles and reactions as dataset members
only. Any table, network or other object which is a member of a scanned dataset is skipped. Skipped
items still count as records for positioning and query result output. In the absence of a specified scan
record list (order parameter), dataset scans begin at the current position of the iterator record
attribute that is shared with the dataset read/hread commands.

The optional parameter dictionary is the same as for molfile scan, but not all parameters are
actually used. At this time, only the matchcallback, maxhits, maxscan, order, progresscallback,
progresscallbackfrequency, sscheckcallback, startposition and target parameters have an effect. If
result ensembles or reactions are transferred to a remote dataset via the target parameter, they are
not deleted from the local dataset but duplicates are created instead. This is because the original
objects are members of the dataset which, just like a structure file would, should remain unchanged
as result of a scan. In contrast, in file scans, the transferred ensembles and reactions were read from
file and created as new objects during the scan, and sending these does not change the underlying
file. In case a progress callback function is used, the dataset handle is passed as argument in place
of the molfile handle in molfile scan.

The return value depends on the mode. The default mode is enslist. The following modes are
supported for dataset queries:

• array (or alias tclarray, dict, pythondict)
The mode parameter is a list consisting of the mode selector array and a nested list of
properties and pseudo-properties. Each property item can be a list of one to three elements.
The first element is a property or pseudo-property, the second element a name, and the third
element again a property or pseudo property. The the second property item list element is
omitted, the name is the same as the first element. If the third element is missing, it is
assumed to be the pseudo-property record.

In this mode, the command returns a list of the names of the created arrays. For each name,
a global TCL array variable or PYTHON dictionary is created, and for each match, a TCL array
element with an element name equal to the value of the first item specification index and an
element value equal to the value of the third item specification is created (or a dictionary
entry with key and value for PYTHON). For example, the scan mode specification
{array {E_NAME name2rec} {record rec2name E_NAME}}
240 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
results in the creation of two global TCL arrays or PYTHON dictionaries in the current
interpreter, called name2rec and rec2name. The first has array elements (for PYTHON,
dictionary keys) where the element name is the name of the matching structure (property
E_NAME), and the value the pseudo-record number (because it is the default). The second
array has elements where the record number is the array element name, and the
corresponding value the structure name. The return value of the scan statement is the list
(tuple for PYTHON) “name2rec rec2name”, containing the names of the two variables
created.

If array or dictionary elements for a specific key already exist, the new value is appended
as a list or tuple object. The result registration procedure does not overwrite the existing
content. So, for example in above case, if there are multiple records with the same structure
name, the array element indexed by name would contain a list or records, not just a single
record. Since the global arrays or dictionaries are persistent, data is also appended over
multiple scan statements. If this is not desired, a statement like unset -nocomplain
$arrayname should be executed before the scan is started. It is legal to use the same array
or dictionary name for the registration of multiple properties. In this case, each match
appends a new list element for every reported property, though these lists will not be nested.

• bitvector
Return a string-encoded bit vector (series of 0s and 1s) indicating the match status for every
visited record.

• boolean
Return a boolean value indicating whether the next record matches or not.

• booleanvector
Return a boolean vector (series of 0s and 1s as vector elements) indicating the match status
of every visited record. The difference to the bitvector mode is that in the scripting interface
the vector elements are already isolated elements, for example they appear space-separated
in the string form.

• count
Count the number of hits. The result value is an integer.

• delete
Delete hits from the dataset. This is the only scan command which actually changes the
dataset.

• ens
Return the handle of the first matching ensemble. The query is stopped at that point. If no
hits are found, an empty string is returned. If a local target dataset is specified, a found
ensemble is removed from the scanned dataset.

• enslist
Return the handles of all matching ensembles. If no hits are found, an empty list is the result.
If a local target dataset is specified, the found ensembles are removed from the scanned
dataset.

• exists
A boolean check for the existence of a match. The same as count, except that the scan stops
after the first match.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 241

CACTVS Tcl and Python Scripting Language Reference
• index
Return the positional index of the first matching dataset object. This is the same as the
record mode value minus one.

• indexlist
Return the positional indices of the matching dataset objects. This is the same as the
recordlist mode values minus one.

• molfile
The mode parameter is a list consisting of the mode selector molfile and a structure file
handle, which must have been opened for writing, appending, or updating. The first
matching structure is written to the file, and the command stops at that point.The output file
handle attributes determine format, selection of data written, structure encoding
conventions such as hydrogen status, etc. If no matching structure is found, nothing is
written. In this mode, the return value of the command is the matching record number of the
input file, just as in the record mode.

• molfilelist
The mode parameter is a list consisting of the mode selector molfilelist and a structure file
handle, which must have been opened for writing, appending, or updating. Matching
structures are written to that file. The output file handle attributes determine format,
selection of data written, structure encoding conventions such as hydrogen status, etc. If no
matching structures are found, nothing is written. This mode is also implicitly selected if a
structure file handle is directly provided as mode argument. In this mode, the return value
of the command is a list of the matching record numbers of the input file, just as in the
recordlist mode

• property
The mode parameter is a list consisting of the mode selector property and a sequence of
properties and pseudo-properties. The selected properties for the first match are returned as
a list, and the command stops at that point. If there are no hits, an empty string is returned.

• propertylist
The mode parameter is a list consisting of the mode selector propertylist and a sequence of
properties and pseudo-properties. The selected properties for all matches are returned as a
nested list. If there are no hits, an empty string is returned. This mode is also selected if the
mode argument is simply a list of property and pseudo property names without an
identifiable mode keyword as first list element.

• reaction
Return the handle of the first matching reaction. The query is stopped at that point. If no hits
are found, an empty string is returned. If a local target dataset is specified, a found reaction
is removed from the scanned dataset.

• reactionlist
Return the handles of all matching reactions. If no hits are found, an empty list is the result.
If a local target dataset is specified, the found reactions are removed from the scanned
dataset.

• record
Return the object sequence number of the first hit. Sequence numbers begin, for the sake of
comparability with structure file scan record numbers, with one.
242 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• recordlist
Return object sequence numbers of all hits, or an empty list. Sequence numbers begin, for
the sake of comparability with structure file scan record numbers, with one.

• table
The mode parameter is a list consisting of the mode selector table and a sequence of
properties and pseudo-properties. This scan mode returns a table handle. The table is
automatically configured with properly typed columns corresponding to the requested
properties. For each hit, a row is added. If there are no hits, a table handle is still returned,
but the table does not have any rows. This retrieval mode is only available if the toolkit has
been compiled with table support. The individual properties may also be specified each as
a list consisting of the property name, and an arbitrary string. In that case, the string is used
as the column name. By default, the column names are the same as the name of the property
they store. Example:
{table {E_NAME name} {E_CAS casno} record}

sets up a table with three columns called name, casno and record. The first two columns
contain property data from the matching file records, the last one the record in the file which
matched.

Instead of the keyword table, an existing table handle may also be used. In that case, any
existing matching table columns are automatically re-used to store result data. Additionally
specified properties are added as new columns to the right of the previously existing
columns. New table rows generated by matches are appended to the bottom of the table.

• tablecollection
Since all objects are already in memory, this mode is identical to the table scan mode for
dataset scans. No table reference object duplicates are created. The result table always refers
the dataset objects directly.

• vrecord
For dataset scans, this is the same as record.

• vrecordlist
For dataset scans, this is the same as recordlist.

If requested property data is not present on the matched dataset objects, an attempt is made to
compute it. If this fails, the table object in retrieval mode table contains NULL cells, and property
retrieval as list data produces empty list elements, but no errors. For minor object properties, the
property list retrieval modes produce lists of all object property values instead of a single value. In
table mode, only the data for the first object is retrieved, which makes this mode less suitable for
direct minor object property retrieval.

The following pseudo properties can be retrieved in addition to normal properties:

• avgscore
The average value of all computed scores, such as Tanimoto, Cosine or Tversky similarity
scores, in the matching query for this result.

• conformerindex
The index of the matching conformer in case of 3D queries with multiple conformations, -1
if no matching conformer index was determined.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 243

CACTVS Tcl and Python Scripting Language Reference
• conformer
A list of the atomic coordinates of the matching conformer, if a 3D query was performed.
If this is not the case, an empty vector is the result. The data type of this vector is coorvec
(x,y,z-triples as vector elements).

• filename
This property is only provided for compatibility with molfile scan. It is always an empty
string in this command.

• index
The object sequence index of the matching object. For datasets, this is the same as the record
value minus one.

• image
A structure GIF image (property E_GIF) with highlighted matching substructure atoms and
bonds. A normal E_GIF retrieval property would just show the structure, but without
highlighting. The data type of this property is the same as that of E_GIF (depending on the
configuration, a diskfile reference or an in-memory blob).

• matchatoms
An integer vector holding the labels of all atoms matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlighatoms is an alias for this pseudo property.

• matchbondatoms
The same as matchbonds, except that each element is a pair of the labels of the matching
atoms in the bonds, not the bond label as a single number.

• matchbonds
An integer vector holding the labels of all bonds matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlightbonds is an alias for this pseudo property.

• matchcount
The first element of the matchcounts array, as described below. If the query does not contain
any substructure match nodes, the result is empty.

• matchcounts
An integer vector holding the number of distinct substructure matches for substructure
query nodes in the query tree. For normal substructure expressions, this value can only be
zero or one because the standard substructure match mode only checks for the presence of
any match (match mode first). Additionally, this value can be minus one if the node was
never evaluated, for example because it is part of an or expression. Only if the count
modifier is used together with the substructure query operator, or the substructure operator
is the range operator, the possibility of multiple matches is evaluated and larger values can
be obtained. For these operations the default match mode is distinctinneratoms (see match
ss command).

• matchmask
A bitvector indicating which children of the root query node have matched. The length of
the bitvector is the same as the number of children of the root node. A typical application
of this retrieval item is in combination with a range node as root node.
244 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• maxscore
The maximum value of all computed scores, such as Cosine, Tanimoto or Tversky similarity
scores, in the matching query for this result.

• merit
For queries which use a merit/demerit rating scheme (for example, Bruns/Watson queries)
this retrieves the accumulated merit/demerit sum of the top-level query node. The query
needs to match for this retrieval to work, so in case none of the demerit rules match, you get
an empty result, not a default zero merit/demerit value. Internally, there is no distinction
between merit and demerit scores. The keyword demerit is an alias for this pseudo-property.

• minscore
The minimum value of all computed scores, such as Cosine, Tanimoto or Tversky similarity
scores, in the matching query for this result.

• parent
The parent structure of the matching structure as a packed, base64-encoded serialized object
string. If the dataset ensemble does not already contain it, it is computed from the structure
as property E_PARENT_STRUCTURE.

• productmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• productmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the right side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• productmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• queryid
The ID of the search tree query item which was responsible for the principal match. Every
tree element of a query expression possesses an ID, starting with 1, and then assigned in
incremental sequence from left to right in depth-first manner. For simple property or
structure match expressions, the query ID is the ID of the matching branch, i.e. one for
single-node expressions. For logical expressions with an or, orcontinue or not node, the
overall reported query ID is that of the first matching leaf node. For expressions, where all
leaves need to be checked, the query ID is the ID of the and or eor node where all leaves
matched, not the ID of any individual leaf node.

• reagentmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• reagentmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the left side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 245

CACTVS Tcl and Python Scripting Language Reference
• reagentmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• record
The record number. In the context of in-memory datasets, this is the dataset object list index
of the matching object plus one. rc is an alias for this pseudo property. Use the index attribute
to directly obtain the dataset index.

• rgatoms(rg)
A list of the atom labels in a matching structure which were mapped to an expanded R-group
atom in the query. The property index is the name of the R-group of interest defined in the
substructure, usually something like R1. If there was no expanded R-group of that name, the
result list is empty.

• rgattachments(rg)
A nested list of the atom label pairs of the bonds in a matching structure which connect
between the structure framework and the atoms expanded as the named R-group rg. If there
was no expanded R-group of that name, the result list is empty.

• score
The first element of the scores array, as described below. If the query does not contain any
scoring expressions, the result is empty.

• scores
An integer vector of the results of all query expression branches, in depth-first left-to-right
order, which computed a score, such as structure similarity queries with Cosine, Tanimoto
or Tversky bitvector comparisons. In case a branch was not evaluated when the match was
determined, zero is returned.

• structure
The dataset structure as a packed, base64-encoded serialized object string.

• vrecord
For dataset scans, this is always the same as record.

These pseudo properties are identical to those available for structure file queries. However, structure
file queries support a couple of additional pseudo properties which are not available for dataset
queries.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

Examples:
dataset scan $dhandle {E_WEIGHT < 200} recordlist
dataset scan $dhandle “structure >= c1ccccc1” {table E_NAME E_LOPG record}
dataset scan $dhandle “structure >~ $sshnd 90” {cmpvalue E_REACTION_ROLE X_IDENT}

The first example returns the record numbers (dataset member indices plus one) of all structures in
the dataset which have a molecular weight of less than 200.

The seconds example generates a table with columns for name, logP and record number. The table
is filled with data from all structures which contain a phenyl ring as substructure.
246 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The final example returns a nested list of the properties of all dataset structures which have a
Tanimoto similarity of 90% or more to the structure which is represented by its handle stored in the
variable $sshnd. In this example, the ensembles are expected to be also part of a reaction, which is
possible since reaction and dataset membership are completely unrelated. Each result list element
contains the actual similarity value (which is the only comparison result value with a threshold
evaluated in the query, so there is no ambiguity which comparison result cmpvalue refers to), the role
of the ensemble in the reaction (reagent, product, catalyst, etc.) from property E_REACTION_ROLE,
and the reaction ID in X_IDENT. The scan mode is here automatically set to propertylist, because the
mode list consists exclusively of names of properties and pseudo properties.

Another example:
set is_chno [dataset scan $ehandle {formula = C0-H0-N0-O0-} count]

This command checks whether the ensemble (which is, for the duration of the command, embedded
into a transient dataset) contains only elements C, H, N and O.

dataset set
dataset set dhandle ?property value?...
d.set(?property,value?,...)
d.set({property:value...})
d.property = value
d[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

In addition to property data, the dataset object possesses a few attributes, which can be retrieved with
the get command (but not by its related sister subcommands like dget, sqlget, etc.). Many of them
are also modifiable via dataset set.These attributes are:

• accept
A bit set indicating the object classes the dataset accepts as members. Currently, this can be
any combination of ens, reaction, table, network and dataset. The default acceptance mask
is the union of all ens, reaction and table, excluding datasets and networks as allowed
dataset objects. If an attempt is made to add an unacceptable object to a dataset, the
command (such as ens move, dataset add, etc.) throws an error. If the object added to a
dataset is a dataset, but the dataset does not accept datasets as members, the objects
contained in the source dataset are added instead.

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 247

CACTVS Tcl and Python Scripting Language Reference
• affiliation
The institution the author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the dataset, as free-form string data.

• authorurl
A URL with information on the author of the dataset, or an empty string if unset.

• batchsize
The number of objects in the dataset which form a batch. This can for example be used in
the dataset read command. The default batch size is 10.

• category
A category string to be used if the dataset is stored in a repository.

• classuuid
The base class UUID of this dataset object, as associated with its authorship attributes.

• coords
f the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

• counter
An integer counter which is automatically incremented every time an object is moved into
the dataset, but not when the object only changes its position within the dataset. It can also
be reset to an arbitrary value, and later dataset additions increment the counter from that
user-specified value. It is not decremented when objects leave the dataset, so this attribute
is not necessarily the same as the dataset size. The initial counter value at dataset object
creation time is zero. Depending on its mode, this attribute may interact with the
insertcontrol attribute.

• datasetcount
A read-only attribute reporting the number of dataset objects currently contained in the
dataset.

• date
The date the dataset was defined.

• deletable
A boolean flag indicating whether the dataset can be deleted at this time or not. This is a
read-only attribute. Under certain circumstances, such as a pending dataset wait
command, or the use of the dataset object as argument to a scripted computation function
expecting to be able to set function result data as property values, the dataset is marked as
undeletable and any destruction command will silently fail.

• deselection
The inverse of the selection attribute, i.e. get all unselected object indices, or set the
selection by providing a list of object indices which are not selected.
248 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• doi
A digital object identifier for the dataset object content, if defined.

• email
A contact email of the author of the dataset.

• enscount
A read-only attribute reporting the number of ensemble objects currently contained in the
dataset.

• eod
The value of the end-of-data marker. This attribute is typically used in multi-threaded
applications to indicate that feeder threads have exhausted their data supplies and that no
further dataset objects are expected to arrive in the dataset. This attribute is internally used
by the dataset pop and dataset wait commands to determine whether they should
continue to wait or exit with an empty result. The initial value of this attribute is zero.

• eodcheck
Perform a check whether at least one object is in the dataset, or is expected to arrive later.
If objects are currently in the dataset, or the eod attribute value is less than the targeteod
attribute value, the command returns zero, otherwise one. This check is not reliable for
remote datasets.

• failures
A list of properties for which computation failed on this object. This is a read-only attribute.
Depending on configuration settings, this information may be used to block pointless
attempts at re-computation of incomputable data.

• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

• highwatermark
An integer specifying a high water mark object on the dataset. Some commands use this
attribute for automatic start or cancellation of operations until the object count has decreased
to the low water mark, or for automatic start of processing services until the low watermark
has been reached again. The default high watermark value is one. The dataset wait
command uses this threshold as default command parameter.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 249

CACTVS Tcl and Python Scripting Language Reference
• invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

• insertcontrol
This parameter controls what happens when an attempt is made to add another object into
a dataset. The default mode is add, which means that the object is inserted in the database
if there is no size control active, or room can be made by waiting for already inserted objects
to be removed (see sizecontrol parameter). Otherwise, in that mode an error results.

Additional insertion control modes are disabled (all insertions into the dataset are blocked),
discardfirst (if the maximum size has been reached, delete first object in dataset to make
room), discardlast (if the maximum size has been reached, delete last object in dataset to
make room), discardobject (if the maximum size has been reached, delete the object to be
inserted), discardalways (never attempt an actual insertion, always delete the insertion
object), ignore (if insertion cannot be performed, leave the insertion object where it
currently is, with preservation of current dataset membership) and unlink (silently remove
the insertion object from its old dataset, if it is a member of one, but do not insert it into the
target dataset if that would exceed its maximum size).

If the object cannot be inserted and is deleted (but not if it is just unlinked or ignored, and
thus continuing to exist) the dataset counter is still incremented.

The final mode is discardrandom. In this mode, if the maximum size of the dataset has not
yet been reached, the object is simply added. Otherwise, a random number between one and
the counter attribute of the dataset is computed. If the number is larger than the maximum
dataset size, the object to be inserted is deleted, as in the discardnew mode. If the random
number is between one and the dataset size, the object in the dataset at the random position
is deleted. After that, the new object inserted at its designated position, which is not
necessarily the position of the removed object. This mode is intended to support convenient
sampling of object subsets. The random procedure yields the same mathematical results as
directly picking random objects from the total object pool passing through the dataset, but
may be interrupted at any time yielding a random subset of the objects processed so far.

• instanceuuid
The instance UUID of this dataset, as associated with its authorship attributes.

• infourl
A URL with information on the dataset object content, or an empty string if unset.

• keywords
A list of keywords associated with the table object.

• license
The license class associated with this dataset object. Setting the license to a standard type
updates the associated URL with a standard location.

• licenseurl
A URL with details about the dataset object license.

• literature
A free-form literature reference for the dataset.
250 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• lowwatermark
An integer specifying a low water mark object count on the dataset. Some commands use
this attribute for automatic scheduling or termination of actions. The default low watermark
is zero.

• maxsize
The maximum number of objects the dataset will accept. If it is set to a negative value,
which is the default, the maximum number of objects is unlimited. The effects of an attempt
to overload the dataset depend on the settings of the sizecontrol attribute of the dataset.

• modcount
The content and data modification count on the object. This is a read-only attribute.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• name
A free-form dataset name as string.

• networkcount
A read-only attribute reporting the number of network objects currently contained in the
dataset.

• orcid
The ORCID code of the author (see www.orcid.org).

• pagefile
The handle of a molfile object. If this is set, the current contents of the dataset are deleted,
the pageoffset attribute set to the current input position of the file, and a number of records
up to the current value of the pagesize attribute are read into the dataset. If this attribute is
set to an empty string, the connection between the dataset and the structure file is abolished.

• pageoffset
The file record offset of the first object in the dataset, if the dataset is linked to a file. If this
value is changed, and a link is active, dataset objects with file records outside the
offset/pagesize window are deleted from the end or beginning, and new objects are added
from the backing file as required.

• pagesize
The number of records to keep in the dataset in case it is linked to a file. If this value is
changed, and a link is active, dataset members are deleted from the dataset, or added from
the backing file as necessary.

• parent
Get the handle of the parent object, if the dataset is an embedded object, e.g. an integral
component of a table, factory or station object. If the dataset is a standalone object, an empty
string is returned. The parent attribute is not the same as dataset membership (see dataset
dataset command), which can be changed (see dataset move command and the accept
dataset attribute). This attribute is read-only. An embedded dataset object cannot be
dissociated from its owner.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 251

CACTVS Tcl and Python Scripting Language Reference
• passphrase
A string which needs to be presented by remote interpreters if they connect to the listener
port of the dataset object. An empty string is equivalent to no pass phrase.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• port
An integer port number at which a listener thread waits for connections from remote
interpreters for the addition or removal of objects. If this attribute is set to an empty string,
an existing listener thread is terminated and remote connections are no longer accepted.

• progress
A user-defined progress value intended to track the state of lengthy operations on the table.
It is an integer between zero and one hundred and is initially set to zero. When the argument
is set, it accepts a floating point value, but the stored value is automatically rounded to the
next integer and forced into the 0..100 range.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

• reactioncount
A read-only attribute reporting the number of reaction objects currently contained in the
dataset.

• record
The current iterator record position. The first object in the dataset corresponds to record 1.

• refcount
If the TCL interpreter is using native Cactvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this ensemble. This attribute is read-only.

• references
Cross references of the dataset. This is a nested list of class UUIDs and reference type tags.

• regid
For registered datasets, the registration ID. Zero if this is a private dataset.

• room
A read-only integer attribute which indicates whether the dataset has room for the insertion
of another object. Datasets without size control always return 1, as do datasets which still
have room for more objects. Return value 0 indicates that the maximum size has been
reached, and no alternative action has been configured. Other possible special return values
are -1 (insertion succeeds, but delete the inserted object), -2 (insertion will silently fail, the
object remains in its old dataset membership), -3 (the object will be unlinked from any
252 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
existing dataset, but silently not inserted into the new dataset) and -4 (the object will not be
inserted in the target dataset, instead an application-specific alternative action will be
taken). This attribute only checks the capacity of the dataset, not whether it will reject the
object because it is of an unsuitable class (see accept attribute). In multi-threaded
applications, the status value may become outdated before an insert command on the target
dataset can be executed.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed. This attribute
works on the dataset object proper, not its content - see the selection attribute below.

• selection
Upon retrieval, this attribute is a list of the position indices of all objects in the dataset which
have the selected status flag. The index begins with zero, and the result is an empty list if
there are no selected objects.

On setting, dataset set first clears all dataset object selections. The command dataset
append retains it. The argument is then parsed as a list of integer object indices, and the
selection flag is set for all those indices where objects can be found in the dataset. Indices
outside the range between zero and the dataset size minus one or duplicate index
specifications are silently ignored.

To check or set the selection status of the dataset object proper, use the selected attribute.

• size
Get the number of objects in the dataset. This is a read-only attribute. It is equivalent to the
dataset count command without any filters.

• sizecontrol
This attribute operations in tandem with the maxsize attribute. It can be set to auto, none,
error or block. pause and wait are aliases for block. The default setting is auto. In error
mode, any attempt to add an object to a dataset which has already reached its maximum size
raises an error. In block mode, the interpreter halts until the object count has decreased
below the maximum size and then continue to move the object into the dataset. This mode
is useful when the script is multi-threaded or the dataset operates a listener port for remote
commands, because the number of objects in the dataset can change by these methods
without involving the paused interpreter. The none mode disables the maximum size
monitoring. Finally, the auto mode behaves like the error mode if there is only a single
interpreter thread, and the dataset does not listen for remote commands, and like the block
mode, if any of these two criteria are met.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 253

CACTVS Tcl and Python Scripting Language Reference
• swapthreshold
The maximum size of a dataset before ensemble and reaction objects in it are automatically
swapped to disk, as they are by the explicit commands ens swapout or reaction swapout.
The size check is performed at the moment new objects are added, and these new objects
are the first to be swapped. The default value for this attribute can be set in the control array
element::cactvs(dataset_swap_threshold). Its initial value is 10000. The default value for
the embedded datasets in tables is controlled separately by ::cactvs(table_swap_threshold),
which is also initially set to 10000.

If this value is set to a negative value, all dataset elements which are currently swapped out
are loaded back in. If it is set to a positive value, and the number of not currently swapped
out objects of the dataset is more than the new limit, excess objects are swapped beginning
from the end of the dataset queue until the in-memory object count of the dataset satisfies
the new constraint. If the limit is increased, but not set to a negative unlimited value, the
object swap status is not modified.

• tablecount
A read-only attribute reporting the number of table objects currently contained in the
dataset.

• targeteod
The target value of the eod attribute. Once it matches or exceeds this value, the dataset is
not expected to receive any more items. The initial value of this attribute is one.

• threadcount
A read-only attribute returning the number of TCL interpreter threads associated with the
dataset. Normal datasets have no associated threads and return zero. This command is
equivalent to the length of the list returned by the threads attribute, and the threads included
in this count are the same.

• threads
A read-only attribute returning the TCL interpreter thread handles of the threads associated
with the dataset (see dataset addthread command). Datasets without threads return an
empty list. The handles are compatible with the standard TCL thread package. Remote
communication listener threads (see port attribute) are independent of TCL support, do not
have a TCL handle, and are not listed by this command.

• timeout
A timeout in seconds to use with the dataset wait command. A negative value means an
infinite wait period, and zero no wait period. The default setting is minus one.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

• uuid
The automatically generated object instance UUID. This ID is independent of the UUID triple
(class/instance/version) associated with the authorship attributes and intended for public
dissemination. This attribute is read-only, unique for every dataset object - even duplicates
-, and independent of its contents or pedigree.

• version
A version number of the dataset. This is a string in a 1.2.3 (or shortened) style.
254 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• versionuuid
The version UUID associated with this dataset object as per its authorship attributes.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

• y
if the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

Examples:
dataset set $dhandle D_NAME “New lead structures”
dataset set $dhandle E_NAME “Lead (metal)”

The first line is a simple set operation for a dataset property. The second line shows how to set
properties of multiple ensembles in one step. The same property value is assigned to all ensembles.
dataset set $dhandle port 10001 passphrase blockbuster

Set up a listener thread on port 10001 which accepts connections from remote interpreters which
need to present the pass phrase as credential. Remote interpreters can add (ens move, reaction
move, table move) or remove (dataset pop) objects to or from this dataset, as well as query the
dataset object count (dataset count). Objects are transferred over the network connection as
serialized objects to and from the remote interpreters.

dataset setparam
dataset setparam dhandle property ?key value?...
dataset setparam dhandle property dictionary
d.setparam(property,?key,value?...)
d.setparam(property,dict)

Set or update a property computation parameter in the parameter list of a valid property. This
command is described in the section about retrieving property data.

The return value is the updated property computation parameter dictionary.

Example:
dataset setparam $dhandle D_GIF comment “Top Secret”

dataset show
dataset show dhandle propertylist ?filterset? ?parameterdict?
d.show(property=,?filters=?,?parameters=?)
Dataset.Show(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, dataset get and dataset show are equivalent.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 255

CACTVS Tcl and Python Scripting Language Reference
dataset sort
dataset sort dhandle {property ?direction ?cmpflags ?cmpvalue???}...
d.sort((property,?direction,?cmpflags,?cmpvalue???),...)

Sort a dataset according to property values of the objects in the dataset. If no sort property set is
specified, the default sort properties are E_NATOMS (number of atoms) and, for breaking ties,
E_WEIGHT (molecular weight) and finally E_HASHISY (stereo isotope hash code).

Every sort item is interpreted as a nested list/tuple and can have from one to four elements. The first,
mandatory element is the sort property, or one of the magic names record (or #record) or random
(#random). The next optional element is the sort direction, specified as up (or ascending) or down
(descending). The default sorting order is ascending. The final optional comparison flags parameter
can be set to a combination of any of the values allowed with the prop compare command. The
default is an empty flag set. Properties in the sort list have precedence in the order they are specified
in. Object property values of comparison list entries to the right in this list are only considered if the
comparison of all data values of list elements to the left results in a tie.

If a comparison value is supplied as fourth argument, the sort utilizes the comparison results of
dataset object property values against this value for ranking, not the direct comparison result
between the dataset object property values. This is for example useful when sorting according to a
bitvector similarity value to an external structure.

The magic property name record sorts by the object index in the dataset. Sorting upwards on this
property does not change the object sequence in the dataset, and sorting downwards reverses it. This
pseudo property is always added as a final implicit criterion, so that the sequence order of objects
tied in all explicit comparisons is preserved. The other magic property name random assigns a
random value to all dataset objects and sorts on this value, yielding a random object sequence.

The command returns a list of the handles of the objects controlled by the dataset in the newly sorted
order. Simultaneously, the objects are physically moved within the dataset, so the sort has a
persistent effect. The same result list may later be obtained by a dataset objects command.

It is possible to sort transient datasets, but this makes sense only if the object list sequence returned
as command result is captured and used later, because the sort effect is not persistent since there
exists no permanent dataset object.

Examples:
dataset sort $dhandle {E_NAME up {ignorecase lazy}]

The example sorts the dataset according to the compound name (property E_NAME, data type string)
in alphabetic order, using a lazy (ignoring whitespace and punctuation) and case-insensitive
comparison mode.
dataset sort $dhandle {E_NATOMS down} {E_NRINGS up}

Sort the dataset in such a way that the ensembles with the largest number of atoms, and among these
those with the smallest number of rings, come first.
dataset sort $dhandle random

This command randomizes the object order in the dataset.
dataset sort $dhandle {*}$sortlist
256 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This is the recommended construct when using a sort property list store in a TCL variable as
command argument. Older versions of the dataset sort command used a single sort argument
parameter instead of a variable-size argument set.

dataset sqldget
dataset sqldget dhandle propertylist ?filterset? ?parameterdict?
d.sqldget(property=,?filters=?,?parameters=?)
Dataset.Sqldget(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The differences between dataset get and dataset
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset sqlget
dataset sqlget dhandle propertylist ?filterset? ?parameterdict?
d.sqlget(property=,?filters=?,?parameters=?)
Dataset.Sqlget(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The difference between dataset get and dataset
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON
script processing.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset sqlnew
dataset sqlnew dhandle propertylist ?filterset? ?parameterdict?
d.sqlnew(property=,?filters=?,?parameters=?)
Dataset.Sqlnew(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The differences between dataset get and dataset
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset sqlshow
dataset sqlshow dhandle propertylist ?filterset? ?parameterdict?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 257

CACTVS Tcl and Python Scripting Language Reference
d.sqlshow(property=,?filters=?,?parameters=?)
Dataset.Sqlshow(items,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the dataset get command. The differences between dataset get and
dataset sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset statistics
dataset statistics dhandle property
d.statistics(property)

Get basic statistics on the property values of the objects in the dataset. The property can be a basic
property or a property field, but its element data type needs to be cast-able to a simple numeric type.
In addition, it must be directly attached to any of the objects which can be members of a dataset, e.g.
an ensemble property, but not an atom property.

If the property data is not present on an object, an attempt is made to compute it. In case that fails,
or a dataset member object is not of a type matching the property, these objects are silently skipped.

The return value is a dictionary containing the number of objects in the dataset which were used for
the statistics (key n), the sum of property values (sum), the property value average (avg) and the
property data standard deviation (stddev). The latter three values are floating points, regardless of
the property data type. In case any of these values are not computable, for example because there
were an insufficient number of objects, the reported value is zero.

The command verb can be abbreviated as stats.

Example:
set d [dataset statistics $dh E_WEIGHT]
puts „Avg: [dict get $d avg]"

dataset subcommands
dataset subcommands
dir(Dataset)

Lists all subcommands of the dataset command. Note that this command does not require a dataset
handle.

dataset tables
dataset tables dhandle ?filterset? ?filtermode? ?recursive?
d.tables(?filters=?,?mode=?,?recursive=?)

Return a list of all the handles or references of the tables in the dataset. Other objects in the dataset
(ensembles, reactions, datasets, networks) are ignored. The object list may optionally be filtered by
the filter list, and the result further modified by a standard filter mode argument.
258 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If the recursive flag is set, and the dataset contains other datasets as objects, tables in these nested
datasets are also listed.

Example:
set n [dataset tables $dhandle {} count]

dataset taint
dataset taint dhandle propertylist/changeset ?purge?
d.taint(property=,?purge=?)

Trigger a property data tainting event which acts on the dataset data, and all objects and their data
contained in the dataset.

The parameters of this command are the same as for ens taint and explained there.

Example:
dataset taint $dhandle A_XYZ

All property data on the dataset and the dataset members is invalidated if it directly or indirectly
depends on the 3D atomic coordinates.

The command returns the original object handle or reference.

dataset threadexec
dataset threadexec ?maxthreads? ?substitutiondict? scriptbody

Execute a script on the objects in the dataset in parallel in multiple threads. The number of threads
is by default the lesser of 16 or the number of objects in the dataset, but this can be configured. If
there are more dataset objects than threads, threads are started in a groupwise fashion. In the function
body, standard TCL/TK percent substitution is performed. The default substitutions are %D for the
dataset handle, and %O for the thread-specific dataset object. Other custom substitutions can be
configured in the optional substitution dictionary, in a letter /value (no percent prefix) format.

There are some limitations on what the object threads can do. They are allowed to delete their own
current object, or move it outside the dataset, but not other objects in the dataset. Additional objects
may be appended to the dataset (they are not subject to processing by the original command), but
not inserted in random positions. Computation in the script body must reach the end of the script,
or be ended by return or break statements. An error in any of the threads stops the command. All
threads of a group must have finished before a new group is started.

The command returns the dataset handle if the dataset is not virtual.

Because of multi-threading issues, there is no PYTHON version of the command.

dataset transfer
dataset transfer dhandle propertylist ?targethandle? ?targetpropertylist?
d.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one dataset to another dataset or other major object, without going through
an intermediate scripting language object representation, or alternatively dissociate property data
from the dataset. If a property in the argument property list is not already valid on the source dataset,
an attempt is made to compute it.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 259

CACTVS Tcl and Python Scripting Language Reference
If a target object is specified, the return value is the handle or reference of the target object. The
source dataset and the target object cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple dataset get, i.e. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was that of a major object (i.e. an ensemble, reaction, table, dataset or network), it
is only unlinked from the source object, but not destroyed. This means that the object handles
returned by the command can henceforth the used as independent objects. They can be deleted by
a normal object deletion command, and are no longer managed by the source object.

Example:
dataset transfer $dh D_SVG_IMAGE $lh L_1DPATTERN_SVG_IMAGE

This command performs a data transfer between different object classes, with change of the property
under which the content is stored.

dataset transform
dataset transform dhandle SMIRKSlist ?direction? ?reactionmode?

?selectionmode? ?flags? ?overlapmode? ?{?exclusionmode? excludesslist}?
?maxstructures? ?timeout? ?maxtransforms? ?niterations? ?statusvariable?

d.transform(transforms=,?direction=?,?reactionmode=?,?selectionmode=?,?flags=?,
?overlapmode=?,?excludess=?,?maxstructures=?,?timeout=?,?maxtransforms=?,
?iterations=?)

Dataset.Transform(items,transforms=,?direction=?,?reactionmode=?,
?selectionmode=?,?flags=?,?overlapmode=?,?excludess=?,?maxstructures=?,
?timeout=?,?maxtransforms=?,?iterations=?)

This command is complex, but very similar to the ens transform command. Please refer to that
command for a full description of the command arguments.

The major difference of dataset transform is that the start structure set is not a single ensemble,
but rather the set of all ensembles in the dataset. Any dataset items which are not ensembles are
ignored. The return value is, just as with the ens transform command, a list of result ensembles.
These do not become part of the input dataset.

Example:
dataset transform [ens get $ehandle E_KEKULESET] $trafolist bidirectional \

multistep all {preservecharges checkaro setname}

This command first expands an ensemble object into a set of Kekulé structures. The property data
type of the E_KEKULESET property is a dataset, so its handle is returned, and this dataset is then
submitted for further transformation, which in this case involves manipulations of bonds in aromatic
systems and thus is dependent on the Kekulé structures of the input ensembles.
260 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The dataset variant of the transform command does not allow the use of marked or unmarked atom
or bond specifications in the exclusion substructure list. Normal substructures are supported, and are
applied to all start structures.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

dataset unique
dataset unique dhandle {property ?direction? ?cmpflags?}..
d.unique((property,?direction,?cmpflags,?cmpvalue???),...)

This command removes duplicate objects from the dataset and destroys them. Object equivalence
is determined by pair-wise comparison of one or more properties. If all these properties are identical
for any two objects, one of them is deleted. If no properties are specified, the default is the single
property E_HASHISY, the standard isotope- and stereo-aware ensemble hash code.

The command returns labels or references of the ordered list of objects remaining in the dataset after
deletion. The command is closely related to the dataset sort command, and the same restrictions
on usable sort properties apply. Internally, the command performs a sort first, in order to avoid a
quadratic growth of pair-wise comparisons. This has the side effect that the object order in the
dataset is not preserved. Instead, the surviving objects are listed in ascending (by default) or
descending (if the corresponding optional sort direction argument is set accordingly) values of the
sort properties. The interpretation of the optional comparison flags and sort direction arguments, as
well as the priority of the properties, and the special considerations when working on transient
datasets, are the same as for the command dataset sort.

Example:
molfile read $fh $dh all
dataset unique $dh

This command first reads a complete file into a dataset, and then discard duplicates, using the default
isotope- and stereo-aware structure hash code.

dataset unlock
dataset unlock dhandle propertylist/dataset/all
d.unlock(property=)

Unlock property data for the dataset object, meaning that they are again under the control of the
standard data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names or references
Valid property instances on the dataset object are unlocked. Non-existent data is silently
ignored. It is not possible to unlock individual property fields.

• all
All valid dataset object properties are unlocked.

• dataset
This is an object class identifier. All property data which is controlled by the dataset major
object and attached to the specified object class is unlocked. Since datasets do not
incorporate minor objects, this identifier is equivalent to all.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 261

CACTVS Tcl and Python Scripting Language Reference
Property data locks are obtained by the dataset lock command.

This command does not recurse into the objects contained in the dataset.

The return value is the original dataset handle or reference. If the argument was a transient dataset
(only possible for TCL), the result is an empty string.

dataset unpack
dataset unpack string ?compressionlib)
Dataset.Unpack(data=,?compressionlib=?)

Generate a dataset complete with all elements it contains from a packed, base64-encoded serialized
object string, as it is generated by the complementary dataset pack command.

The return value is the handle or reference of the new dataset. All objects in the new dataset also are
assigned standard handles, which can be retrieved with the usual commands such as dataset ens
and dataset reactions.

The default compression library is zlib. For more options, see dataset pack.

Note that this command does not take a dataset handle as argument, but a pack string.

Example:
dataset unpack [dataset pack $dhandle]

This example is effectively the same as a dataset dup operation, but of course less efficient,
because the objects have to be serialized, compressed, and base64-encoded and the same sequence
of operations run backward again.

dataset valid
dataset valid dhandle propertylist
d.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the dataset. No attempt at computation is made. For PYTHON, where single-item lists are
syntactically not the same as a single value, the return value is a single boolean if the argument was
a string or a property reference, and only a single property was decoded.

Example:
dataset valid $dhandle D_NAME

reports whether the dataset is named (has a valid D_NAME property) or not.

dataset has is an alias to this command.

dataset verify
dataset verify dhandle property
d.verify(property)

Verify the values of the specified property on the dataset. The property data must be valid, and a
dataset property. If the data can be found, it is checked against all constraints defined for the
property, and, if such a function has been defined, is tested with the value verification function of
the property.
262 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails a test, and
an error condition otherwise.

dataset wait
dataset wait dhandle ?size|query? ?script?
d.wait(?query=?,?size=?,?function=?)

Suspend the interpreter until the number of objects in the dataset has reached a threshold, or an
object which satisfies a query expression can be found. The syntax of query expressions is the same
as in the dataset scan command. Query parsing is attempted if the argument is not a simple
integer. If no explicit size or query expression is specified, or an empty string (or None for Python)
is passed as this parameter, the command uses the value of the highwatermark dataset attribute as
default value for an implicit size threshold condition.

Another dataset attribute which has an influence on the execution of the command is the timeout
attribute. If the dataset size has not grown to the required size, or no object which satisfies the query
expression was added to the dataset after waiting for the timeout number of seconds, an error is
raised. By default, the maximum wait period is indefinite, which corresponds to a negative timeout
value. If the timeout value is set to zero, the wait condition must be met immediately, or an error
results. However, no error is raised if the eod/targeteod dataset parameter pair indicates that no more
data can be expected to be added in the dataset. In that case, the result is an empty string, or None
for Python.

If no script function parameter is used, the return value of the command is the number of objects the
dataset holds in case of an explicit or implicit size condition, or the handle/reference of the first
matching object in case of a query expression.

If the object count already exceeds the threshold, or a matching object can be found at the moment
the command is executed, the command returns immediately.

In the TCL case, and in the presence of a script body parameter, the script is executed whenever the
wait condition is met. If the script is ended with a continue statement, or simply reaches the end of
the code block, the wait loop is automatically restarted. If the script reports an error, or is left via a
break or return statement, the loop is terminated.

For PYTHON, instead of the script body, a function name or reference can be used. This function is
called in local scope with a single argument, which is either the current dataset item count in case
of a simple threshold condition, or the reference of the object matching the query expression. Within
the PYTHON functions, the normal break and continue loop control commands cannot be used to to
scope limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can be raised.
These are automatically caught and processed in the loop body handler code.

This command is mostly useful when running multi-threaded scripts, or when the dataset has an
active remote command listener on a port. Under these circumstances, new objects may arrive in the
dataset without participation of the local, waiting and stopped interpreter, which can then be
processed.

While a dataset wait command is pending, the dataset cannot be deleted. Since it is possible that
other threads or port monitors further update the dataset between the time the wait condition is met
and script processing commences, action scripts should be prepared to see more or less items in the
dataset than there were immediately after the trigger event.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 263

CACTVS Tcl and Python Scripting Language Reference
Example:
loop n 1 $nrecs {

set eh [dataset wait $dh “E_FILE(startrec) = $n”]
molfile write $fh $eh
ens delete $eh

}

This is a part of a simple write thread which writes back processed ensembles in the same order as
they were read from an input file. In case there are multiple processing threads, it is likely to happen
that the computation on an ensemble read from a higher input file record finishes before another with
a smaller record number and thus the sequence of the ensembles to be written as delivered in the
output queue becomes out of sync. By waiting for ensembles in the input record sequence the
original order is preserved. More robust versions of such a script should handle the case of
ensembles from a specific input record never appearing in the dataset and similar sources of
disruption.

dataset weed
dataset weed dhandle keywords
d.weed(keywordsequence)
d.weed(?keyword?,...)

This command performs standard clean-up operations on all ensembles and reactions in the dataset.
The supported operations are described in more detail in the section on the equivalent ens weed
command.

The return value of this command is the dataset handle or reference.

dataset xlabel
dataset xlabel dhandle propertylist ?filterset? ?filterprocs?
d.xlabel(property=,?filters=?,?filterfunctions=?)

This command is rather complex and closely related to the dataset extract command. Its purpose
is to extract handle/reference and label information for selected subsets of the dataset. The return
value is a nested list. The sublists consist of the object handle or reference, the object label (if the
object does not have a label, 1 is substituted), and the dataset object index. The dataset object index
starts with zero.

The selection of the class of objects which are extracted is performed indirectly via the property list.
For practical purposes, this list should be a single property. Its object association type determines
the class of objects selected. For example, A_LABEL or A_SYMBOL returns atom labels, while B_ORDER
returns bond labels and E_NAME select complete ensembles, with 1 as pseudo ensemble label.

The objects for which data is returned can further be filtered by a standard filter set, and additionally
by a list of filter procedures (for TCL, specified as procedure names) or functions (for PYTHON,
specified as function names or function references). These procedures or functions are called with
the respective object handles/references and object labels as arguments. For example, a callback
function used in an atom retrieval context would be called for each atom with its ensemble handle
or reference and the atom label as arguments. If major objects without a label are checked, such as
complete ensembles, 1 is passed as the label. The callback procedures are expected to return a
boolean value. If it is false or 0, the object is not added to the returned list, and the other check
procedures are no longer called.
264 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The command currently only works on ensembles in the dataset, ignoring any reactions, tables,
datasets or networks which may be present.

This command is primarily useful for the display of filtered minor object data from datasets, such
as atom property values for specific types of atoms.

Example:
set dhandle [dataset create [ens create O] [ens create C=C]]
dataset xlabel $dhandle A_LABEL !hydrogen
dataset xlabel $dhandle B_ORDER doublebond

First, a dataset with two ensembles (water and ethene) is created. This dataset is then queried. The
first query is for all atoms in it which are not hydrogen. The returned list is
{ens0 1 0} {ens1 1 1} {ens1 2 1}

In object ens0, which is the first object in the dataset, atom 1 passes the filter. In object ens1, which
is the second object in the dataset, atoms with label 1 and 2 pass. The second query asks for the labels
of double bonds in the dataset. The use of property B_ORDER is arbitrary - any other bond property
would do as well. The return value of this command is
{ens1 1 1}

which indicates that only the bond with label 1 in object ens1, which is the second object in the
dataset, fulfills this condition.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 265

CACTVS Tcl and Python Scripting Language Reference
The ens Command

The ens command is the generic command used to manipulate molecular ensembles. Ensembles are
the most commonly used chemistry major object. Ensembles contain atom, bonds, molecules and
other minor objects.

The syntax of this command follows the standard schema of command/subcommand/majorhandle.
Since molecular ensembles are major objects, they are not addressed via labels.

Similar to the functionality of molfile and dataset objects, ensembles can be persistent, or transient.
Persistent ensembles are those created by the ens create command or similar functions. They
possess a handle and exist until explicitly deleted. Transient ensembles only exist for the duration
of a single command. They are deleted as soon as the command finishes, regardless whether the
command was successful or not.

Examples:
ens get $ehandle E_SMILES
ens merge [ens create CCC] [ens create CCC]
ens get lycorine E_CID

This is the list of officially supported subcommands:

ens add
ens add ehandle ?ehandle_list?...
e.add(?eref/erefsequence?,...)
e += eref

This command performs the same operation as the ens merge command, but preserves the
ensembles in the merge lists (argument four and onwards in the TCL command variant). The base
ensemble (third argument) is modified.

Please refer to the ens merge command for a more detailed documentation.

The PYTHON arithmetic command returns a reference of the original ensemble, not the new first atom
label or reference of the merged ensemble (see again ens merge).

ens align3d
ens align3d ehandle box/center/masscenter/pmi ?usehydrogens? ?property?
e.align3d(?mode=?,?usehydrogens=?,?coordinateproperty=?)

Perform a 3D alignment by modifying standard atom coordinates property A_XYZ, or an alternative
explicitly specified atomic coordinate property.

The possible alignment modes are

• box
move center of enclosing 3D coordinate box to origin

• center
move average atom coordinates to origin

• masscenter
move mass-weighted atom coordinates to origin
266 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• pmi
align ensemble to principle moments of inertia (largest on x axis), and move the
mass-weighted center to the origin.

By default all atoms are used to compute the alignment rotation and movement vectors, including
hydrogens. If these should be omitted from computing the movement vectors (but not the
subsequent atom movement), the optional usehydrogens parameter can be set to false.

The command returns the handle or reference of the ensemble.

ens append
ens append ehandle ?property value?...
e.append({?property:value,?...})
e.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
ens append $ehandle E_NAME “_linker”

ens assign
ens assign ehandle srcproperty dstproperty
e.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same ensemble. Both properties must be associated
with the ensemble object class. This process is more efficient than going through a pair of ens
get/ens set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant ens rename directly exchanges the
property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

The command returns the original object handle for TCL, or object reference for PYTHON.

Examples:
ens assign $ehandle A_XY A_XY%
ens assign $ehandle E_NMRSPECTRUM(spectrometer) E_METHOD
ens rename $ehandle E_IDENT E_NAME

ens atoms
ens atoms ehandle ?filterset? ?filtermode?
e.atoms(?filters=?,?mode=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 267

CACTVS Tcl and Python Scripting Language Reference
Standard cross-referencing command to obtain the labels or references of the atoms the ensemble
contains as minor objects. This is explained in more detail in the section about object
cross-references.

Examples:
ens atoms $ehandle
ens atoms $ehandle hydrogen
ens atoms $ehandle !hydrogen count

The first example simply returns a list of the labels of the atoms the ensemble contains as minor
objects. The second example returns the atom label(s) of all hydrogen atoms in the ensemble. If there
are no such atoms, an empty list is returned. The final example counts the number of non-hydrogen
atoms in the ensemble.

ens bondangles
ens bondangles ehandle ?filterset? ?filtermode?
e.bondangles(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bond angle objects the
ensemble contains as minor objects. This is explained in more detail in the section about object
cross-references.

ens bonds
ens bonds ehandle ?filterset? ?filtermode?
e.bonds(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bonds the ensemble
contains as minor objects. This is explained in more detail in the section about object
cross-references.

Examples:
ens bonds $ehandle
ens bonds $ehandle doublebond
ens bonds $ehandle carbon count

The first example simply returns a list of the labels of the bonds the ensemble contains as minor
objects. The second example returns the bonds label(s) of all double bonds in the ensemble. If there
are no such bonds, an empty list is returned. The final example counts the number of bonds which
involve one or more carbon atoms in the ensemble.

ens cast
ens cast ehandle dataset/ens/reaction/table ?propertylist?
e.cast(objectclass=,?properties=?)

Transform the ensemble into a different object. Depending on the target object class, the result is as
follows:

• dataset
A new dataset which contains which contains the ensemble as first and only object.

• ens
Only supplied for the sake of completeness. This mode does nothing.
268 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• reaction
A new reaction, which contains the original and a duplicate of the ensemble as reagent and
product components, and an auto-generated 1:1 A_MAPPING property.

• table
A new table with one row and automatically generated columns for all properties of the
input ensemble of the ens (E_*) object class. The row is filled with the input ensemble data,
and the ensemble is moved to the internal dataset of the table.

If the optional property list is specified, an attempt is made to compute the listed properties before
the cast operation, so that they may become a part of the new object. No error is raised if a
computation fails.

The command returns the handle (reference for PYTHON) of the new object, or the input object in case
of mode ens.

ens clear
ens clear ehandle ?keepensprops?
e.clear(?keepensproperties=?)

This command resets an ensemble to a virgin state. All minor objects and all property data of the
ensemble are deleted. However, the ensemble handle or reference remains valid, representing an
ensemble without any atoms, bonds, rings or other minor objects. If the optional argument is set to
a true value, ensemble-class properties (E_*) are not deleted, but everything else still is.

Ensemble membership in datasets, reactions, etc. is not changed by this command.

The command returns the original handle or reference.

ens compare
ens compare ehandle ehandle2
e.compare(eref/ehandle)

Compare two ensembles, yielding a stable sort order. The compared attributes are, in this order, the
number of atoms, the number of bonds, the ensemble molecular weight, the number of ESSSR rings
and finally the stereo- and isotope aware 64-bit hashcode (E_ISOTOPE_STEREO_HASHY). The
command returns 1 if the first ensemble is larger, -1 if the second is larger, and 0 if they are identical
according to the comparison scheme.

The compared property values, with the exception of the final hashcode tiebreaker, are compatible
with the RDKIT model.

ens copy
ens copy src_ehandle dst_ehandle
e.copy(eref_dst)

Create a copy of the input ensemble into the framework of an existing ensemble. The old data of the
destination ensemble is destroyed, but its handle or reference is reused for the copy. The destination
handle can be an empty string, #new, #auto or None for PYTHON. In that case, the ensemble is
duplicated and a new handle assigned.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 269

CACTVS Tcl and Python Scripting Language Reference
This command is useful when an ensemble handle or reference is potentially stored in unknown
locations and the ensemble data needs to be updated.

The return value of the command is the handle or reference of the destination ensemble. It is allowed
to copy an ensemble onto itself.

Example:
set eh1 [ens create CC]
set eh2 [ens create CCC]
ens copy $eh1 $eh2

After the example code sequence, both ensembles represent ethane, the first compound. However,
these are independent ensembles. Any further modifications of the ensemble data on any of the
ensembles will not be seen by the other.

The command returns the handle or reference of the target ensemble.

ens create
ens create ?codestring? ?mode? ?datasethandle? ?macroset?
Ens(?data=?,?mode=?,?dataset=?,?macroset=?)
Ens.Create(?data=?,?mode=?,?dataset=?,?macroset=?)

This command creates a new molecular ensemble and returns its handle or reference. If none of the
optional arguments are specified, or the argument string is an empty string (or None for PYTHON), an
empty ensemble without any atoms or bonds is created. These may later be populated with
commands like atom create.

If data string may either begin with an automatically recognized prefix, or an automatic format
detection process is initiated. Recognized prefixes are:

• aa:
Decode a 1-letter or 3-letter case-sensitive amino acid sequence. Stereochemistry is
assumed to be natural (i.e. L amino acids). The first amino acid has the free amino group,
the last the free carboxyl group.

• aldrich:
Decode a Sigma-Aldrich catalog number via the sigmaaldrich.com Website. There are a
couple of alias prefixes: sigma:, sial: milliporesigma:, sigmaaldrich: and ms:

• cas:
Decode CAS number via the NCI resolver, PUBCHEM or commonchemistry.org. Since
properly formed CAS numbers are distinctive, they are also recognized without a prefix.

• cdx:
Decode base64-encoded ChemDraw CDX data. This is the format sent to Web servers by the
ChemDraw browser plug-in.

• chebi:
Decode CHEBI ID

• chembl:
Decode CHEMBL ID
270 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• chemspider:
Decode CHEMSPIDER ID

• cid:
Decode PUBCHEM CID

• drugbank:
Decode DRUGBANK ID

• emol:

• Decode EMOLECULES ID. emolecules: is an equivalent prefix.

• formula:
Decode as formula, i.e. create elemental atoms, but no bonds

• inchi:
Decode an INCHI string. Usually this is not a needed prefix since the standard beginning of
an INCHI string (InChI=) is sufficiently unique to prevent misinterpretation. The prefix can
be useful in case it is not known whether the InChI string has a proper lead-in. If the InChI=
part has been stripped, the decoder does not automatically recognize the encoding. With the
explicit prefix, InChI strings with and without the lead-in are decodable.

• jme:
Decode as data string of JME Java structure editor

• kegg:
Decode KEGG ID

• lincs:
Decode a LINCS ID.

• mcule:
Decode MCULE ID

• mesh:
Decode NCBI Mesh ID

• mfcd:
Decode MDL structure ID. The value following the colon can be either a simple number,
or start with the MFCD prefix in upper case.

• name:
Perform name resolution using the NCI resolver, OPSIN, KEGG or ChemSpider, depending
on the system configuration. By default, first the NCI resolver and, if that fails, OPSIN are
contacted.

• patran:
Decode a LHASA 1D PATRAN query pattern. 2D PATRAN patterns can be decoded with
reaction create.

• pdb:
Decode a PDB ID (4 characters, initial number plus 3 alpha characters)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 271

CACTVS Tcl and Python Scripting Language Reference
• querysln:
Decode as QuerySLN string.

• sid:
Decode PUBCHEM SID

• sln:
Decode as SLN string

• smarts:
Decode as SMARTS (explicitly not as SMILES)

• smiles:
Decode as SMILES (explicitly not as SMARTS)

• strictsmiles:
Decode as SMILES (explicitly not as SMARTS), and also use hypervalent hydrogen addition
as per the original Daylight definition (see also the description of the
::cactvs(smiles_hypervalent_hydrogen_addition) control variable).

• unii:
Decode as FDA UNII code. Properly formed UNIIs are also automatically recognized without
a prefix.

• zinc:
Decode ZINC ID

• quoted with ’ or “
Handled the same way as the name: prefix. These must be explicit quotes that are part of the
string, not string syntax elements of the script. Example: ens create “aspirin” vs. ens
create \”aspirin\” or ens create ’aspirin’ - the latter two commands work as
expected, the first does not, because the quotes are not an actual part of the string, and
aspirin can be decoded (in a very lenient fashion) as SMILES, which has precedence.

The colon in the prefix may be omitted (except for the name: item), but this is not recommended,
since it may lead to misinterpretation of the data if the prefix is also part of a valid structure
encoding.

In addition, URLs as structure data argument are automatically detected and handled specially. If the
URL is a data URI, it is unpacked and its payload processed in a second cycle. If it is an HTTP or FTP
URL, the file is downloaded and its contents read a a structure file with automatic format detection.
This is not identical to data URI processing: Data URIs are again interpreted as command arguments
with all prefix and line notation interpretation, while file contents are only interpreted as a record
in a structure data file.

If none of the above special cases are recognized, automatic interpretation is performed next.
Currently, the encoding then may either be

• a SMILES/SMARTS string (see below on how to distinguish these)

• a hex-encoded SMILES/SMARTS string, as used by some Daylight tools

• an INCHI string, with a proper lead-in (InChI=)
272 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• a CACTVS packed serialized object string, as it is generated by the ens pack command

• a CACTVS Minimol object in binary or base64-encoded form

• a plain text or base64-encoded blob of the contents of a structure file record, such as an MDL
SDfile. The format must be identifiable by the currently loaded set of structure file I/O
modules. Since the data has no file name, automatic loading of modules is not possible.

• a PUBCHEM CID - any simple integer argument is interpreted as CID

• a CAS number which is looked up on the Internet provided general Internet access is enabled
in the toolkit

• an MDL structure ID, starting with a proper lead-in (MFCD), followed by eight digits, which
is also resolved by Internet access to the chemsynthesis.com site if possible.

• an INCHI key, with or without lead-in (InChIKey=). This only works for keys which can be
looked up via the NCI resolver over the Internet.

• a properly formed FDA UNII code.

• a structure file record image as produced by the MYSQL database compress() function (i.e.
4 byte binary uncompressed size prefix plus zlib-compressed content). This is primarily
useful when the command is used in the context of the MYSQL database cartridge.

• a compound name as last resort, which is by default looked up via the NCI resolver and the
OPSIN service

In the absence of a prefix, the encoding is automatically detected. With the exception of PUBCHEM
CIDs, the long form of a database ID must be used, not its simple integer value (i.e. a simple 70 is
interpreted as PUBCHEM CID, while CHEMBL70 or chembl:70 are decoded as CHEMBL database
IDs).

For the base64-encoded compressed records, the compression algorithm may be raw zlib, gzip or zip
and its type is automatically detected.

In case one of the SMILES-class encoding schemes is used, the mode argument of the ens create
command provides finer control of the decoding. By default, or when this argument is an empty
string, the string is interpreted as standard SMILES, except when there are elements in the string
which cannot occur in SMILES but in SMARTS. In SMILES mode, query expressions are only
recognized to a very limited degree, and implicit hydrogens are automatically added. This decoding
scheme may also be explicitly selected by specifying hadd as mode.

In order to force a full hydrogen addition to the raw decoded structure even if it would not be done
otherwise, use the mode forcehadd.

Mode strictsmiles decodes SMILES with hydrogen addition but as if the strictsmiles: prefix was set.
This is described above.

Mode nohadd is essentially the same as basic SMILES decoding, but implicit hydrogen addition does
not happen. In any case, explicitly encoded hydrogen is decoded and preserved.

Mode smarts (or query) also skips hydrogen addition, but in addition the decoder now fully parses
SMARTS, including Recursive SMARTS, but it also becomes less lenient in the area of superatom
encodings and similar gray areas, in order to avoid ambiguity. The recognized SMILES dialect may
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 273

CACTVS Tcl and Python Scripting Language Reference
be switched via the control variable ::cactvs(smiles_version). The default is Daylight release 4.9
with CACTVS and ELILILLY extensions.

Mode sln forces the interpretation of the input string as Sybyl Line Notation. If the SLN I/O
module has already been loaded, interpretation as SLN is automatically attempted in any case, but
only after SMILES decoding has failed. Since there are strings which are both valid SMILES and SLN,
but mean something different, this automatism can lead to misinterpretation, so if you know you are
dealing with SLN, it is a good idea to specify it. The sln mode attempts to auto-load the SLN I/O
module if it is not yet loaded. In case it cannot be loaded, this mode raises an error. Mode querysln
is similar, but assumes the input is querySLN, not plain SLN.

The 3D decoder mode prefers resolution of identifiers as 3D model instead of 2D connectivity. This
has an effect only with a few select combination of identifiers and resolvers and should be
considered experimental.

Instead of using an explicit decoder mode or a data prefix, it is also possible to supply the name of
a property the structure data is an instance of. Examples are E_SDF_STRING or E_SMILES. Such
properties are expected to provide suitable default decoder configuration data in their fileformat and
fileflags attributes, and these are then used to decode the structure.

In nohadd decoder mode, the structure code is finally, if everything else fails, interpreted as a plain
molecular formula. If the string is parsed successfully as a formula, a collection of atoms of the
specified elements is created, without any bonds.

By default, or if the optional target dataset parameter is an empty string, the new ensemble is not a
member of any dataset. It may be directly made a dataset member if a dataset handle is specified.

If a macro set name is specified, SMILES and SMARTS with macro definitions can be processed. Any
patterns names which belong to the specified set are expanded. Set names, pattern names and
expansion fragments are specified in the system macro table. Macro expansion is not available if the
toolkit was compiled without table support.

Examples:
set eh [ens create]
set eh [ens create CCC]
set sshandle [ens create {[CH3][Cl,Br,I]} smarts]
set eh [ens create [decode -url C%23C] nohadd]

In case a structure is encoded as a string in a format which cannot be directly decoded by the ens
create command (such as a plain string representation of an MDL molfile), the standard method is
to load the appropriate file format decoder (if not built in, this is needed so that automatic format
detection of the memory image record works), open the structure string as a memory-based structure
file, and read from this file. This technique allows the input of multiple records from the in-memory
file and thus is also useful in cases like a multi-record SMILES file encoded as a string.

Example:
filex load cdx
set fh [molfile open [decode -base 64 $cdxstring] s]
set eh [molfile read $fh]
molfile close $fh
274 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ens dataset
ens dataset ehandle ?filterlist?
e.dataset(?filters=?)

Return the dataset handle or reference of the dataset the ensemble is part of. It the ensemble is not
member of a dataset, or does not pass all of the optional filters, an empty string or None for PYTHON
is returned.

Example:
ens dataset $ehandle

ens defined
ens defined ehandle property
e.defined(property)

This command checks whether a property is defined for the ensemble. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

The command returns a boolean result.

ens delete
ens delete all
ens delete ?ehandlelist?...
e.delete()
Ens.Delete(“all”)
Ens.Delete(?erefsequence/eref/ehandle?,...)

Delete ensembles and the minor objects which are part of the deleted ensembles. The special
parameter all may be used to delete all ensembles currently registered in the application, including
those which are part of reactions or other major objects. Alternatively, any number of lists of
ensemble handles may be specified for specific deletions.

The command returns the number of deleted ensembles.

For historic reasons, the same command may also be invoked as ens destroy.

Example:
ens delete $ehandle
ens delete $ehandlelist1 $ehandlelist2

ens dget
ens dget ehandle propertylist ?filterset? ?parameterdict?
e.dget(property=,?filters=?,?parameters=?)
Ens.Dget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens dget is that
the latter does not attempt computation of property data, but rather initializes the property values to
the default and return that default if the data is not yet available. For data already present, ens get
and ens dget are equivalent.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 275

CACTVS Tcl and Python Scripting Language Reference
The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes. The data for the creation
of the temporary ensemble is equivalent to the first argument of the standard constructor. Additional
constructor parameters cannot be used.

ens dup
ens dup ehandle ?datasethandle? ?position? ?filterset? ?ctonlyflag?
e.dup(?dataset=?,?position=?,?filters=?,?ctonly=?)

Duplicate an ensemble. The return value is the handle or reference of the new ensemble.

The duplicate ensemble is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (including None for PYTHON) places the duplicate
outside any dataset, regardless of the dataset membership of the source ensemble.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The filter parameter allows the selection of only a subset of atoms to be copied. All atoms which do
not pass the filters are discarded, as are all bonds which connect to discarded atoms. If no atoms pass
the filters, the result is an empty ensemble. By default, no atom filtering takes place, and all atoms
and bonds of the original ensemble are part of the duplicate.

The final optional parameter can be used to make the duplicate lightweight. If this boolean
parameter is set, the duplicate is limited to the basic connectivity information with all atom and bond
properties, but it has no copies of properties of other object classes, and no copies of rings,
molecules, groups or other minor object classes.

The ens hdup command is a variant of this command. It automatically adds a hydrogen set to the
duplicate.

Examples:
ens dup $ehandle
ens dup $ehandle [dataset create] end ringatom

The first sample line is a standard use. The second example moves the duplicate into a newly created
dataset, and isolates the ring systems. All other atoms are stripped.

ens exists
ens exists ehandle ?filterset?
e.exists(?filters=?)
Ens.Exists(eref=,?filters=?)

Check whether an ensemble handle or reference is valid. The command returns boolean 0 or 1.
Optionally, the ensemble may be filtered by a standard filter list and it is reported as not valid if it
does not pass the filters. If filters in the filter list operate on atom, bonds, or other minor objects, it
is sufficient if a single minor object of the ensemble passes the filter.

Example:
ens exists $ehandle chlorine
276 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Check whether the ensemble with the handle in variable $ehandle exists and, if it exists, whether
it contains one or more chlorine atoms.

ens expand
ens expand ehandle ?allowambiguous? ?noimplicith?
e.expand(?allowambiguous=?,?noimplicith=?)

This command expands all superatoms in the ensemble. The mechanisms for the expansion of
superatoms are described in detail for the atom expand command. This command is functionally
equivalent, working on all atoms in the ensemble instead a single atom.

Example:
ens expand $ehandle

The command returns the total number of successfully expanded atoms.

ens expr
ens expr ehandle expression
e.expr(expression)

Compute a standard SQL-style property expression for the ensemble. This is explained in detail in
the chapter on property expressions.

ens fill
ens fill ehandle ?property value?...
e.fill({?property:value,...})
e.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

Example:
ens fill $ehandle B_COLOR red

sets the color of the first bond in the ensemble to red.

ens filter
ens filter ehandle filterlist
e.filter(filters)

Check whether the ensemble passes a filter list. The return value is boolean 1 for success and 0 for
failure.

Example:
ens filter [ens create CCCl] chlorine

checks whether the ensemble contains one or more chlorine atoms. If the filter operates on minor
objects of the ensemble, it is sufficient to have a single ensemble minor object pass the filter
condition.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 277

CACTVS Tcl and Python Scripting Language Reference
ens forget
ens forget ehandle ?objclass?
e.forget(?objectclass=?)

Delete specific classes of minor objects and their data from the ensemble data structure. If no object
class is specified, all minor object classes except atoms and bonds and the ensemble data are purged.

If the object class ens is specified, all property data attached to the ensemble object class (usually
those properties starting with E_*) are deleted, but not the ensemble itself.

The command returns the original ensemble handle or reference.

ens formulamatch
ens formulamatch ehandle formula_expression ?other_elements?
e.formulamatch(query=,?other_elements=?)

Match the ensemble against a formula expression. Its syntax is the same as in formula queries in
molfile scan and other scan commands.

There are several methods to specify whether any elements not mentioned in the formula expression
may or must be present. If the other_elements flag is used, it has the highest priority. If may be set
to 0 (no other elements allowed), 1 (allowed) or 2 (required), and if it is set, any prefix in the formula
expression is ignored. If it is not used, a prefix in the formula expression may be used to control the
matching. Supported prefixes are = (no other elements), >= (other elements allowed) and >
(required). If no prefix is used, the default mode is an exact match without other elements.

The return value is the boolean match result.

Example:
ens formulamatch $eh >=C6

Matches any ensemble with has six carbon atoms.
ens formulamatch $eh C5-6(Cl+Br+I)2- 1

Matches an ensemble with five or six carbon atoms, two ore more heavy halogens, and potentially
any other elements.

ens fragment
ens fragment ehandle atomlist ?datasethandle? ?position?
e.fragment(atomsequence=,?dataset=?,?position=?)

Create a new ensemble from a set of atoms in another ensemble. All bonds existing between those
atoms are also preserved. The atoms can be selected with any standard atom selection syntax, with
one selector per list element. Duplicate atom specifications are ignored. Atom specifications which
cannot be resolved generate an error.

By default, the new ensemble becomes a member of the same dataset (if any) as the source
ensemble, but this can be changed with the optional fifth argument. If no explicit position is given,
the ensemble is appended to rear of the target dataset. The new ensemble only inherits the selected
atoms and bonds plus stable atom and bond properties, but not other minor objects or ensemble data.

The command returns the handle or reference of the new ensemble object.

Example:
278 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
match ss $substructure $eh amap
set ehfrag [ens fragment $ehandle [unzip $amap 1]]

Above code sequence matches a substructure, and then extracts the matched structure part as a new
ensemble.

ens get
ens get ehandle propertylist ?filterset? ?parameterdict?
ens get ehandle attribute
e.get(property=,?filters=?,?parameters=?)
e.get(attribute)
e[property/attribute]
e.property/attribute
Ens.Get(data,property=,?filters=?,?parameters=?)
Ens.Get(data,attribute)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
ens get $ehandle {M_WEIGHT A_ELEMENT}

yields a nested list with two elements. The first element is a list of the molecular weights of all
molecules in the ensemble. The second element is a list of the element numbers of all atoms in the
ensemble. If the information is not yet available, an attempt is made to compute it. If the
computation fails, an error results.
ens get $ehandle B_ORDER ringbond

gives the bond orders of all bonds of the ensemble which are ring bonds.

The format of the optional parameter list argument is a series of keyword/value pairs, as produced
by the TCL command array get or the standard TCL dictionary commands. If a this parameter list is
present as argument, and the requested property data is already valid for the ensemble, a check if
made if all the specified parameters are the same as the parameters the present property data was
computed with. If this is the case, the values are directly returned as usual. Otherwise, the data is
discarded and re-computed.

If computation of the property data is performed, either because the parameter set was not matched,
or the requested data was not valid, the computation integrates the specified parameter set into the
parameters of the computation function. Parameters from the list temporarily override the global
settings of these parameters in the property definition. Parameters used by the property computation
function but not listed in the local parameter list are neither used for data validity checking, nor their
value changed during the computation request. After the computation finishes, the old global
parameter settings of the property definition are restored.

The use of a parameter list argument is primarily useful only if a single property is requested with
this command, but its use with a multiple-property request is not illegal - the parameter list is simply
applied to all properties in sequence.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes. The data for the creation
of the temporary ensemble is equivalent to the first argument of the standard constructor. Additional
constructor parameters cannot be used.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 279

CACTVS Tcl and Python Scripting Language Reference
Example:
ens get $ehandle E_GIF {} [dict create width 200 height 200 bgcolor white]

Variants of the ens get command are ens new, ens dget, ens jget, ens jnew, ens jshow,
ens nget, ens show, ens sqldget, ens sqlget, ens sqlnew, and ens sqlshow.

Further examples:
ens get $ehandle E_NAME
ens get $ehandle A_FLAGS(boxed)

In addition to property data, the ensemble object possesses a few attributes, which can be retrieved
with the ens get command (but not by its related sister subcommands like ens dget, ens sqlget,
etc.). Some of them are also modifiable via ens set.These attributes are:

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

• deletable
Flag indicating whether this object can be deleted with a standard ens delete command.
This attribute is read-only. Objects which are, for example, property data values or a part of
a molfile loop command cannot be deleted by standard means.

• failures
If the property computation failure cache is active, return a list of all properties which have
failed computation for this ensemble after the last structural change. This attribute is
read-only.

• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• header
f the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

• incomplete
Boolean status flag indicating an aborted input operation during the read of the object from
file, which returned the structure intact but without the complete set of associated data. An
aborted input may be either be the result of an explicitly set input control flag, or by
encountering property data which could not be decoded. This attribute is read-only.

• invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.
280 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

• modcount
Object modification count. This attribute is read-only.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

• record
The current iterator record (starting with 1) of the ensemble. It is possible to set the value
and thus skip or revisit ensemble molecules in the iterator.

• refcount
If the TCL interpreter is using native Cactvs objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this ensemble. This attribute is read-only.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

• uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

• x
f the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

• y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

ens getparam
ens getparam ehandle property ?key? ?default?
e.getparam(property=,?key=?,?default=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 281

CACTVS Tcl and Python Scripting Language Reference
Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

Example:
ens getparam $ehandle E_GIF format

returns the actual format of the image, which could be gif, png, or various bitmap formats.

ens groups
ens groups ehandle ?filterset? ?filtermode?
e.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the ensemble
contains. This is explained in more detail in the section about object cross-references.

Example:
ens groups $ehandle

ens hadd
ens hadd ehandle ?filterset? ?flags? ?changeset?
e.hadd(?filters=?,?flags=?,?changeset=?)

Add a standard set of hydrogens to the ensemble. If the filterset parameter is specified, only those
atoms which pass the filter set are processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

• keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

• no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

• no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

• noanions
Do not add hydrogen to atoms with a negative formal charge.
282 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• noatoms
Do not add hydrogen to atoms without any bonds.

• nocations
Do not add hydrogen to atoms with a positive formal charge.

• noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

• noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

• nofixatomtext
Do not adjust property A_TEXTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOEt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

• nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

• nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

• nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

• nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B_TYPE not normal).

• protonate
Add a single proton to the first suitable atom. The charge of the atom is increased, and only
a single hydrogen is added regardless of the standard number of missing hydrogens,. This
command does issue the standard property invalidation event for atom and bond changes.
In the ensemble command variant, this option is rarely useful. It is supported for
compatibility with the atom hadd command.

• resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms act
as if they were part of the original atom set.

Adding hydrogens with this command, except wit a set protonate flag, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

If the effects of the hydrogen addition step to the validity of the property data set should not be
handled according to this standard procedure, it is possible to explicitly generate additional property
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 283

CACTVS Tcl and Python Scripting Language Reference
invalidation events by specifying an event list as the optional last parameter, for example a list of
atom and bond to trigger both the atom change and bond change events.

The command returns the number of hydrogens which were added.

Example:
set ehandle [ens create {[C].[C]}]
ens hadd $ehandle

adds a total of eight hydrogens to the two carbon atoms, transforming them into methane.

ens hdup
ens hdup ehandle ?datasethandle? ?position? ?filterset? ?ctonlyflag?
e.dup(?dataset=?,?position=?,?filters=?,?ctonly=?)

This command is a convenience variant of the ens dup command. It has the same parameters, but
also adds a full standard hydrogen set (equivalent to executing an ens hadd $eh command) to the
duplicate.

The command arguments are documented in the paragraph on ens dup.

ens hfragment
ens hfragment ehandle atomlist ?datasethandle? ?position?
e.hfragment(atomsequence=,?dataset=?,?position=?)

This command has the same arguments as ens fragment. The only difference is that after the
duplication all open valences in the fragment are plugged with hydrogen, as if an ens hadd
command had been executed immediately after the fragment creation command.

The command returns the handle or reference of the new ensemble object.

ens hierarchy
ens hierarchy ehandle ?filterlist? ?root?
e.hierarchy(?filters=?,?root=?)

Return the hierarchy handle or reference of the hierarchy the ensemble is part of. If the ensemble is
not member of a hierarchy, or does not pass all of the optional filters, an empty string or None for
PYTHON is returned. By default, the hierarchy object which directly contains the ensemble is returned.
If the root flag is set, the root hierarchy object is reported instead, which is the same only if the
hierarchy has only a single level.

Example:

ens hierarchy $ehandle

ens hstrip
ens hstrip ehandle ?flags? ?changeset?
e.hstrip(?flags=?,?changeset=?)

This command removes hydrogens from the ensemble. By default, all hydrogen atoms in the
ensemble are removed.
284 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

• deprotonate
If this flag is set, a single proton is removed from the first suitable atom. This command
variant does issue a standard atom and bond change property invalidation event, and it
always ends processing after removing the first proton. Proton removal decreases the charge
of the atom by one. In the ensemble command variant, this flag is rarely useful - it is
supported for compatibility with the atom hstrip command

• keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

• keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

• keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note that these commands can be run in a mode which does not leave information
about automatic addition - hydrogens added this way are not retained.

• keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

• keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

• keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

• normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

• wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but this default value is overridden if any flags are set!

If the changeset parameter is specified, the property change events listed in the parameter are
triggered after the command.

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
when the deprotonate flag is set. The system assumes that this operation is done as part of some file
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 285

CACTVS Tcl and Python Scripting Language Reference
output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that the structure may contain implicit hydrogens.

The command returns the number of stripped hydrogens.

Example:
ens hstrip $ehandle [list keeporiginal wedgetransfer]

ens hydrogenate
ens hydrogenate ehandle ?filterset? ?changeset?
e.hydrogenate(?filters=?,?changeset=?)

Reduce all bonds in the ensemble to single bonds, except those excluded by the filter set.

If a change set is supplied, its interpretation is the same as in ens hadd.

The command returns the number of added hydrogens.

Example:
ens hydrogenate $eh {!arobond !ccbond}

This reduces all non-aromatic bonds involving hetero atoms to single bonds.

ens image
ens image ehandle ?width? ?height? ?options?

This command generates a TK image object displaying the ensemble as an icon. The command is
only available in toolkit variants which are linked with the portable TK GUI toolkit library and which
are either statically linked with the GD image drawing library, or can load it dynamically. It is
currently not support in the PYTHON interface.

The default image size is 64x64 pixels, but this may be overridden by the width and height
parameters. If only width is set, it is also used for the height. The command returns a TK image
handle. These images may for example be placed on TK canvases as canvas objects, or used on
buttons and other GUI objects.

Because of the small size of the images, atoms are not displayed as symbols, but small color-coded
squares. This is a command for the implementation of graphical structure-handling applications
with icons. For serious structure visualization, use the E_GIF, E_EMF_IMAGE or E_EPS_IMAGE
properties.

Additional options may be added by an arbitrary sequence of option/value pairs. Color names can
be those registered in the X11 color database, or a numeric specification in the #rrggbb format. These
options are currently supported:

• -background color
Background color. The default is black.

• -border npixels
Thickness of the image border. The default are 5 pixels.

• -bordercolor color
Border color. The default is blue.
286 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• -cmode none/special/all
Display mode for carbon atoms. The default is special, meaning that only carbon atoms
which usually are drawn with a C symbol are displayed as colored rectangle and not just a
bond node. Highlighted atoms are always displayed.

• -highlightatom label
Select an atom for highlighting. By default, no atom is highlighted.

• -highlightcolor color
Set the highlighting color. The default is chartreuse.

• -hmode none/special/all
Display mode for hydrogen atoms. The default is special, meaning that only hydrogen
atoms which usually are drawn with an H symbol are displayed as colored rectangle. Other
hydrogen atoms and the bonds leading to them are suppressed. Highlighted atoms are
always displayed.

• -imagename name
Explicitly set a name for the image. By default, a name of the form imagen is automatically
generated. It is possible to specify the name of an existing image, which will then be
overwritten.

• -linecolor color
Color of bond lines and wedges. The default is white.

Images are cached. If an image for the selected ensemble with the same display attributes exists, it
is reused.

Example:
set img [ens image $ehandle 80 80 -border yellow -linecolor blue]
canvas create .canvaswin image 50 50 -image $img

ens index
ens index ehandle
e.index()

Get the position of the ensemble in the object list of its dataset. If the ensemble is not member of a
dataset, -1 is returned.

ens isotopecheck
ens isotopecheck ehandle ?failedatomvariable? ?extended?
e.isotopecheck(variable=,extended=)

Test whether the isotope labels on the atoms of the ensemble, if they exist, are physically reasonable.
The command returns the number of failed atoms. If a capture variable is specified, the atom labels
or references of these atoms are stored therein. If no isotope labels are set in A_ISOTOPE, the
command always reports zero problems.

By default, a smaller isotope table is used which contains only isotopes which are sufficiently
long-lived to perform chemistry on. These include naturally occurring isotopes as well as isotopes
used for experimental labeling, such as 3H or 14C. If the extended boolean flag is set, a larger table
containing all known isotopes of the elements is used.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 287

CACTVS Tcl and Python Scripting Language Reference
The isocheck command is an alias.

ens jget
ens jget ehandle propertylist ?filterset? ?parameterdict?
e.jget(property=,?filters=?,?parameters=?)
Ens.Jget(data,property=,?filters=?,?parameters=?)

This is a variant of ens get which returns the result data as a JSON formatted string instead of TCL
interpreter objects. The command is usable only for property data, not attribute retrieval.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens jnew
ens jnew ehandle propertylist ?filterset? ?parameterdict?
e.jnew(property=,?filters=?,?parameters=?)
Ens.Jnew(data,property=,?filters=?,?parameters=?)

This is a variant of ens new which returns the result data as a JSON formatted string instead of TCL
interpreter objects.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens jshow
ens jshow ehandle propertylist ?filterset? ?parameterdict?
e.jshow(property=,?filters=?,?parameters=?)
Ens.Jshow(data,property=,?filters=?,?parameters=?)

This is a variant of ens show which returns the result data as a JSON formatted string instead of TCL
interpreter objects.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens ldup
ens ldup ?ehandlelist?...
Ens.Ldup(?eref/erefsequence?,...)

Duplicate all ensembles in the argument list(s) in default mode.

The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TCL) or None (for
PYTHON) at its position, without raising an error.

ens lhdup
ens lhdup ?ehandlelist?...
Ens.Lhdup(?eref/erefsequence?,...)

Duplicate all ensembles in the argument list(s) in default mode, and add hydrogens.
288 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The return value is a single list (even if multiple source lists are used) of the duplicated ensemble
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TCL) or None (for
PYTHON) at its position, without raising an error.

ens list
ens list ?filterlist?
Ens.List(?filters=?)

This command returns a list of the ensemble handles currently registered in the application. This list
may optionally be filtered by a standard filter list. If the filter operates on ensemble minor objects
such as atoms or bonds and not directly on the ensemble object, it is sufficient if a single minor
object passes the filter.

Example:
ens list halogen

lists the handles of all ensembles in the application which contain one or more halogen atoms.

ens lock
ens lock ehandle propertylist/objclass/all ?compute?
e.lock(property=,?compute=?)

Lock property data of the ensemble, meaning that it is no longer managed by the standard data
consistency manager. The data consistency manager deletes specific property data if anything is
done to the ensemble which would invalidate the information. Blocking the consistency manager
can be useful when building ensembles from components in a script. Property data remains locked
until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the ensembles or ensemble minor objects are locked. If the
boolean compute flag is set, an attempt is made to compute the property if it is not yet
present. Otherwise, a request to lock non-existent data is silently ignored. It is not possible
to lock individual property fields.

• all
All valid ensemble and ensemble sub-object properties are locked. The compute flag is
ignored.

• ens,atom,bond,...
These is are object class identifiers. All property data which is controlled by the ensemble
major object and attached to the specified object class is locked.

The lock can be released by an ens unlock command.

The return value is the original ensemble handle or reference.

Example:
set eh [ens create CCC]
ens lock $eh A_SYMBOL 1
ens purge $eh A_ELEMENT
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 289

CACTVS Tcl and Python Scripting Language Reference
atom set $eh 1 A_query(dsearch) 3
ens unlock $eh A_SYMBOL

In this example, an ensemble is created, and the atom symbol information is locked. Next, the
element number property is deleted, and a query attribute is set. Finally, the lock is released. Had
the element symbol information not been locked, the ensemble would have become unusable due
to an overzealous data consistency manager. Setting query information in property A_QUERY can
have an influence on the atom symbol. So the default action of invalidating A_SYMBOL when
manipulating A_QUERY is correct. However, in case there is no element information A_ELEMENT, and
no atom symbol information A_SYMBOL, the element information is completely lost, and the
ensemble becomes unusable. So in this case, locking A_SYMBOL (or alternatively A_ELEMENT) is
required to avoid unexpected side effects of structure editing.

ens loop
ens look ehandle objvariable ?maxmol? ?offset? body
e.loop(function=,?maxloop=?,?offset=?,?variable=?)
for m in e:

Loop over all molecules in the ensemble, by providing a temporary ensemble duplicate of each
found molecule. The handle of the duplication is stored in the object variable and visible to the loop
code.

The loop code cannot delete the duplicate ensemble. It is automatically deleted at the end of each
cycle. Changes made to the duplicate molecule are not seen in the base ensemble. It is however
possible to explicitly assign data computed on the duplicate ensemble to the base ensemble.

The optional parameters allow more control over which molecules are processed. By default the
maxmol parameter is -1, meaning an unlimited number of fragments are processed, and the offset is
zero, meaning that processing begins with the first molecule in the molecule list of the base
ensemble.

For TCL scripts, within the loop code, the standard TCL commands break and continue work as
expected.

The PYTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TCL construct),
or a function reference. Functions are called with the reference of the current loop object as single
argument, and have their own context frame, so that the specification of a reference variable is not
generally useful in that call style, though is is allowed. For string function blocks the code is
executed in the local call frame, and the variable with the current object reference is visible locally.
Script code blocks must be written with an initial indentation level of zero. Within the PYTHON
functions, the normal break and continue commands cannot be used to to scope limitations. Instead,
the custom exceptions BreakLoop and ContinueLoop can be raised. These are automatically caught
and processed in the loop body handler code.

In PYTHON, there is also an object iterator so that simple loops over ensemble molecules can be
written with a for statement. The ensemble object iterator is of the self style (i.e. there is one per
ensemble, these are not independent objects), so nesting them is not possible on the same ensemble.

PYTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PYTHON scripting.

The command returns the number of molecule fragments processed.
290 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
set midx 0
ens loop $ehandle ehdup {

mol set $ehandle [mol mol $ehandle #$midx] M_MYPROP [ens get $ehdup E_MYPROP]]
incr midx

}

The example loop assigns a custom property where the compute function is only defined for a
single-fragment ensemble to the equivalent molecule property in a multi-fragment base ensemble.

ens mask
ens mask ehandle labellist/all property onvalue ?offvalue?
e.mask(objects=,property=,onvalue=,?offvalue=?)
e.mask(“all”,property=,onvalue=,?offvalue=?)

This command sets property values of a subset of minor objects of one class in the ensemble to a
specific value, and optionally resets the values of the same property for all other minor objects of
the ensemble which are not selected.

The first argument after the ensemble handle is either a list of object identifiers, or the magic value
all. Object identifiers are usually the standard numerical labels, but any construct which identifies
an atom, a bond, etc. can be used. The next argument identifies the property. The object identifiers
in the previous argument must correspond to the object class of the property, i.e. atom label pairs can
only be used it the property is a bond property, but simple numerical labels work for all classes. If
data for that property is not present on the ensemble, it is instantiated with the default value. The
final one or two arguments must be decodable data values for that property.

If the all object subset identifier is used, all values of the property in the ensemble are set to the
onvalue. Any offvalue specification is ignored.

Otherwise, the explicit label list is processed. If an off value is given, all values of the property in
the ensemble are first reset to that value. If no off value was specified is, no reset is performed and
the current values remain valid. Then, all minor objects in the list are looked up from their labels or
other identifiers, and their property value set to the onvalue.

Example:
ens mask $eh [ens atoms $eh carbon] A_COLOR green black

This command sets the A_COLOR property value for all carbon atoms in the ensemble to green, and
all other atoms to black. This is shorter and more efficient then explicitly coding a loop of atom set
statements.

The command returns the original ensemble handle or reference.

ens match
ens match ehandle ss_ehandle ?matchflags? ?ignoreflags? ?atommatchvar?
?bondmatchvar? ?molmatchvar?
e.match(substructure=,?matchflags=?,?ignoreflags=?,?atommatchvariable=?,

?bondmatchvariable=?,?molmatchvariable=?)

Check whether the ensemble matches a substructure. The substructure may be any structure
ensemble, and even be in the same ensemble as the primary command ensemble.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 291

CACTVS Tcl and Python Scripting Language Reference
The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

The command returns boolean 1 for a successful match, 0 otherwise. If an optional atom, bond, or
molecule match variable is specified, it is set to a nested list of matching substructure/structure atom,
bond or molecule labels (TCL) or references (PYTHON). If no match can be found, the variable is set
to an empty list. In case only a bond or molecule match variable is needed, an empty string can be
used to skip the unused match variable argument positions.

This is a very simple variant of substructure matching. The match ss command provides many
more advanced match determination and match processing options.

ens max
ens max ehandle propertylist ?filterset?
e.max(property=,?filters=?)

Get the maximum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values. The objects whose property values are used
for the determination of the maximum values may optionally be filtered by a standard filter set. If
no objects pass the filter, the result is an empty string.

Example:
ens max $ehandle A_ELEMENT

computes the maximum element number in the ensemble.

ens merge
ens merge ehandle ?ehandle_list?...
e.merge(?eref/erefsequence?,...)

Merge a set of ensembles into one ensemble. All structure information is accumulated in the first
(base) ensemble. Its handle remains unchanged. All other ensembles are destroyed. It is not possible
to name an ensemble more than once in the argument lists, and ensembles cannot be merged with
themselves.

The merged ensemble has a consistent property set for all minor objects. If the information content
of the input ensembles varies, an attempt is made to compute the missing information for ensembles
which do not have valid data for each individual property. If the computation fails, the property data
is discarded for all merged objects. In addition, a merge property invalidation event is issued, which
may lead to additional loss of property data. For surviving properties which have defined a merge
update function, this function is then called and may perform additional data adjustments. For
example, the A_XY 2D plot coordinate property merge function transforms the structure plot
coordinates in the new ensemble to a uniform scale and arrange the coordinates for the atoms from
the merged ensembles as a sequence of plots from left to right.

The return value of this command is a list of the new first atom labels or references for every merged
ensemble, excluding the base ensemble. All minor object labels in the merged ensembles are
re-assigned to avoid collisions. The new labels begin with the highest respective minor object label
292 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
in use in the base ensemble plus one, and are thereafter assigned in sequence. In case an empty
ensemble was merged, the list contains an empty string (TCL) or None (PYTHON) at its merge position.

The ens add command performs the same operation as the ens merge command, but merges
duplicates of the input ensembles, thus preserving them.

Example:
ens merge [ens create CC] [list [ens create CCC.CCCC] [ens create C]]

Merge three ensembles into one. The new ensemble contains the molecules ethane, propane, butane
and methane in that order.

ens metadata
ens metadata ehandle property ?field ?value??
e.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands ens setparam and ens
getparam can be used for convenient manipulation of specific keys in the computation parameter
field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

Examples:
array set gifparams [ens metadata $ehandle E_GIF parameters]
ens metadata $ehandle E_NAME comment “This is a CAS name in 1995 revision. The IUPAC
name, or any previous or later CAS revision name, look completely different.”

The first line retrieves the computation parameters of the property E_GIF as keyword/value pairs.
These are read into the array variable gifparams, and may subsequently be accessed as
$gifparams(format), $gifparams(height), etc. The second example shows how to attach a
comment to a property value.

ens min
ens min ehandle propertylist ?filterset?
e.min(property=,?filters=?)

Get the minimum values of the properties named in the propertylist parameter. The return value of
the command is a list of the minimum property values. The objects whose property values are used
for the determination of the minimum values may optionally be filtered by a standard filter set. If
no objects pass the filter, the result is an empty string.

Example:
ens min $ehandle A_FORMAL_CHARGE xatom

gets the lowest value of the formal charge of a hetero atom in the ensemble.

ens mols
ens mols ehandle ?filterset? ?filtermode?
e.mols(?filters=?,?mode=?)

Standard cross-referencing command to obtain the label(s) of the molecule the ensemble contains
as minor objects. This is explained in more detail in the section about object cross-references.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 293

CACTVS Tcl and Python Scripting Language Reference
Examples:
ens mols $ehandle
ens mols $ehandle heterocycle

The first example simply returns a list of the labels of the molecules the ensemble contains as minor
objects. Note that it is possible that there is more than one molecule in the ensemble - this is the
reason why the command name is mols, not mol. The second example returns the molecule label(s)
of all the molecules in the ensemble which contain one or more heterocycles. If there are no such
molecules, an empty list is returned.

ens move
ens move ehandle ?datasethandle|remotehandle? ?position?
e.move(?target=?,?position=?)

Make the ensemble a member of a dataset, or remove it from a dataset. If the dataset handle or
reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed from
its current dataset. The dataset handle or reference may be the name of a remote dataset for moving
object over a network connection.

If a target dataset handle or reference is specified, the ensemble is added to the dataset, if allowed
by the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the ensemble is added to the end of the dataset object list, but
the final optional parameter allows the specification of an object list index. The first position is index
zero. If the parameter value end is used, or the index is bigger than the current number of dataset
objects minus one, the ensemble is appended as per the default. It is legal to use this command for
moving ensembles within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset. Using this mode with remote datasets is currently not supported.

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of a
dataset.

This command interacts with the insert control mechanism of size-constrained datasets. More
information is provided in the description of the sizecontrol dataset parameter.

Examples:
ens move $ehandle $dhandle 0
ens move $ehandle

In the first example, the ensemble is inserted as the first element in a dataset. The second line reverts
this operation and removes the ensemble from the dataset.

This command can be used with a remote dataset descriptor. In that case, the ensemble is packed into
a serialized object representation, transmitted over the network and restored as member of the
remote dataset at the specified position. The local ensemble is deleted if the transfer succeeds.

Example:
ens move $ehandle blockbuster@server2:9998 end
294 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This command moves the ensemble to the dataset which was set up as listener on port 9998 and pass
phrase blockbuster on host server2. The local ensemble is deleted, and its copy is inserted at the end
of the remote dataset.

ens mutex
ens mutex ehandle mode
e.mutex(mode)

Manipulate the object mutex.

During the execution of a script command, the mutex of the major object(s) associated with the
command are automatically locked and unlocked, so that the operation of the command is
thread-safe. This applies to toolkit builds that support multi-threading, either by allowing multiple
parallel script interpreters in separate threads or by supporting helper threads for the acceleration of
command execution or background information processing.

Going beyond this automatic per-statement protection, this command locks major objects for a
period of time that exceeds a single command. A lock on the object can only be released from the
same interpreter thread that set the lock. Any other threaded interpreters, or auxiliary threads, block
until a mutex release command has been executed when accessing a locked command object. This
command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

ens need
ens need ehandle propertylist ?mode? ?parameterdict?
e.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original ensemble handle or reference.

Examples:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 295

CACTVS Tcl and Python Scripting Language Reference
ens need $ehandle A_XY recalc
ens need $ehandle E_EINECS_ID threaded

ens new
ens new ehandle propertylist ?filterset? ?parameterdict?
e.new(property=,?filters=?,?parameters=?)
Ens.New(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens new is that
the latter forces the re-computation of the property data, regardless whether it is present and valid,
or not.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens nget
ens nget ehandle propertylist ?filterset? ?parameterdict?
e.nget(property=,?filters=?,?parameters=?)
Ens.Nget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens nget is that
the latter returns numeric data, even if symbolic names for the values are available.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens nnew
ens nnew ehandle propertylist ?filterset? ?parameterdict?
e.nnew(property=,?filters=?,?parameters=?)
Ens.Nnew(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens nnew is that
the latter always returns numeric data, even if symbolic names for the values are available, and that
property data re-computation is enforced.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes.

ens nitrostyle
ens nitrostyle ehandle style
e.nitrostyle(style=)

Change the internal encoding of nitro groups and similar functional groups in the ensemble. Possible
values for the style parameter are:
296 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• asis No change

• ionic Change to encoding to a positive charge on the center atom, and a negative on one
of the oxygens

• xionic As above, but also change the encoding of azides, etc.

• neutral Change the encoding to the neutral form with extended valence. pentavalent is an
alias.

• xneutral As above, but also change the encoding of azides, etc.

The command returns the original ensemble handle or reference.

ens op2d
ens op2d ehandle mode ?atomfilter_bit/degrees?
e.op2d(mode=,?atomfilter=?)

Perform various operations on the standard 2D layout coordinates of the structure (property A_XY).
Properties tightly connected to A_XY are also updated (most notably, B_FLAGS to keep wedges in sync
with stereochemistry defined in other properties).

In mode rotate, the optional argument is the rotation angle in degrees. If it is not specified, the
default are 30 degrees.

For alignment and flipping operations, the atoms which are used to determine the orientation can be
filtered by specifying one or more value bits of property A_FLAGS. Only atoms where one or more
of these bits are set in A_FLAGS are used for computing the alignment (in modes xalign, yalign,
xyalign - all atoms are moved) or are flipped (modes hflip, vflip - unselected atoms are not moved).
If no but filter values are specified, or none is used, all ensemble atoms and bonds are processed.

The following modes are supported:

• rotate
Rotate the 2D structure coordinates counterclockwise.

• hflip
Perform a horizontal flip around the X axis, while maintaining stereochemistry.

• vflip
Perform a vertical flip around the Y axis, while maintaining stereochemistry.

• xalign
The largest eigenvector of the unweighted XY coordinates of the selected atoms is aligned
with the X axis.

• xyalign
The largest eigenvector of the unweighted XY coordinates of the selected atoms is aligned
with the XY diagonal.

• yalign
The largest eigenvector of the unweighted XY coordinates of the selected atoms is aligned
with the Y axis.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 297

CACTVS Tcl and Python Scripting Language Reference
Additionally, the mode argument may an ensemble handle or reference. In that case, it is interpreted
as a substructure, matched onto the ensemble, and if a match is found, the 2D coordinates of the
ensemble atoms are adjusted by scaling and rotation for maximum overlap between the 2D
coordinates of the substructure and the matched part of the ensemble. This mode retains the relative
positions of the matched atoms - this is not a full redraw operation around a match template.

The command returns 0 (nothing done) or 1 (coordinates changed).

ens pack
ens pack ehandle ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?
e.pack(?maxsize=?,?requestprops=?,?suppressedprops=?,?compressionlib=?)

Pack the ensemble object into a base64-encoded compressed serialized object string. This string
does not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. Outside object relationship information, such as the dataset the ensemble might be a
member of, or tables the ensemble is associated with, are not included.

The maximum size of the object string (default -1, meaning unlimited) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The two optional parameters lists allow to request a specific property set to be part of the package,
even if it normally would not be included, and to explicitly omit properties from the dump. No
property computation is performed, and suppressed properties are not purged from the source
ensemble.

Ensembles can be restored from a packed object string by the ens unpack and ens create
commands.

The ensemble object and its minor objects are unchanged after using this command.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.

In PYTHON, ensembles support the standard pickle/unpickle protocol.

Example:
set dbstring [ens pack [ens create CC=O]]

ens pis
ens pis ehandle ?filterset? ?filtermode?
e.pis(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the
ensemble contains. This is explained in more detail in the section about object cross-references.

Examples:
ens pis $ehandle
298 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one  system and one  system in this representation.

ens prepare
ens prepare ehandle molfilehandle
e.prepare(molfileref)

Prepare the ensemble for output via the specified file handle, for example by pre-computing
properties that are needed for output. This has only an effect if the I/O module for the format of the
file handle provides an output object preparation function, which is currently only the case for the
BDB database format. The output of prepared and unprepared ensembles sent to the same file handle
is indistinguishable.

The purpose of this command is to allow the preparation of the ensembles for output in a separate
thread. For unprepared ensembles, a significant part of the time to write the record may be spent in
computing required data. During this time, the file handle is blocked. Prepared ensembles already
contain all required data, and are thus faster to write to file. The total time required in single-thread
scripts for a simple molfile write command vs. a ens prepare plus molfile write combo is
not much different. However, these operations are largely independent, and on multi-threaded
scripts the total time savings can be significant if the two commands are executed in different
threads.

The command returns the molfile handle or reference.

ens properties
ens properties ehandle ?pattern? ?noempty?
e.properties(?pattern=?,?noempty=?)

Get a list of valid properties of the ensemble and its minor objects. Property subsets may be selected
by a non-empty filter pattern, which the property names must match in order to be listed. If the
ensemble is a member of a reaction, reaction properties are included in the list. The same mechanism
is used for dataset properties.

If the noempty flag is set, only properties where at least one data element controlled by the ensemble
(i.e. a value for an atom of the ensemble, etc.) is not the property default value are output. By default,
the filter pattern is an empty string, and the noempty flag is not set.

This command may also be invoked as ens props or e.props().

Example:
ens properties $ehandle X_*
ens props $ehandle

The first example returns a list of the currently valid reaction properties of the reaction the ensemble
is a member of, or an empty list if it is not. The second example lists all properties, including those
of the ensemble proper, its minor objects such as atoms and bonds, and possibly of the reaction the
ensemble is a member of, if it is an reaction ensemble.

ens purge
ens purge ehandle propertylist/objectclass/specialname ?emptyonly?
e.purge(?properties=?,?emptyonly=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 299

CACTVS Tcl and Python Scripting Language Reference
Delete property data from the ensemble. The properties may either be properties of a reaction the
ensemble is a member of (prefix X_), properties of a dataset the ensemble is a member of (prefix D_),
or properties of the ensemble proper and its minor objects, such as ensemble or atom properties. If
a property marked for deletion is not present, it is silently ignored.

If an object class name, such as ens or atom, is used instead of a property name, all properties of that
class set on the ensemble are deleted, if they are not locked, or filtered out by the optional
empty-only flag.

Setting the optional boolean flag emptyonly allows restricts the deletion to those properties where
all the values for a property associated with a major object (such as on all atoms in an ensemble for
atom properties, or just the single ensemble property value for ensemble properties) are set to the
default property value.

Besides normal property names, a few convenient special names for common property deletion
tasks are defined and can be used as a replacement for the property list. These include:

• atomquery
Delete atom query properties (A_QUERY and any other atom query property).

• atomstereochemistry
Delete all atomic atom stereo descriptors, but keep those for bonds.

• bondquery
Delete bond query properties (B_QUERY and any other bond query property).

• bondstereochemistry
Delete all bond stereo descriptors, but keep those for atoms.

• isotopes
Delete isotope information in A_ISOTOPE and other isotope properties which may be defined
in future software versions.

• query
Delete query information (A_QUERY and B_QUERY, and any other query property).

• radicals
Delete atomic radical information in A_RADICAL and other radical-related properties which
may be defined in future software versions.

• stereochemistry
Delete all stereochemistry descriptors, including 2D wedges, but not 3D coordinates. The
implicit property list includes A_LABEL _STEREO, B_LABEL_STEREO, A_CIP_STEREO,
B_CIP_STEREO, A_DL_STEREO, B_CISTRANS_STEREO, A_HASH_STEREO, B_HASH_STEREO,
A_MAP_STEREO, B_MAP_STEREO, A_STEREOINFO, B_STEREOINFO, A_STEREO_GROUP,
M_STEREO_COUNT, E_STEREO_COUNT and B_FLAGS (only selected bits, the property remains
valid if present).

• wedges
Delete wedge bond flags in property B_FLAGS. If B_FLAGS is not present, the command is
ignored and no computation attempt is made.

Examples:
300 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ens purge $ehandle X_IDENT
ens purge $ehandle E_IDENT 1
ens purge $ehandle stereochemistry

The first example deletes the property data X_IDENT from the reaction the ensemble is a member of
- provided it actually is a reaction ensemble. The second example deletes property E_IDENT from the
ensemble if the property value is equal to the default value for E_IDENT. The last example removes
all stereochemistry information from the ensemble.

The command returns the original ensemble handle or reference.

ens reaction
ens reaction ehandle ?filterlist?
e.reaction(?filters=?)

Return the handle or reference of the reaction the ensemble is a member of. Optionally, the reaction
may be filtered by a simple filter list. If the ensemble is not part of a reaction, or does not pass the
filter, an empty string is returned for TCL, and None for PYTHON.

Because an ensemble can only participate in a single reaction, the command is spelled ens
reaction in singular.

Example:
ens reaction $ehandle

ens rebuild
ens rebuild ehandle ?minor_objectclass?
e.rebuild(?objectclass=?)

This command discards all minor objects and attached property data of a specific class associated
with the ensemble. Afterwards, the minor object set is re-populated by the standard set-up function
of the object class, if such a set-up function is defined.

If no minor object class is specified, bonds are regenerated - for example from 3D atomic
coordinates. Bonds, molecules (mols), sigma and pi systems (sigmas, pis), rings and ring systems
(rings, ringsystems) can all be rebuilt. However, by default no reconstruction function is defined for
groups and surface patches (surfaces), although it is possible to set one via the object class
manipulation command.

Generally, object sets should only be regenerated under exceptional circumstances, for example in
order to undo a manual manipulation. Object sets are automatically generated when they are
required - for example, bonds are automatically derived from atomic 3D coordinates if any property
data associated with bonds is used in any context, and the ensemble so far did not contain bond
information. An explicit request to generate connectivity is rarely needed.

Under normal circumstances, the use of minor object information such as bonds encoded explicitly
in an input file is preferable to indirectly derived sets, such as regenerated connectivity. The
connectivity algorithm of the toolkit is rather capable, but has its limitations, especially when
hydrogen-depleted charged structures are encountered.

Files encoded in a few notorious structure file formats, such as PDB, may contain an incomplete
bond set - without any indication that the bond set is incomplete. The PDB input routine tries to
detect this, and automatically augments the bond set if obvious deficiencies are found. However, in
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 301

CACTVS Tcl and Python Scripting Language Reference
case of minor omissions in the input data, a PDB structure may be one of the rare cases when an
explicit request for a rebuild of the bond set can be helpful.

Besides the set of ensemble minor objects, the pseudo object class aro is also recognized. This
keyword triggers a re-evaluation of aromatic systems and re-assign Kekulé bond orders, but not
completely redo the bond set.

Example:
ens rebuild $ehandle bonds

This command discards the old bond set, and generate a new one. This only works if there is
information which can be used for regeneration, such as atomic 3D coordinates. If no such
information is present, the loss of bonds is irreversible and the ensemble useless for almost all
applications short of a simulated plasma torch atomization.

The command returns the original ensemble handle or reference.

ens ref
Ens.Ref(identifier)

PYTHON only method to get an ensemble reference from a string handle or another identifier. For
ensembles, other recognized identifiers are ensemble references, or integers encoding the numeric
part of the handle string.

ens rename
ens rename ehandle srcproperty dstproperty
e.rename(srcproperty=,dstproperty=)

This is a variant of the ens assign command. Please refer the command description in that
paragraph.

ens replace
ens replace ehandle property/enshandle/emptystring ?preserved_propertylist/all?
e.replace(source=,?keep=?)

Substitute the ensemble with a structure decoded from data held in an ensemble property of that
ensemble, or with the structure and associated data of another ensemble identified by its handle.

The original handle of the command ensemble is always preserved. The original structure data, with
the exception of explicitly saved properties, is discarded. If the structure source argument is an
ensemble handle, that ensemble is deleted.

For convenience, the replacement data argument may also be an empty string, which results in a
no-op.

If the replacement argument is a property name, the exact type of operation depends on the data type
of the property. The following data types are currently supported:

• structure
Replace command ensemble directly with the property data ensemble.

• string
Try to interpret the string as a structure line notation (as in ens create).
302 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• url
Try to download the file behind the Internet address and read it as a structure file.

• blob
Try to read the contents as an in-memory structure file record.

• diskfile, mapfile
Try to read it as a single-record structure file.

Any other property data type, NULL values of the property, non-ensemble properties, or malformed
data result in an error and the original structure remains unchanged.

The structure source property data does not become not a property of the updated ensemble. In that
ensemble, by default all other ensemble properties of the original are also purged, and all ensemble
properties of the replacement structure are retained. However, by specifying a list of properties to
be transferred, or using the special argument all, all or a subset of the ensemble property data of the
original ensemble can be transferred to the replacement structure and thus saved. Under these
circumstances, property data from the original ensemble has precedence and overwrites existing
values of the same property on the replacement ensemble. However, all ensemble property data on
the replacement ensemble which are not overwritten remain present in the updated ensemble. It is
not possible to transfer atom, bond, or any other ensemble minor object property data to the
replacement structure directly with this command.

The command returns the original, unchanged ensemble handle or reference.

Examples:
ens replace $eh E_CANONIC_TAUTOMER [list E_IDENT E_NAME]

This command replaces the current structure with its canonic tautomer. The values of properties
E_IDENT and E_NAME from the original ensemble are kept in the updated form, all other ensemble
property data of the original is discarded.
ens replace $eh $ehnew

Replace the structure with the one in $ehnew. The second ensemble is destroyed in the process.

ens replicate
ens replicate ehandle ?count?
e.replicate(?count=?)

This command duplicates all molecules in the ensemble and appends them to the atom, bond and
other minor object lists of the ensemble.

The default replication count is one, but any other number of duplications may be chosen by an
appropriate count parameter. If the count is less than one, the command is silently ignored.

The command returns the original ensemble handle or reference. As part of the integration step,
merge property invalidation events are generated.

The ens dup command generates a new ensemble, while this command expands the current
ensemble.

Example:
echo [ens get [ens replicate [ens create C.CC]] E_SMILES]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 303

CACTVS Tcl and Python Scripting Language Reference
This prints C.CC.C.CC as result SMILES string, because both molecules in the original ensemble
were duplicated and appended to the existing ensemble data.

ens rings
ens rings ehandle ?filterset? ?filtermode?
e.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the ensemble
contains. This is explained in more detail in the section about object cross-references.

Examples:
ens rings $ehandle
ens rings $ehandle [list heterocycle aroring]

The first example returns the labels of all rings the ensemble contains. If the ensemble does not
contain any rings, an empty list is returned. Only labels of rings in the SSSR or ESSSR set are
returned, even if the currently configured ring set is larger. The second example filters the rings -
only heteroaromatic rings are reported.

ens ringsystems
ens ringsystems ehandle ?filterset? ?filtermode?
e.ringsystems(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring systems the
ensemble contains. This is explained in more detail in the section about object cross-references.

Examples:
ens ringsystems $ehandle
ens ringsystems $ehandle [list heterocycle aroring]

The first example returns the labels of all ring systems the ensemble contains. If the ensemble does
not contain any ring systems, an empty list is returned. The second example filters the ring systems
- a ring system label is included in the output list only if that ring system contains one or more hetero
aromats.

ens rotate
ens rotate ehandle angle axis ?center? ?property?
e.rotate(angle=,axis=,?center=?,?coordinateproperty=?)

Rotate the ensemble in 3D space by manipulating property A_XYZ, or a custom atom float vector
coordinate property.

The angle argument is a floating-point number in degrees. The axis argument is a 3D vector in
standard notation, i.e. usually a list/tuple of three floating point numbers for the x, y and z
components. If the last optional argument is omitted, the center of rotation is the 3D unweighted
coordinate average of all ensemble atoms with valid 3D coordinates, which is computed as property
E_CENTER. If the center argument is specified, it is expected to be a 3D point which is used as center
of rotation instead.

This operation triggers a 3dglop property invalidation event.

The command returns the original ensemble handle or reference.
304 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
ens rotate $eh 60 {0 0 1}

Rotate the ensemble 60 degrees counterclockwise around the z axis.

ens scan
ens scan ehandle expression/queryhandle ?mode? ?parameterdict?
e.scan(query=,?resultmode=?,?parameters=?)

Perform a query on the ensemble object. The syntax of the query expression and the optional
selection list is the same as that of the dataset scan command with a transient dataset consisting
of the current ensemble only. For more details, please refer to the paragraphs on dataset scan and
molfile scan.

The return value depends on the mode. The default query mode, this is different from the default in
molfile scan, is exists.

ens set
ens set ehandle ?property value?...
e.set(property,value,...)
e.set({property:value,...})
e.property = value
e[property] = value

Standard data manipulation command for setting property data. It is explained in more detail in the
section about setting property data.

Example:
ens set $ehandle E_NAME “Pharmacon X-25”

ens setparam
ens setparam ehandle property ?key value?...
ens setparam ehandle property dictionary
e.setparam(property,?key,value?...)
e.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

The return value is the updated property computation parameter dictionary.

Example:
ens setparam $ehandle E_GIF comment “Top Secret Lead Structure”

ens setup
ens setup ehandle ?minorobjclass?
e.setup(?objectclass=?)

Query the status of the minor object lists in the ensemble, or initialize one of these to an empty list.

If no class is specified, a dictionary with all currently registered minor object classes of the ensemble
is returned. The object class names are the key, the value is a boolean flag for the status.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 305

CACTVS Tcl and Python Scripting Language Reference
If an object class argument is supplied, the object class is instantiated on the ensemble, if necessary
by auto-loading an object class handler module. Unknown object class names result in an error. If
the minor object class is already instantiated, it is not changed. Otherwise, an empty minor object
set is added. This is even the case if the minor object class handler provides a default object setup
function (see ens rebuild command). Instantiating an object class with this command always
creates an empty collection of the minor objects associated with the ensemble.

Minor object lists are usually implicitly instantiated, as in
ens get $eh M_LABEL

which automatically sets up the molecule/fragment object set if it is not yet present, and populates
it with objects identifying disconnected fragments in the ensemble, or
group create $eh [list $a1 $a2 $a3]

which adds a group to the ensemble, again automatically initializing the group object set if it was
not initialized.

The ens setup command is intended for special circumstances and not commonly used.

ens show
ens show ehandle propertylist ?filterset? ?parameterdict?
e.show(property=,?filters=?,?parameters=?)
Ens.Show(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens show is that
the latter does not attempt computation of property data, but raises an error if the data is not present
and valid. For data already present, ens get and ens show are equivalent.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens sigmas
ens sigmas ehandle ?filterset? ?filtermode?
e.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the
ensemble contains. This is explained in more detail in the section about object cross-references.

Examples:
ens sigmas $ehandle

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

ens sort
ens sort ehandle ?sort_property? ?relabel? ?duplicate? ?datasethandle? ?position?
e.sort(?property=?,?relabel=?,?duplicate=?,?target=?,?position=?)
306 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Sort the atoms in an ensemble according to a property value. The default property is A_LABEL, the
standard atom label. The first optional argument can be used to sort on a different property, or a
property field. However, the property must be either an atom property, or a molecule property. If the
relabel flag is set, the ensemble atoms and molecules are renumbered after the sort in ascending
order, starting with one. By default, atoms and molecules retain their original labels even if they
change positions. If the duplicate flag is set, the sort operation works on a duplicate of the original
ensemble. If the flag is unset, or the argument omitted, the operation modifies the original ensemble
object.

The final two optional arguments allow the direct transfer of the modified ensemble or duplicate into
a dataset, similar to an ens move command. The ensemble may be inserted into a specific position
of a target dataset. If the special value end is used, or the zero-based position index is beyond the
current end of the target dataset, the ensemble is simply appended. By default the ensemble is not
moved, and if it is moved without an explicit position, it is appended.

The sequence of the atoms in the ensemble is rearranged so that the atoms are in ascending order of
the values of the sort property or property field. Indirectly, molecules are also rearranged to
correspond to the sequence of the first atoms in every molecule. This operation triggers a shuffle
property invalidation event. If the renumbering option is selected, the atom and molecule sets are
re-labeled with their standard label properties (i.e. A_LABEL for atoms, M_LABEL for molecules) in
ascending order, starting with one. Other minor object collections remain in their original sequence
and retain their current labels. Certain important properties which, if present, are dependent on atom
label values, notably A_LABEL_STEREO, B_LABEL_STEREO and B_FLAGS, are specifically adjusted to
the new labeling scheme instead of being invalidated.

The command returns an ensemble handle or reference. If the operation was operating on a
duplicate, it is the handle or reference of the new ensemble, otherwise that of the original ensemble.

ens split
ens split ehandle ?minsize? ?splitproperty?
e.split(?minsize=?,?splitproperty=?)

Split the molecules of the ensemble into individual ensembles. The return value is a list of the
handles or references of the new ensembles. If the original structure contains only a single fragment,
the result is the same as a simple ens dup command. The split structures do not become a member
of a reaction or dataset, even if the original structure is.

The optional minsize parameter is a minimum value for the number of heavy atoms (property
M_HEAVY_ATOM_COUNT) in the molecules. If this is not an empty string, molecules which have less
heavy atoms than the minimum are not duplicated. If all molecules in the input ensemble are smaller
than the required size, an empty list is returned.

The optional splitproperty argument can be used to split the ensemble on values of a molecule
property, which needs to be either already set or computable, instead of simply separating fragments
on connectivity. All molecules in the input ensemble which have a common value of this property
are put into a joint result ensemble, and each distinct split property value starts a new result
ensemble. Molecules with a common property value do not need to be present in the input ensemble
in a consecutive sequence, nor are there any special requirements for the data type or value range
of the split property, as long as the data type has a comparison function. If the values of the split
property are distinct over all molecules in the input ensemble, the outcome of command is
indistinguishable from running it without any split property.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 307

CACTVS Tcl and Python Scripting Language Reference
Example:
lassign [ens split [ens create “CC.CC”]] eh1 eh2

This example creates an ensemble with two ethane molecules, splits it, and assigns the two new
ensemble handles to variables eh1 and eh2.
set elist [ens split $eh {} M_REACTION_LABEL]

Split ensemble along the original reagent or product data blocks found in an RXN or RDF file.

ens sqldget
ens sqldget ehandle propertylist ?filterset? ?parameterdict?
e.sqldget(property=,?filters=?,?parameters=?)
Ens.Sqldget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The differences between ens get and ens sqldget are
that the latter does not attempt computation of property data, but initializes the property value to the
default and returns that default, if the data is not present and valid; and that the SQL command variant
formats the data as SQL values rather than for TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens sqlget
ens sqlget ehandle propertylist ?filterset? ?parameterdict?
e.sqlget(property=,?filters=?,?parameters=?)
Ens.Sqlget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The difference between ens get and ens sqlget is
that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes..

ens sqlnew
ens sqlnew ehandle propertylist ?filterset? ?parameterdict?
e.sqlnew(property=,?filters=?,?parameters=?)
Ens.Sqlnew(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The differences between ens get and ens sqlnew are
that the latter forces re-computation of the property data, and that the SQL command variant formats
the data as SQL values rather than for TCL or PYTHON script processing.
308 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens sqlshow
ens sqlshow ehandle propertylist ?filterset? ?parameterdict?
e.sqlshow(property=,?filters=?,?parameters=?)
Ens.Sqlshow(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ens get command. The differences between ens get and ens sqlshow are
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

ens subcommands
ens subcommands
dir(Ens)

Lists all subcommands of the ens command. Note that this command does not require an ensemble
handle.

ens surfaces
ens surfaces ehandle ?filterset? ?filtermode?
e.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of surface patches the
ensemble contains. This is explained in more detail in the section about object cross-references.

Example:
ens surfaces $ehandle carbon

This example lists all surface patches which are associated with carbon atoms. Surface patches
associated with other atoms, or with no atoms, are not listed.

ens swapin
ens swapin ehandle
e.swapin()

Swap an ensemble from the disk store fully back into memory, and disable further automatic loading
and shelving. If the ensemble was not swapped out, the command does nothing.

The command returns the original ensemble handle or reference.

ens swapout
ens swapout ehandle
e.swapout()
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 309

CACTVS Tcl and Python Scripting Language Reference
Remove most of the ensemble data from memory and store it in a temporary disk store. The
ensemble handle remains valid. As soon as it is used in a command again after this command has
been executed, the swapped ensemble data is automatically reloaded from file, and then stored again
when the object lock is released. To disable the automatic swapping of an ensemble, use the ens
swapin command.

This command is intended to be used in cases where a large number of ensembles must be kept in
memory. Its routine use is not encouraged - it is only useful in case the programmer knows about
access patterns. In other cases, the standard virtual memory mechanism of the operating system
might yield better performance results.

The ensembles are stored as binary blobs in a key/value store in a process-specific swap directory
cactvs%d, (%d is replaced by the process ID) which is created automatically in the standard
temporary directory. When an ensemble is deleted, its swap record is also removed, if one was
created during the lifetime of the ensemble. When a CACTVS application program exits, the swap
store as well as the swap directory are automatically deleted, even without explicit deletion of the
last set of ensembles in memory. In case of program crashes, the swap directory and its contents may
however survive. If ensemble swapping is used with unstable applications, the temporary directory
should be checked from time to time.

The command returns the original ensemble handle or reference.

Example:
ens swapout $ehandle

ens tables
ens tables ehandle ?filterlist?
e.tables(?filters=?)

Return a list of the handles of all table objects the ensemble is associated with. Optionally, the table
set may be filtered by a simple filter list. If the ensemble is not related to any table, or none of these
tables passes the filter list, an empty string is returned.

This command is only available if the toolkit was compiled with table support.
Example:
ens tables $ehandle

ens taint
ens taint ehandle propertylist/changeset ?purge?
e.taint(property=,?purge=?)

Issue a property data tainting event which acts on the ensemble data.

If the ensemble is a member of a dataset, the dataset and its objects are not tainted.

The event list may contain any number of the following items:

• A property name.
In that case, all properties which depend on the specified one are invalidated. If the optional
purge parameter flag is also set, the specified property itself is also deleted. By default the
self-deletion flag is not set.
310 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• An object class
All properties which a sensitive to changes in the object class collection associated with the
target ensemble are deleted. Example:
ens taint $eh atom

This deletes all properties which are sensitive to changes in the atom make-up of the
ensemble.

• 2dop
All properties which are dependent on 2D layout coordinates are invalidated.

• 3drelative
All properties which are dependent on relative inter-atomic 3D atomic coordinate changes
are invalidated.

• 3dabsolute
All properties which are dependent on absolute 3D atomic coordinate changes are
invalidated.

• dup
All properties which do not survive duplication of the underlying object are invalidated.

• hadd
All properties which are sensitive to hydrogen addition or deletion via dedicated hydrogen
processing commands, which do not trigger the default atom and bond change events
associated with atom addition or deletion and bond changes, are purged.

• merge
All properties which are invalidated by merging ensembles are invalidated.

• shuffle
All properties which are dependent on the order of minor objects in the ensemble are purged.

• stereo
All properties which are invalidated by stereo changes are dropped.

The command returns the original ensemble handle or reference.

ens torsions
ens torsions ehandle ?filterset? ?filtermode?
e.torsions(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the torsion objects the
ensemble contains as minor objects. This is explained in more detail in the section about object
cross-references.

ens transfer
ens transfer ehandle propertylist ?targethandle? ?targetpropertylist?
e.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one ensemble to another ensemble or other major object, without going
through an intermediate scripting language object representation, or dissociate property data from
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 311

CACTVS Tcl and Python Scripting Language Reference
the ensemble. If a property in the argument property list is not already valid on the source ensemble,
an attempt is made to compute it.

If a target object is specified, and a property is not an ensemble but an ensemble minor object
property, the number of property-associated minor objects is usually expected to be the same in both
ensembles, and expected to have the same label set, tough it is not required that they are in the same
sequence. Property data is assigned to the target ensemble minor objects with the minor object label
as reference key. In case of a label set or object count mismatch between the two ensembles, no error
is raised. Excess source data items are discarded, and excess target minor objects, or those with
unmatched labels, retain their original value if the property was present on the target, or are set to
the default value if the property was freshly instantiated. In this command mode, the return value is
the handle of the target ensemble. Source and target ensembles cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple ens get, i.e. the result is the property data value or value
list. The property data is then deleted from the source object. In case the data type of the deleted
property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only unlinked
from the source object, but not destroyed. This means that the object handles returned by the
command can henceforth the used as independent objects. They can be deleted by a normal object
deletion command, and are no longer managed by the source object..

Properties which are ensemble minor object properties can only be transferred to another ensemble.
Ensemble properties can be moved to other major objects.

Example:
ens transfer $eh E_EMF_IMAGE $eh2

This copies property E_EMF_IMAGE from the first ensemble to the second. The property data remains
valid on the source ensemble.
set ehc [ens transfer $eh E_CANONIC_TAUTOMER]

Get the handle of the canonic tautomer of the source ensemble, and dissociate it from the source
ensemble.

ens transform
ens transform ehandle SMIRKSlist ?direction? ?reactionmode? ?selectionmode?

?flags? ?overlapmode? ?{?exclusionmode? excludesslist}? ?maxstructures?
?timeout? ?maxtransforms? ?niterations? ?statusvariable?

e.transform(transforms=,?direction=?,?reactionmode=?,?selectionmode=?,?flags=?,
?overlapmode=?,?excludess=?,?maxstructures=?,?timeout=?,?maxtransforms=?,
?iterations=?,?statusvariable=?)

This command applies one or more SMIRKS transforms to an ensemble and returns a list of ensemble
handles or references of transformation products. The transformation products are filtered for
312 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
duplicates. The original start structure is never returned - if a transform set does not match at all, an
empty list is returned.

The required parameter after the ensemble handle is a list of SMIRKS lines, where each SMIRKS line
is itself a list. A SMIRKS line is in the simplest case a simple SMIRKS transform without any extra
data, but it may be padded by additional parameters which apply only to the application of that
transform. If these optional parameters local to the current transform are not specified, their global
counterpart on the command line is used instead. The syntax of an individual SMIRKS line is
SMIRKStransform ?step? ?direction? ?flags? ?overlapmode?

The SMIRKS transform part is the only required list element. It may be provided either as a string in
standard Daylight notation, or as a handle of a reaction, which should have been decoded in SMIRKS
mode (see reaction create command). Care should be taken to pass SMIRKS strings as proper
elements of a list, even if only a single string is used, because they may contain whitespace and
naming information after the actual transform code. Example:
ens transform $ehandle [list [list {[C:1][C:2]>>[C:1]=[C:2] Dehydrogenation} 1]]

The string Dehydrogenation is part of the transform specification string and not the transform step.
The name string is attached to the (intermediate, in this case) transform reaction object as property
X_NAME and can be used to track the reaction history of transform result structures.

The optional step element in a transform line (a positive integer or 0) identifies the reaction step of
the transform. Transform sets of different step numbers are isolated from each other and do not
interact. Transforms are executed in ascending step number. Transforms with different step numbers
need not to be sorted, and the step numbers neither need to begin with one, nor form an uninterrupted
sequence. A step number of 0 disables the transform. The default step number is one. All transforms
of the same step number are essentially executed in parallel and may interact with each other.

The third and again optional element of transform lines is the direction identifier. It may be either
forward, backward, or bidirectional. In forward mode, only the left part of a transform is used for
matching, and the matched structure part is modified according to the description on the right side.
backward works the other way around, and in bidirectional mode, both sides of the transform
scheme are independently matched, and, if the match is successful, transformed to the other side. If
this parameter is not specified, or specified as an empty string, the global direction parameter from
the command line is substituted.

The fourth and once more optional element of a transform line is a list of flag words. Every word
sets an additional flag. Currently, the following flag words are recognized:

• absolutestereo
If this flag is set, the stereochemistry of the right side of a transform is transferred unchanged
to the transform result ensemble, without attempting to interpret the operation as a reaction
with stereochemistry inversion or retention by examination of the pattern on the left side. If
the left side does not contain stereochemistry, the behavior induced by this flag is already
the default and it has no effect. It also has no effect if the right side of the transform does
not specify stereochemistry.

• allrequired
If this flag is set, only result structures which were generated by the combined application
of all transforms marked with this flag are accepted as final results. If any of the transforms
marked with this flag did not contribute to a result structure, it is discarded. By default, the
result set is not filtered by its origination from any specific transform.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 313

CACTVS Tcl and Python Scripting Language Reference
• anyrequired
If this flag is set, only result structures which were generated by the application of at least
one of all transforms marked with this flag are accepted as final results. By default, the result
set is not filtered by its origination from any specific transform.

• appendpathname
The same as setpathname, except that the content of an existing property E_NAME on the
input ensembles is not overwritten. Transform path information is always appended. If the
input structure does not have initial name information, the operation of the two flags is
indistinguishable.

• changeelements
If set, the element number and atom type of matched atoms is changed to that of the
matching right side template. By default, atom type and element number of atoms which are
not newly added are preserved in the transformed ensembles. This is usually desirable for
the use of element lists and other generic expressions as part of transform patterns. If this
flag is set, the atom is changed to the exact template definition - including changes to any
atoms, element lists, or complete atomic recursive SMARTS expressions.

• chargeneutral
If set, the sum of all changes in the formal atom charges in the set modified by the
application of the transform, excluding any atoms which are deleted or added, must be zero.
This is helpful for example for charge redistribution transforms. For example, a transform
like
[*;+1:1]=[*:2][N:3]>>[*:1][*:2]=[N;+1:3]

only works on structures where the nitrogen atom is neutral, because otherwise the total
charge of the match three atom block would change. It would be possible to achieve the
same effect with explicit indication of allowed charges on all involved atoms, but this flag
can be convenient.

• chargeradicals
If this flag is set, radicals which are generated as result of a transform are charged using
chemistry common sense. A cleaner and preferable method is to explicitly encode charge in
the transform.

• checkaro
If set, aromaticity checking takes place. Atoms specified as aromatic in the transform
pattern only match aromatic atoms in the target ensemble, and all other atoms only match
non-aromatic atoms. By default, the aromaticity status of atoms is ignored in evaluating the
pattern match.

• checkcharges
If set, formal charges on the match side of the transform must exactly match the charges on
the matched structure atoms. By default, charges are not used for determining a match. This
flag should be set if the transform pattern should only match specific charges.

• checkkekule
If this flag is set, bond orders of aromatic systems in the substrate molecules must be
matched exactly as specified in the transform.

• checkstereo
If set, the stereochemistry on the match side of the transform must match the
stereochemistry on the matched structure atoms. By default, stereochemistry is not used for
matching.
314 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• checkwedges
If this flag is set, bonds in the transform ensemble must match the wedge style specified in
the left side of the transform template. This is useful only under very specific circumstances,
since the style and placement of wedges does not uniquely identify a stereo isomer.
Checking stereochemistry is therefore usually performed via the checkstereo flag, which
relies on the comparison of stereo descriptors instead of wedges.

• distinctpatternmatch
If this flag is set, the match mode of the substructure side of the transform is changed. The
default match mode is all, meaning that all possible orientations of the substructure are
generated, except in case of a transform application mode first, where the substructure
match mode is also first. If this flag is set, the match mode is changed to distinct. In this
mode, only pattern matches which differ in the set of structure atoms matched are generated,
removing alternative mappings of the substructure on the same set of structure atoms. This
mode is faster and can reduce the number of computation steps significantly, but the
applicability of this match mode for the generation of the full set of desired transform results
must be determined by the programmer with an eye for possible asymmetry of the matched
structures outside the atom set of the transform substructure.

• dropradicals
If this flag is set, transform result structures are discarded if they are radicals. In case the
chargeradicals flag is also set, the radical check is performed after the attempt to charge
standard radical centers and may thus be used as a second line of defense against
unreasonable structures.

• filtercharges
If set, use the localization of formal charges on atoms as a criterion to distinguish
transformation results. By default, the standard hashcoding process is used which does not
care about the placement of formal charges as long as these forms are interconvertible. For
example, with the standard duplicate filtering process, pentavalent and ionic forms of nitro
groups are considered equivalent. However, this will also prevent transforms which convert
one form of a nitro group into another from working, since the transform result is discarded
as being equivalent to the input structure. In order for this kind of transform to function as
expected, the filtercharges flag must be set, which configures the duplicate filter to
distinguish between the two forms. In that case, the preservecharges flag (see below) must
not be set in order to allow the transformation to change the charge, but the checkcharges
flag (see below) should be set in order to restrict the match of the transform to a specific
ionic or pentavalent form.

• filterisotopes
This flag instructs the duplicate detection mechanism to use hash codes which use isotope
labeling information for duplicate removal. This flag is not exclusive to the filterstereo flag
- both attributes can be combined to select a suitable hash code.

• filterkekule
This flag instructs the duplicate detection mechanism to use compute hash codes which are
dependent on the exact bond order - including that of Kekulé structures of aromatic systems
- for duplicate removal.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 315

CACTVS Tcl and Python Scripting Language Reference
• filterradicals
If set, use the localization of free electrons on atoms as a criterion to distinguish
transformation results. By default, the standard hashcoding process is used which does not
care about the placement of electrons as long as these are interconvertible. However, this
also prevents transforms which convert from one electron localization scheme to another
without accompanying atom or bond changes from working, since the results are discarded
as being equivalent to the input structure.

• filterstereo
This flag instructs the duplicate detection mechanism to use stereo-specific hash codes for
duplicate removal. This flag is not exclusive to the filterisotopes flag - both attributes are
used to select a suitable hash code.

• keepiterationintermediates
If this flag is set, and multiple iterations are run, the results from intermediate iteration steps
are part of the returned set. By default, only the results of the last iteration are returned.

• kekulize
If this flag is set, a new Kekulé form of aromatic systems in the transformed structure is
constructed. This is useful when the matching pattern did not check for explicit single and
double bonds, so that after applying the transformation the Kekule pattern may be wrong,
for example after swapping an electron-pair donating N witch a normal pi-bonded C atom.
Still, it is generally recommended to use explicit bond order manipulation since that method
is more robust.

• linkreaction
Ensembles which are created via a transform for which this flag is set are linked to an
automatically created reaction object in which the transform result ensemble is the reaction
product, and a duplicate of the input ensemble the reagent. In addition, the X_NAME and
E_REACTION_ROLE properties are set. The return value of the ens transform command is
still a list of the handles of the transform result ensembles. The additional reagent ensemble
handles are not included, and neither are the handles of the reactions. In order to access the
reaction information, a lookup command such as ens reaction with a result ensemble as
argument can be used.

• lockimplicitbonds
Bonds in the transform structure which are represented by bonds with an implicit bond order
on the right side of the pattern (in forward direction, left side for reverse transforms) do not
get their bond order adjusted, with the rationale that these pattern bond orders are not well
defined anyway.

• nitrostandardizer
If this flag is set, the input structure duplicate(s) entered as start compound in the transform
processing queue is standardized to possess the neutral, pentavalent form of nitro groups
and similar groups. This option does not change the input structure(s) of this command but
only the first structure duplicate entered into the processing queue.

• nochargepaircollapse
Disable the feature that bonds which connect atoms of opposite +1 and -1 formal charges
are also matched by the equivalent bond with a bond order increased by one and neutral
atoms.
316 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• nohadd
Part of the normal transformation procedure is a final hydrogen addition step before
duplicate checks etc. are performed. This default behavior is designed to result in standard
fully hydrogen-complete structures. If this flag is set, this step is omitted. This can for
example be useful to avoid the addition of hydrogens to atoms with different default
hydrogen addition characteristics if formal atomic charges have been moved. This option
does apply to the input structure(s) of this command but only the first structure duplicate
entered into the processing queue.

• preservecharges
If set, charges are not modified after a transform is matched. By default, the charge of
matched atoms is set to the charge of the matching atom in the transform template, as long
as the atom has sufficient free electrons to allow the charge change. Atoms which are newly
introduced by the transform always bear the charge specified in the transform description.
This flag does not influence the match process - charges specified in the transform may still
be used for selecting specific atoms via the checkcharges flagpreservestereo
If set, atom and bond stereochemistry are not changed on matched atoms and bonds. By
default, changes do occur - changed atoms or bonds have their stereochemistry reset if the
transform pattern does not contain stereochemistry, or set to a specific stereochemistry if it
does. If only the right side of a transform contains stereochemical descriptors, the
stereochemistry of the transformed product is set to that of the template (for example, a cis
double bond). If both the left and right side of a transform contain stereochemistry, the
chemistry at the transform product is inverted or retained, depending on the stereochemistry
change in the transform. Having stereochemistry only on the left side is possible, and
potentially useful for selecting specific enantiomers or diastereomers via the checkstereo
flag, but results in a reset (if this flag is not set) or retained (if this flag is set) stereochemistry
in the transformed ensemble.

• preservecoordinates
If this flag is set, 2D and 3D coordinates of the transform ensemble are retained. Newly
added atoms are set to a magic coordinates value. By default, a successful transformation
invalidates 2D and 3D coordinates, as well as all property data dependent on these.

• preservestereo
If the flag is set, all stereo descriptors are retained. By default, stereo centers and bonds
matched by the pattern are reset, or inherit their new value from the pattern.

• preservewedges
If set, the wedge status of bonds matching the transform pattern is preserved. By default,
wedges involving bonds which are changed, or which connect atoms which are changed (or
deleted and then re-added in other form), are reset. Note that this flag operates
independently of the set of stereo flags listed above. In most cases, the desired mode of
stereochemistry processing should be selected by specifying these flags, and the wedges
regenerated as needed. If combined with stereochemistry changes, the use of this flag may
otherwise lead to conflicting stereochemical information on the result ensembles.

• removeh
If set, an attempt is made to rescue bond changes which would fail because of insufficient
electrons for bond manipulations by deleting a minimum number of hydrogen atoms on the
bond atoms needed for the bond creation or bond order change. Without this option, a
transform like [C:1][C:2]>>[C:1]=[C:2] usually does work, since CACTVS is designed to
work on structures with a full hydrogen set. When this flag is set, the transform succeeds if
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 317

CACTVS Tcl and Python Scripting Language Reference
C1 and C2 both have at least one hydrogen. Alternatively, the transform can be specified
with explicit hydrogens as in [#1][C:1][C:2][#1]>>[C:1]=[C:2]. In that form, it always
removes the hydrogens because they do not appear on the right side. This is form is slightly
more complex and different from the Daylight mechanism.

• requireheteromatch
If set, among the structure atoms matched by the pattern there must be at least one hetero
atom in order to proceed with the transform modifications. If only carbon or hydrogen is
matched, this match is ignored.

• restricthydrogenmatch
If set, hydrogen matches are not permuted. This means that, for example, the first explicit
hydrogen around a transform substructure atom can only match the first hydrogen around a
structure atom, not all of them (for example, all 3 in a methyl structure group) in different
matches. This is an optimization which is frequently useful, if the transform results are
guaranteed to be identical regardless of which hydrogen atom was matched - for example,
when generating tautomers. However, if extended attributes of the structure hydrogen atoms
are significant, such as 3D position, charge or isotope labels, etc., setting this flag can lead
to the non-generation of distinct result structures.

• setatommatch
If this flag is set, the atom labels (A_LABEL) of the stored atoms on the left (substructure) side
of the transform are stored on the transformation result ensembles as property A_SSMATCH.
Atoms which are not matched are assigned a zero value.

In case a transform result structure is the product of more than one transform, each
transformation step adds a new property instance A_SSMATCH, A_SSMATCH/2, and so on.
Pre-existing A_SSMATCH properties on the transform input ensemble are not deleted. If these
exist, the new data is stored in the next unused property instance after the current instance
with the highest slot number.

• setatomstatus
If this flag is set, the status of the atom during the last transform is marked in property
A_TRANSFORM_STATUS. Possible values are none: atom did not participate, matched: it was
matched by the transform substructure, but did not change, changed: one or more atom
attributes, including possibly the element number, we edited, new: the atom was added by
the transform.

In case a transform result structure is the product of more than one transform, each
transformation step adds a new property instance A_TRANSFORM_STATUS,
A_TRANSFORM_STATUS/2, and so on. Pre-existing A_TRANSFORM_STATUS properties on the
transform input ensemble are not deleted. If these exist, the new data is stored in the next
unused property instance after the current instance with the highest slot number.

• setbondmatch
This option is very similar to setatommatch described above, except that matching left-side
substructure bond labels B_LABEL are stored in property B_SSMATCH.

• setbondstatus
This option is very similar to setatomstatus described above, except that bond history is
stored in property B_TRANSFORM_STATUS.
318 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• setpathname
If this flag is set, the name (property E_NAME) of the result ensembles is set to display the
transformation sequence the structure underwent from the input structure. The name is
formatted as a TCL-conforming list with one element for each transform applied. The first
character of each list element is either ’>’ or ’<’ to indicate application of the transform in
forward or reverse direction. It is followed by either the transform name (property X_NAME),
if it is available, or the transform index number (starting with 0). Any initial name of the start
structures of the transformation is cleared, so that the result name only contains transform
path information.

The fifth, final, and again optional element of a SMIRKS line is the overlap mode. Again, if this
parameter is omitted or supplied as an empty string, the global default from the command line is
used. The overlap mode determines whether a transform substructure which consists of multiple
disconnected fragments may match onto common target structure atoms or bonds. The following
values are supported:

• none
No overlap of the substructure fragments, neither on atoms nor on bonds. This is the default
mode, and the most commonly used.

• distinctmols
All disconnected fragments in the substructure must match different molecules in the target
structure. This is a useful mode to prevent, for example, intra molecular reactions.

• any
Any overlap of the substructure fragments is possible. This mode is rather useless for
transforms.

• nobonds
Atoms may overlap, but not bonds. This mode is actually highly useful in some contexts.

• noembed
Atoms and bonds may overlap, but no substructure fragment may be completely embedded
in the structure part matched by another fragment, meaning that at least one of any pair of
matching substructure fragments must match an atom which is not matched by the other
fragment.

• distinctatoms
Between any pair of matched substructure fragments, both fragments must match at least
one atom not matched by the other fragment.

Every SMIRKS line follows the outlined scheme, and all settings within that line are applicable only
to the current transform scheme.

There is no general limit for the maximum number of transforms in this command. However, if
transforms are combined with exclusion substructures, and these exclusion substructures are to be
applied on a per-transform basis, (see below), the highest transform index for which an applicability
flag can be set is 63. Every transform which is applied in bidirectional fashion, either by global
configuration or transform-specific flags, is counted twice toward this limit.

All parameters after the SMIRKS lines list act globally. The third and optional direction parameter,
command word number five, sets the default for the directionality of all transforms for which no
local override was set in their respective SMIRKS lines. If this parameter is not specified, the default
is forward.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 319

CACTVS Tcl and Python Scripting Language Reference
The optional reaction mode, parameter four and command word six, does not have a counterpart in
the SMIRKS lines. This parameter determines how the possibility of multiple matches of a transform
substructure in the target molecules is handled. It can be one of these values:

• first
Only the first match which is found is executed, all other possible matches are disregarded.
The location of the first match should be considered random.

• exhaustive
Only those transform products where all possible match sites have been processed are
produced. For example, a structure with two reaction sites A and B, only the product where
both A and B have been transformed is reported - provided that the initial transformation of
A or B did not influence the possibility of matching the second part. So, in case of the
hypothetical hydrolysis of a dihalogene compound with explicit water molecules, the fully
reacted product will only be obtained if the input ensemble contained two water molecules.
Otherwise, one (in case of symmetry) or both products of a single hydrolysis step are
obtained. This mode operates by generating the intermediate products and re-submitting
them. If these generate one or more new compounds, they are discarded from the result list.
An older and still recognized name of this reaction mode is all.

• singlestep
All matches are found and the transform executed, but the transform results are not
re-submitted for matching as they are in the exhaustive mode. All different products which
result from a single application of the transform are returned. For hypothetical example of
the hydrolysis of an asymmetrical dihalogene compound, both partial hydrolysis products
are generated, but not the fully hydrolyzed end product.

• multistep
This mode generates all transform products by systematically applying the transforms to all
structures and re-submitting the results again and again, until no new compounds are
generated. In contrast to the exhaustive mode, intermediate products which further react are
not discarded. The hypothetical example of the hydrolysis of an asymmetrical dihalogene
compound yields three products - two partial hydrolysis products, and the fully hydrolyzed
end product.

The default value for the reaction mode is first.

The next optional command parameter, the selection mode, (command argument five and command
word seven) again has no counterpart in the SMIRKS line parameters. It determines the interaction
of transforms of the same step number. All these transforms form a group. This parameter
determines which of the transforms from the current group are executed, and in which order. The
parameter can be set to one of the following values:

• first
The first transform from the current group which matches is processed according to the
reaction mode setting. All other transforms in the group are ignored, regardless whether they
would match or not.

• sequence
All transforms in the current group are applied once in the order they are specified, with the
current reaction mode. Each transform is applied to the result ensembles of the previous
transform, or the start ensemble for the first transform. All results, including those which did
undergo further changes by later transforms, are returned.
320 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• seqendpoints
Similar to the sequence mode, but only those result ensembles which did not lead to further
transformation results (either actually generated, or discarded as duplicates) are returned.
Again, each transform in the sequence is only applied to the result structures of the previous
transform.

• endpoints
Similar to the all mode, but every transform is applied to all result ensembles which have
accumulated before. Only those ensembles which did not yield additional, structurally
distinguishable result ensembles are returned as final result.

• all
All transformations are applied to all result ensembles. This process is repeated until no
additional, structurally distinguishable result ensembles are generated1. The full set of result
ensembles is returned.

• newseqendpoints
This mode is similar to the seqendpoints mode. In seqendpoints mode, if a transform does
not match any of the current input structures, an empty set is passed on to the next transform
as input data. Thus, the transforms which follow a failing transform cannot produce any
results themselves and are effectively ignored. In this mode, if a transform does not yield
any results on the current input set, the current input set is re-used for the next transform,
so that transforms which do not match cannot interrupt the chain. If the current transform
yields results, that result set is used. The final result set is filtered, as in the endpoints and
seqendpoints modes, to contain only structures which did not produce any transform results
themselves.

• parallel
All transforms of the current group are applied, but only to the start structure set, not to any
results produced by the successful application of any previous transform.

The default selection mode is first.

The next and again optional flags parameter (command argument six, command word eight) defines
the default for those transforms which do not possess an override flag set in their SMIRKS line. Note
that if a flag set is specified on a SMIRKS line it completely replaces the default flag set. It does not
simply add or bit-or more flags compared to the global setting. The default flag set is empty.

Similarly, the overlap mode parameter (command argument seven, command word nine) sets the
default for handling potential overlap when matching disconnected transform fragments onto the
structure to be transformed. The default setting is none, disallowing any fragment overlap. If the
transforms only consists of a single fragment in the applicable direction(s), there is no effect of this
parameter.

The excludesslist parameter (command parameter eight, command word ten) again has a potentially
complex internal structure. It defines exclusion fragments. An exclusion fragment blocks all
sections of the target structure from matching any transform substructure, either by preventing the
match of transform atoms (the default) or transform bonds. This is a useful feature for example to
easily prevent amide groups from matching amino group transforms. The default exclusion

1. Do not use this mode with transforms which add a group which is again matchable by the transform - you
will face a runaway polymerization-style reaction!
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 321

CACTVS Tcl and Python Scripting Language Reference
substructure list is empty. The parameter is a list. Every list element can be a simple structure
identifier, or a list of a structure identifier and a transform index list.

Structure identifiers recognized by this command are:

• ensemble handles
This selects the complete parameter ensemble as exclusion substructure.

• lists of an ensemble handle and a molecule label
This selects a specific molecule from the ensemble as exclusion substructure,

• SMARTS strings
The SMARTS string is temporarily decoded and used like an ensemble handle. The transient
ensemble is automatically destroyed when the ens transform command has finished.

If the exclusion substructure identifier is not associated with a transform index list, the substructure
applies to all transforms. The optional transform index list consists of an arbitrary number of
transform indices in the range 0...63. If a transform index list is supplied, the exclusion substructure
applies only to the listed transforms. Note that it is not possible to set individual exclusion indices
for transforms beyond the 64th, even though it is allowable to use any number of transforms in the
transform list. All ensembles, including intermediate result ensembles, are checked against all
applicable exclusion structures immediately before the application of a transform is attempted.

The exclusion substructure specification list may be prepended by a magical list element with value
(marked)atoms, (marked)bonds, unmarkedatoms or unmarkedbonds. These control the mechanism
how matched substructures are marked in the transform source structure. The default mode is atoms,
where excluded atoms are prevented from matching transform pattern atoms. The bonds mode
switches this to preventing a bond match. The difference is that in bonds mode, transform pattern
atoms can still overlap, by a single atom, excluded regions, but not change bonds therein, while in
atoms mode absolutely no atom or bond overlap between excluded regions and transform patterns
is allowed. The unmarked variants operated with a reversed exclusion set - i.e. atoms or bonds which
are not matched are excluded from the structure region eligible for transform application.

In case the exclusion mode is (marked)atoms or unmarkedatoms, an atom identifier, i.e. any notation
which is supported to identify an atom in the atom command, may also be used in addition to the
three substructure specification styles listed above to directly exclude a single atom from matching
by all transforms. In (marked)bonds or unmarkedbonds marker mode, bond identifications in the
same style as supported by the bond command, such as bond labels or bond atom label pairs, are
similarly allowed as additional direct bond exclusion specifications, and these again apply to all
transforms.

Exclusion markings, once set for the input structure, are inherited by newly generated result
structures, so that the protection remains active even for structures undergoing sequences of
transformations.

The related dataset transform command does not support direct atom or bond exclusion marking,
even if the dataset only contains a single structure.

An example for an exclusion list:
ens transform $eh $tlist ... [list „atoms“ {C(=O)[NH2]} {{C[NH]C} {0 1}} 1]

This exclusion set protects amide groups (the first substructure) from all transforms, secondary
amines including their immediate carbon neighbor atoms from the first two transforms in the set
322 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
(index 0 and 1, the transform set is specified in the tlist variable), and the single atom with label
1 in the input ensemble. The exclusion marker mode is explicitly spelled out as atoms in first
exclusion list element, which however is already the default.

Another example:
ens transform $eh $tlist ... [list „unmarkedatoms“ {*}$statoms]

This transform only operates on the atoms of which the labels or other identifiers are included in the
list in variable statoms. All other parts of the structure are excluded and cannot participate in the
transform.

The next optional global command parameter (parameter nine, command word eleven) is the
maximum number of result ensembles to generate. The input ensemble is not counted. As soon as
the maximum is reached, the command finishes and returns the result ensembles which were
generated so far. If the maximum number of results is set to a negative number (the default), no limit
applies. If it is set to zero, the transform command is effectively disabled. The global control variable
::cactvs(setsize_exceeded) is set to 1 if the specified maximum number of result ensembles was
going to be exceeded. At the beginning of the execution of the ens transform command, this
control variable is reset to zero. The limit applies to the total of generated unique structures, which
is not necessarily the same as the number of output structures in case the processing mode dictates
that they are processed further and not included as intermediates in the result set. In the special case
of exhaustive transform application, the parameter limits the size of the intermediate result set after
each pass, not the overall total of unique structures.

The timeout parameter (command parameter ten, command word twelve) can be used to set a time
limit in seconds for the command execution. If this parameter is set to 0 or a negative number, no
timeout applies. This is the default. Otherwise, the generation of result ensembles is stopped after
the specified time, and the command returns with the results generated so far. The global control
variable ::cactvs(interrupted) is set to 1 if a timeout occurs. It is reset to 0 at the beginning of the
execution of the command.

The next optional parameter (command parameter eleven, command word thirteen) can be used to
limit the number of transforms applied to the starting structure and intermediate structures. If this
parameter is not specified, or specified as an empty string or a negative value, no limit is imposed.
If this parameter or the timeout option is used, the result set may become dependent on the atom and
bond order of the input structure because the traversed part of the possible transform match space
is different and might yield different and/or a different number of results when the timeout or
application count restriction is triggered.

The second last optional parameter (command parameter twelve, command word fourteen) is an
iteration count. Its default value is one, meaning that the whole transformation process is only
executed once. If set to a larger value, the transformation routine calls itself recursively. This is
equivalent to first running ens transform with a start structure, and then repeatedly execute
dataset transform commands for the second and later iterations with the last result set. All limits
and other control parameters are passed in the original configuration, and apply only to the next
iteration, not globally over the sum of all transform cycles. By default, the result set of this mode is
what the last iteration produced, but this can be changed to the union of all iteration results by the
keepiterationintermediates flag. Uniqueness checking of result structures is applied to the full return
set. If the parameter is set to zero or a negative value, no transformations are executed. If the
setpathname flag is set, it is automatically switched to appendpathname for the second and later
cycles, so that the name mirrors the full transformation history and is not reset in each cycle.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 323

CACTVS Tcl and Python Scripting Language Reference
The final optional parameter is an array variable name. If it is specified, various statistics about the
transform application are collected and stored in that array. Some important array elements are:

• patternmatches The total number of transform pattern substructure matches,
on both sides of the transform if the transform settings allow
this

• leftpatternmatches The total number of left-side transform pattern substructure
matches

• rightpatternmatches The total number of right-side transform pattern substructure
matches

• leftpatternmatches$n The number of left-side pattern matches for transform pattern
n, beginning with index 0

• rightpatternmatches$n The number of right-side pattern matches for transform
pattern n, beginning with index 0

• datafailures The number of aborted transform applications because
property data could not be computed on the transform result
structures

• applicationfailures The total count of failures to apply the transform instructions
of a matched pattern, for example because of bad electron
counts

• applicationsuccesses The total count of successful applications of transforms,
before the duplicate check

• duplicaterejections The number of successfully transformed structures which
were not added to the result set because they were a duplicate
of an already-registered structure

• duplicateaccepts The number of transform result structures which passed the
duplicate result structure check

Example:
set t1 {{[O,S;X1:1]=[C:2x1][C:3X4][#1:4]>>[#1:4][O,S;X2:1][C:2x1]=[C:3]
enol/thioenol}}
set elist [ens transform $eh [list $t1] bidirectional multistep all preservecharges
none]

This example is part of a tautomer generator. The full standard generator in the toolkit uses a lengthy
list of transform schemes and not just the one sample keto/enol schema displayed here. Because the
operation is bidirectional, the transform transforms ketones into enols, and vice versa. If more than
one interchangeable group exists, all intermediate structures are generated (multistep reaction
mode). All results are retained (all selection mode), and all intermediate structures are again
subjected to all transforms (this does not have any effect with a single transform, but the real
application uses a set of transforms). Finally, charges should not be changed (preservecharges
flags), and fragment overlap is not allowed (none overlap mode) - this again is without effect in this
sample transform, because it does not consist of disconnected fragments on either side.
324 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Multiple structures may be jointly transformed in a single command by means of the very similar
dataset transform command.

ens translate
ens translate ehandle pt1 ?pt2? ?property?
e.translate(point1=,?point2=?,?coordinateproperty=?)

Move the atoms of the ensemble by modifying their 3D coordinates in property A_XYZ, or a custom
atomic float vector coordinate property. This command requires atomic 3D coordinates and will
attempt to compute them if they are not yet present. If no 3D atomic coordinates can be generated,
the command fails with an error.

The first argument is interpreted as a 3D vector if this is the only coordinate argument. All atoms
with valid 3D coordinates are moved according to the vector coordinates. In case a second argument
is supplied, both arguments are interpreted as points in 3D space. The ensemble atoms are moved
according to the difference vector between the second and the first point.

This operation triggers a 3dglop property invalidation event.

The command returns the original ensemble handle or reference.

Examples:
ens translate $eh {0 0 1}
ens translate $eh [atom get $eh $a1 A_XYZ] [atom get $eh $a2 A_XYZ]

ens trim
ens trim ehandle ?propertylist?
e.trim(?properties=?)

Reduce the information content of a structure to a standard minimum set and discard any additional
information. This process minimizes the storage requirements of the ensemble. The properties of the
internally defined minimum set are computed if required. The retained property set is designed to
support a faithful representation of connectivity including bond and atom labels and types as well
as formal charges, stereochemistry, isotopes, 2D and 3D coordinates, but not of auxiliary additional
attributes of atoms, bonds or other minor objects.

The optional fourth argument is a list of properties which should be retained in addition to the
standard set. If any of these are not present on the ensemble to be trimmed, they are silently ignored
and no attempt is made to compute them. Specifying properties of the standard retention set in this
list is allowed but has no additional effect.

The return value of the command is a list of the remaining properties of the ensemble.

Example:
ens trim $ehandle {E_GIF E_SMILES}

ens uncharge
ens uncharge ehandle ?filterset? ?flags?
e.uncharge(?filters=?,?flags=?)

Attempt to remove charges on atoms in a chemically sensible way. Charge removal by default
happens via addition or removal of protons. In cases where this does not make chemical sense, a
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 325

CACTVS Tcl and Python Scripting Language Reference
direct charge manipulation may be performed instead. Charged metal ions and other charged species
without an obvious method for neutralization remain unchanged.

By default all atoms are processed, but the set of processed atoms can be limited by specifying a
filter collection. Additional conditions on processed atoms can be set via the flag argument, which
accepts the same values as ens hadd. Please refer to that command for a list and explanation of these
flags.

The command returns the number of atoms which were neutralized.

Example:
ens uncharge [ens create {[NH3+]CC(=O)[O-]}]

This sample line removes a proton from the charged amino group and add a proton to the charged
carboxyl group of the initial glycine zwitterion. The returned result value is 2. In this example the
total hydrogen count has not changed. In case of an unbalanced set of positive and negative,
modified charged centers this is usually not the case.

ens unlock
ens unlock ehandle propertylist/objclass/all
e.unlock(property=)

Unlock property data for the ensemble, meaning that they are again under the control of the standard
data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names or references
Valid property instances on the ensemble, or ensemble minor objects are unlocked.
Non-existent data is silently ignored. It is not possible to unlock individual property fields.

• all
All valid ensemble or ensemble minor object properties are unlocked. Ensemble properties
and ensemble minor object properties are not affected.

• ens,atom,bond...
These are object class identifiers. All property data which is controlled by the ensemble
major object and attached to the specified object class is unlocked.

Property data locks are obtained by the ens lock command.

The return value is the original ensemble handle or reference.

Example:
set eh [ens create CCC]
ens lock $eh A_SYMBOL 1
ens purge $eh A_ELEMENT
atom set $eh 1 A_query(dsearch) 3
ens unlock $eh A_SYMBOL

In this example, an ensemble is created, and the atom symbol information is locked. Next, the
element number property is deleted, and a query attribute is set. Finally, the lock is released. Had
the element symbol information not been locked, the ensemble would have become unusable due
to an overzealous data consistency manager. Setting query information in property A_QUERY can
326 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
have an influence on the atom symbol. So the default action of invalidating A_SYMBOL when
manipulating A_QUERY is correct. However, in case there is no element information A_ELEMENT, and
no atom symbol information A_SYMBOL, the element information is completely lost, and the
ensemble becomes unusable. So in this case, locking A_SYMBOL (or alternatively A_ELEMENT) is
required to avoid unexpected side effects of structure editing.

ens unpack
ens unpack packstring ?compressionlib?
Ens.Unpack(data=,?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by an ens pack command. The
return value of this function is the handle of the newly created ensemble object, which is an exact
duplicate of the packed original ensemble.

Packed ensembles may also be unpacked by the ens create command.

The default compression library is zlib. For more options, see ens pack.

Example:
set packdata [ens pack [ens create CCCl]]
set ehandle [ens unpack $packdata]

ens valencecheck
ens valencecheck ehandle ?failedatomvariable? ?nitrogenmode?
e.valencecheck(?variable=?,?nitrogenmode=?)

Perform a valence check on the ensemble, comparing the current bonding situation at all atoms to
the list of element-specific valence states in the system element table. This command is intentionally
quite picky, discouraging for example the use of pentavalent nitrogen by default. For the calculation
of valence, only bonds of type normal (valence bonds) are taken into account. Complex bonds and
pseudo bond types thus do not interfere in the calculation. Some more exotic metal atoms with many
different valence states, or few well-defined covalent compounds, such as vanadium or rhodium,
always pass.

The handling of nitrogen in pentavalent or ionic form can be controlled by setting the optional
nitrogenmode argument, or modifying the global ::cactvs(nitrogen_valence_check)
variable.Possible values are xionic, ionic (the default), asis, pentavalent and xpentavalent. These are
the same values as with the ens nitrostyle command - please refer to that command for more
information. In asis mode, both ionic and pentavalent forms pass.

The return value of this command is the number of atoms which failed the valence check. If the
optional failedatomvariable argument is specified as non-empty string, it is the name of a variable
which receives a list of the atom labels which failed the check, or is set to an empty list in case no
problems were found.

Note that this command assumes that all hydrogen atoms are in place. Processing of structures with
implicit hydrogen atoms is not supported.

mol valcheck is a short command alias.

Example:
ens valencecheck [ens create {CN(=O)=O.C[N+](=O)[O-]}] badatoms
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 327

CACTVS Tcl and Python Scripting Language Reference
This sample command checks the valence situation of nitromethane in two encoding formats. The
first molecule, using a pentavalent nitrogen encoding, is responsible for the result value 1, indicating
one failed atom, and the variable badatoms is set to 2, the label of the pentavalent nitrogen atom.
The second molecule passes the check and reports no additional problems.

ens valcheck is a short alias.

ens valid
ens valid ehandle propertylist
e.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the ensemble. No attempt at computation is made. For PYTHON, where single-item lists are
syntactically not the same as a single value, the return value is a single boolean if the argument was
a string or a property reference, and only a single property was decoded.

Example:
ens valid $xhandle X_IDENT

reports whether the ensemble has a standard ID (has a valid E_IDENT property) or not.

ens has is an alias to this command.

ens vector
ens vector ehandle property vectorname ?invert? ?integrate?

Map ensemble property data to a BLT library vector object. Please refer to the BLT manual pages for
more information on these. BLT vector objects are very useful, for example, for the efficient set-up
of GUI graphing widgets which are provided by the BLT TK extension. This command automatically
attempts to load the BLT Tcl module if necessary. If that fails, an error results.

The vectorized property data must be of a vector type, and the element type of the vector must either
be a simple numeric type, or a bit for bitvectors, or a floating-point pair. It is possible to address a
property field, for example the X/Y data points of a spectrum which are typically stored as a field
in a complex compound property.

If the invert flag is set, the stored BLT vector object values are set to 1.0 minus the property data
value. By default, this flag is not active. If the integrate flag is set, the BLT vector object element
values are set to the sum of all preceding property data values. This flag is also disabled by default.

If the property data type is a float pair vector, two vector objects are created in the BLT namespace,
with suffixes _X and _Y. For simple vector types, the vector name is used directly. It is possible to
overwrite existing BLT vectors of the same name with this command.

The return value of the command is a list of the generated name of the vector, followed by the
minimum and maximum data values in that vector object. These may the different from the
ensemble property data values because of the application of the invert or integrate flags.For float
pair vectors, the same information is repeated for the second vector object.

The command is not supported in the PYTHON interface.
328 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ens verify
ens verify ehandle property
e.verify(property)

Verify the values of the specified property on the ensemble. The property data must be valid, and
of an ensemble or ensemble minor object property. If the data can be found, it is checked against all
constraints defined for the property, and, if such a function has been defined, is tested with the value
verification function of the property.

If all tests are passed, the boolean return value is boolean 1, 0 if the data could be found but fails
the tests, and an error condition otherwise.

ens weed
ens weed ehandle keywords
e.weed(keywordsequence)
e.weed(?keyword?,...)

This command performs a number of common clean-up and standardization operations on the
ensemble, which are especially useful in the context of processing PDB files. The ensemble is
potentially modified, but keeps its handle or reference, which is returned as command result. In
addition, properties A_XYZ and A_RESIDUE, which are normally susceptible to bond manipulations,
are locked and retained.

The keywords argument selects the desired set of operations. Most of the keywords are single words,
but the minsize and maxsize as well as the minaminoacids and maxaminoacids keywords take an
additional integer number as argument. The following operations are currently supported:

• carbonless
Remove all molecules/fragments which do not contain carbon.

• disulphides
Split and hydrogenate all disulfide bridges. This operation can change the molecule and ring
set.

• duplicates
Remove all molecules/fragments which are duplicates (taking isotope labels and
stereochemistry into account) of another molecule in the ensemble. Only a single instance
of any duplicate molecule is retained. Internally, this is a check on property M_HASHISY.

• hydrogenless
Remove all molecules which do not contain hydrogen.

• inorganic
Remove all inorganic molecules.

• ligands
Remove all molecules which do not consist exclusively of linked standard amino acids. This
flag is complementary to proteins.

• maxaminoacids n
Discard all molecules from ensemble which consist only of linked standard amino acids and
contain more than the specified number of them. This operation requires an additional
integer after the keyword.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 329

CACTVS Tcl and Python Scripting Language Reference
• maxsize n
Discard all molecules from ensemble which have more than the specified number of atoms.
This operation requires an additional integer after the keyword.

• metalatoms
Remove all metal atoms from the ensemble. This operation can change the molecule and
ring set.

• metalions
Remove all molecules which are unbonded metal atoms. Bonded metal atoms are not
affected.

• metaloxygenbonds
Remove all bonds between metal atoms and oxygen atoms. This operation can change the
molecule and ring set.

• minaminoacids n
Discard all molecules from ensemble which consist only of linked standard amino acids and
contain less than the specified number of them. This operation requires an additional integer
after the keyword

• minsize n
Discard all molecules from ensemble which have less than the specified number of atoms.
This operation requires an additional integer after the keyword.

• proteins
Discard all molecules which only consist of linked standard amino acids. This is a shortcut
for minaminoacids 0.

• proteinhetatmbonds
Discard all bonds between the protein core and heterogens, i.e. all bonds where the property
field A_RESIDUE(HETATOM) is different among the involved bond atoms. This operation can
change the molecule and ring set.

• proteinspecialbonds
Discard all special bonds (i.e. complex bonds, link bonds, etc.) where at least one atom is
from the protein, i.e. was encoded with an ATOM line in a PDB file, not HETATM. This operation
can change the molecule and ring set.

• specialbonds
Delete all bonds which are not VB bonds. This operation can change the molecule and ring
set.

• water
Discard water molecules, i.e. all molecules which consist of one oxygen atom, any number
of hydrogen atoms, and no other element.

The order of the keywords is not important. The sequence of operations is always

metalatoms > specialbonds > proteinspecialbonds,proteinhetatmbonds > metaloxygenbonds >
disulphides > carbonless,hydrogenless,inorganic,maxsize,metalions,minsize,water >
maxaminoacids,minaminoacids > duplicates
330 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Applied operations which potentially change the set of molecules and rings trigger an automatic
re-evaluation of this data after the operation block has been executed.

Example:

The code below is part of a reliable PDB ligand extractor.
ens weed $eh {metaloxygenbonds water proteinspecialbonds duplicates minsize 10 \
maxsize 300 maxaminoacids 6 disulfides}
if {[ens get $eh E_NATOMS]==0} {
try again with additional bond cut step. Cannot do this by default, because
there are plenty of ligands with embedded amino acid parts
that are encoded as ATOM lines. PDB files suck.

molfile backspace $fh
set eh [molfile read $fh]
ens weed $eh {metaloxygenbonds water proteinspecialbonds proteinhetatmbonds \

duplicates minsize 10 maxsize 300 maxaminoacids 6 disulfides}
}

ens xhandle
ens xhandle ehandle

Return the remote handle of the ensemble if it was exported and is currently under the control of a
live-linked application. In case the ensemble is not exported, an error results.

This command is not supported in the PYTHON interface.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 331

CACTVS Tcl and Python Scripting Language Reference
The group Command

The group command is the generic command used to manipulate groups. The syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel.

Pseudo group labels first, last and random are special values, which select the first group in the
group list, the last, or a random group.

Example:
group get $ehandle 1 G_SIZE

This is the list of officially supported subcommands:

group add
group add ehandle label object/objectlist...
g.add(?object/objectsequence?,...),

Add more atoms or groups as members to an existing group. A group cannot be added to itself, and
the formation of cyclic dependencies is illegal. It is however possible to add an atom or group more
than once to a group, and an atom or a group may be a member of an arbitrary number of groups.

Adding objects to a group triggers a groupchange property invalidation event and may thus have an
influence on the validity of chemical object data.

The use of an empty object list is possible and does not change the group, nor is an invalidation event
issued.

The object list syntax is the same as in the group create command.

The command returns the original group label or reference.

Examples:
group add $ehandle $glabel 1
group add $ehandle $glabel [list “group” [group create $ehandle [list 5 7]]]

The first sample line simply adds the atom with label 1 to the group. The second line adds a newly
created group with atoms 5 and 7 to the existing group as a recursive group element.

group append
group append ehandle label ?property value?...
g.append({?property:value,?...})
g.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
group append $ehandle 1 G_NAME “_linker”

group atoms
group atoms ehandle label ?filterset? ?filtermode?
332 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
g.atoms(?filters=?,?mode=?)

List the labels or references of all atoms which are in the group. There are two different modes of
operation, depending on whether the group contains at least one atom as member object.

If there is a member atom: Group member objects which are not atoms, such as bonds or recursive
groups, are omitted from output, as are atoms which are only indirectly a group member via a
recursive group.

Without atoms in the group, atoms which are components of the group objects are listed, e.g. the
atoms of bonds that are in the group.

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references.

Example:
set gh [group create $ehandle [list 1 2 3]]
group atoms $ehandle $gh carbon

gets the labels of the carbon atoms in the group.
set gh [group create $ehandle [list [list „bond“ 1]]]
group atoms $ehandle $gh

while this command on a group which only contains bonds, but no atoms, reports the atom labels
of the bond in the group.

group bonds
group bonds ehandle label ?filterset? ?filtermode?
g.bonds(?filters=?,?mode=?)

Retrieve the labels or references of bonds which are associated with a group. There are two different
modes of operation, depending on whether the group contains at least one bond as member object.

If there is a member bond: Group member objects which are not bonds, such as atoms or recursive
groups, are omitted from output, as are bonds which are only indirectly a group member via a
recursive group.

Otherwise, a bond is considered to be associated with a group if all atoms of the bond are group
members. All bond atoms must be in the same group object, i.e. indirect memberships via recursive
groups are ignored. Bonds are not associated with a group if only some of their atoms are members
of the group.

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references.

Example:
set gh [group create $ehandle [list 1 2 3]]
group bonds $ehandle $gh {1 doublebond triplebond}

gets the bond labels of all double and triple bonds between the group atoms.
set gh [group create $ehandle [list [list „bond“ 1]]]
group bonds $ehandle $gh

while this command directly lists the bond in the group.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 333

CACTVS Tcl and Python Scripting Language Reference
group create
group create ehandle objectlist...
Group(?objectref?,...)
Group.Create(?object?ref,...)
Group(eref,?objectref/objectrefsequence/objectlabel?,...)
Group.Create(eref,?objectref/objectrefsequence/objectlabel?,...)

Create a new group containing atoms or other minor objects, including other groups as member
elements.

The object list parameter is a list of object identifiers. An object identifier is either a single-element
simple identifier, in which case it is interpreted as an atom identifier (usually a label, but all other
identifiers are possible), or a two-element list. If the second form is used, the list must consist of an
object class name, followed by an object identifier (usually a label, but all types of minor object
identifiers are possible).

Specifying a member object which cannot be resolved produces an error. However, it is no error for
an atom or a group to be listed more than once as a member of a group, nor is there any restriction
of how many groups an atom or other minor object can be a member. However, circular relationships
are illegal, and a group cannot be a member of itself. Duplicate objects in a group are allowed and
not filtered when a group is set up.

Creating a new group triggers the group and groupchange invalidation events and may thus
influence the validity of chemical object data.

The creation of empty groups by supplying an empty object list is possible.

The return value of this function is the label of the new group.

Examples:
set g1 [group create $ehandle {1 2 3}]
set g2 [group create $ehandle [list [list “group” $g1] 4 [list “atom” #5]]]

The first line creates a simple group with atoms 1, 2 and 3. The second line builds a recursive group
which contains the first group (identified as a group reference by prefixing its label with a group
object class name), the atom with label 4, and the atom with index 5 (which could have any label).

group defined
group defined ehandle label property
g.defined(property)

This command checks whether a property is defined for the group. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The ens valid command is used for this purpose.

Example:
group defined $ehandle 1 G_XYZ

checks whether group 1 is of a type for which G_XYZ is defined.

group delete
group delete ehandle ?label?...
group delete ehandle all
334 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
g.delete()
Group.Delete(eref,”all”)
Group.Delete(gref,...)
Group.Delete(eref,?glabel/gref/grefsequence?,...)

Delete a set of groups. Groups are either identified by a standard group identifier (usually a label),
or the reserved word all.

If a deleted group contains as a member another group, that group is also deleted in a recursive
fashion. If this behavior is not wanted, recursive groups should be explicitly unlinked from their
base groups by means of the group remove command.

Deleting a group triggers the group and groupchange invalidation events and may thus influence the
validity of chemical object data. If an empty object list is used, the command does nothing, and no
invalidation event is generated.

This command returns the number of deleted groups on the first level, i.e. recursive group deletions
are not counted.

Examples:
group delete $ehandle all
group delete $ehandle [ens groups $ehandle xatom]

The first example deletes all groups in the ensemble. The second example deletes all those groups
which contain one or more hetero atoms as members.

group dget
group dget ehandle label propertylist ?filterset? ?parameterdict?
g.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group dget
is that the latter does not attempt computation of property data, but rather initializes the property
values to the default and return that default if the data is not yet available. For data already present,
group get and group dget are equivalent.

group dup
group dup ehandle label ?datasethandle? ?position?
g.dup(?target=?,?position=?)

Duplicate the atoms and bonds of a group into a new ensemble. The function returns the new
ensemble handle or reference.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional target dataset
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed
(or None for PYTHON), the duplicate is not made a dataset member, even if the input ensemble is in a
dataset.

Example:
group dup $ehandle 1 [dataset create]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 335

CACTVS Tcl and Python Scripting Language Reference
duplicates the group with label one and move the new single-molecule ensemble into a newly
created dataset.

group ens
g.ens()

PYTHON-only method to get the ensemble reference from a group reference.

group exists
group exists ehandle label ?filterlist?
g.exists(?filters=?)
Group.Exists(eref,label,?filters=?)

Check whether this group exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns boolean 0 if the group does not exist, or fails the filter,
and 1 in case of successful testing.

Example:
group exists $ehandle 99

group expr
group expr ehandle label expression
g.expr(expression)

Compute a standard SQL-style property expression for the group. This is explained in detail in the
chapter on property expressions.

group fill
group fill ehandle label ?property value?...
g.fill({property:value,...})
g.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.

Example:
group fill $ehandle 1 B_COLOR red

sets the color of the first bond group 1 contains or is associated with to red.

group filter
group filter ehandle label filterlist
g.filter(filters)

Check whether a group passes a filter list. The return value is boolean 1 for success and 0 for failure.

Example:
group filter $ehandle 1 [list carbon doublebond]
336 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
checks whether the group contains one or more carbon atoms and one or more double bonds. The
double bond does not need to be with a carbon atom.

group formulamatch
group formulamatch ehandle label formula_expression ?other_elements?
g.formulamatch(query=,?other_elements=?)

Match the group against a formula expression. Its syntax is the same as in formula queries in
molfile scan and other scan commands.

There are several methods to specify whether any elements not mentioned in the formula expression
may or must be present. If the other_elements flag is used, it has the highest priority. If may be set
to 0 (no other elements allowed), 1 (allowed) or 2 (required), and if it is set, any prefix in the formula
expression is ignored. If it is not used, a prefix in the formula expression may be used to control the
matching. Supported prefixes are = (no other elements), >= (other elements allowed) and >
(required). If no prefix is used, the default mode is an exact match without other elements.

The return value is the boolean match result.

Examples:
group formulamatch $eh 1 >C6

Tests whether the group contains six carbon atoms. At least one atom which is not carbon must be
present.
group formulamatch $eh 1 C5-6(Cl+Br+I)2- 1

Tests whether the group has five or six carbon atoms, two ore more heavy halogens, and potentially
any other elements.

group get
group get ehandle label propertylist ?filterset? ?parameterdict?
g.get(property=,?filters=?,?parameters=?)
g[property]
g.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
group get $ehandle 1 {G_SIZE A_ELEMENT}

yields a list with two elements, consisting of the group size (count of group members) as the first
element and the element numbers of all atoms in the groups as a nested list as the second result list
element. If the information is not yet available, an attempt is made to compute it. If the computation
fails, an error results.
group get $ehandle 1 B_ORDER ringbond

gives the bond orders of all bonds of associated with the group which are ring bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the group get command are group new, group dget, group nget, group show, group
sqldget, group sqlget, group sqlnew and group sqlshow.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 337

CACTVS Tcl and Python Scripting Language Reference
Further examples:
group get $ehandle 1 E_NAME
group get $ehandle 1 A_FLAGS(boxed)

group group
group group ehandle label
Group.Ref(eref,identifer)

Standard cross-referencing command to obtain the label or reference of the group as stored in
property G_LABEL. This is explained in more detail in the section about object cross-references. Note
that there is also a group groups (plural groups) command which has a different function.

Example:
group group $ehandle #0

returns the label of the first group of the ensemble group list.

group groups
group groups ehandle label ?filterset? ?filtermode?
g.groups(?filters=?,?mode=?)

List the labels or references of all groups which are members of the group. Group member objects,
such as atoms, which are not groups are omitted, as are groups which are only indirectly a group
member via a recursive group.

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references. Note that there is also
a group group (singular group) command which has a different function.

Example:
group groups $ehandle 1

gets the labels of the groups which are a (recursive) member of group 1.

group hdup
group hdup ehandle label ?datasethandle? ?position?
g.hdup(?target=?,?position=?)

This command provides the same functionality as group dup, except that it also adds a standard set
of hydrogens to the new ensemble.

group index
group index ehandle label
g.index()

Get the index of the group. The index is the position in the group list of the ensemble. The first
position is index 0.

Example:
group index $ehandle 99
338 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
group jget
group jget ehandle label propertylist ?filterset? ?parameterdict?
g.jget(property=,?filters=?,?parameters=?)

This is a variant of group get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

group jnew
group jnew ehandle label propertylist ?filterset? ?parameterdict?
g.jnew(property=,?filters=?,?parameters=?)

This is a variant of group new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

group jshow
group jshow ehandle label propertylist ?filterset? ?parameterdict?
g.jshow(property=,?filters=?,?parameters=?)

This is a variant of group show which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

group local
group local ehandle label propertylist ?filterset? ?parameterdict?
g.local(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
group local $ehandle 1 A_LABEL_STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

group match
group match ehandle label ss_ehandle ?ss_label? ?matchflags? ?ignoreflags?

?atommatchvar? ?bondmatchvar? ?molmatchvar?
g.match(substructure=,?substructuregroup=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)

Check whether the selected group matches a substructure. Only the first substructure group, or the
group selected by the substructure label parameter, is tested. The substructure may be part of any
structure ensemble, and even be in the same ensemble as the primary command group. Both the
atoms in the group and the bonds between them are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels. If no match can be found, the variable is set to an empty list. In case only a bond
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 339

CACTVS Tcl and Python Scripting Language Reference
or molecule match variable is needed, an empty string can be used to skip the unused match variable
argument positions.

Example:
set ss [ens create {c1ccccc1} smarts]
set g_contains_phenyl_ring [group match $ehandle $label $ss]

group mols
group mols ehandle label ?filterset? ?filtermode?
g.mols(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the molecules the atoms
in the group are a member of. This is explained in more detail in the section about object
cross-references.

Examples:
group mols $ehandle 1
group mols $ehandle 1 heterocycle

The first example is simple retrieval, the second line filters the molecules and lists only the labels
of those molecules which contain one or more heterocycles.

group new
group new ehandle label propertylist ?filterset? ?parameterdict?
g.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group new
is that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

group nget
group nget ehandle label propertylist ?filterset? ?parameterdict?
g.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group nget
is that the latter always returns numeric data, even if symbolic names for the values are available.

group objects
group objects ehandle label ?filterset? ?filtermode?
g.objects(?filters=?,?mode=?)

This is a cross-referencing command specific to groups. The standard operation of cross-referencing
commands and the use of the optional parameters are explained in the object referencing section of
this manual.

The difference of this command to the group atoms, group bonds or group groups commands
is that this command lists all object classes present in the group. Every listed item is output as a list
340 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
with two elements - the first being the object class (atom, bond or group), the second being the object
label or reference. This list is suitable for use in a group create or group add statement.

The command returns the label or reference of the new group.

Example:
group create $ehandle [group objects $ehandle 1]

This command duplicates the group with label 1.

group pis
group pis ehandle label ?filterset? ?filtermode?
g.pis(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the group
is associated with. This is explained in more detail in the section about object cross-references.

Examples:
group pis $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one  system and one  system in this representation.

group ref
Group.Ref(eref,identifier)

PYTHON only method to get a group reference. See group group command.

group remove
group remove ehandle label objectlist...
g.remove(?object/objectsequence?,...)

Remove group items from a group. The removed objects are not deleted from the ensemble, they
simply are no longer a group member. The syntax of the object list is the same as in the group add
and group create commands. The groups the objects are removed from also remain in existence.

Removing an object from a group triggers a groupchange property invalidation event and may thus
have an influence on the validity of chemical object data.

The command returns the number of removed group elements.

Examples:
group remove $ehandle 1 [group atoms $ehandle 1 hydrogen]

This command removes all hydrogen atoms from group 1.

group replicate
group replicate ehandle label ?count? ?creategroups?
g.replicate(?count=?,?creategroups=?)

Add copies of a group to the current ensemble as a new molecule/fragment. All atoms of the group
are replicated, and the bonds which are either explicitly part of the group, or, if these are not set, all
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 341

CACTVS Tcl and Python Scripting Language Reference
bonds between the group atoms are also created in the new fragment. The default duplication count
is one.

If the creategroups boolean flag is set, the duplicated atoms are also registered as a new group.

If new groups are created, the return value is a list of the handles or references of the new groups.
If no new groups are created, the return value is the handle or reference of the argument ensemble.

group rings
group rings ehandle label ?filterset? ?filtermode?
g.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the group is
associated with. This is explained in more detail in the section about object cross-references. Rings
which only partially overlap with the group are included.

Examples:
group rings $ehandle 1
group rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the group overlaps with. If the group does not overlap
with any ring, an empty list is returned. Only labels of rings in the SSSR or ESSSR set are returned,
even if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

group ringsystems
group ringsystems ehandle label ?filterset? ?filtermode?
g.ringsystems(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring systems the group
is associated with. This is explained in more detail in the section about object cross-references. Ring
system which only partially overlap with the selected group are listed.

Examples:
group ringsystems $ehandle 1
group ringsystems $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all ring systems the group is associated with. If the group does
not overlap with any ringsystem, an empty list is returned. The second example filters the ring
systems - a ring system label is added to the output list only if that ring system contains one or more
hetero aromats.

group set
group set ehandle label ?property value?...
g.set(?property,value?,...)
g.set({property:value,...})
g.property = value
g[property] = value

Standard data manipulation command for setting property data. It is explained in more detail in the
section about setting property data.

The command returns the first data value.
342 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
group set $ehandle 1 G_CONSTRAINT [list “distance” [list 3.0 4.0]]

group show
group show ehandle label propertylist ?filterset? ?parameterdict?
g.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The difference between group get and group show is
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, group get and group show are equivalent.

group sigmas
group sigmas ehandle label ?filterset? ?filtermode?
g.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the group
is associated with. This is explained in more detail in the section about object cross-references. An
association is assumed if any atoms of the  system is a group member. Recursive groups are not
searched.

Examples:
group sigmas $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

group sqldget
group sqldget ehandle label propertylist ?filterset? ?parameterdict?
g.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The differences between group get and group
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

group sqlget
group sqlget ehandle label propertylist ?filterset? ?parameterdict?
g.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 343

CACTVS Tcl and Python Scripting Language Reference
For examples, see the group get command. The difference between group get and group sqlget
is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

group sqlnew
group sqlnew ehandle label propertylist ?filterset? ?parameterdict?
g.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The differences between group get and group
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

group sqlshow
group sqlshow ehandle label propertylist ?filterset? ?parameterdict?
g.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the group get command. The differences between group get and group
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

group subcommands
group subcommands
dir(Group)

Lists all subcommands of the group command. Note that this command does not require an
ensemble handle, or a group label.

group surfaces
group surfaces ehandle label ?filterset? ?filtermode?
g.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of surface patches the group
is associated with. This is explained in more detail in the section about object cross-references.

Example:
group surfaces $ehandle $label

Note that surface patches do not need to be associated with an atom, and if they are not, they are
implicitly not associated with any group.

group xbonds
group xbonds ehandle label ?filterset? ?filtermode?
g.xbonds(?filters=?,?mode=?)
344 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Retrieve the labels or references of bonds which cross from the group atoms to atoms which are not
in the group. This corresponds to the MDL SDFILE “M SBL” field, except when the group type is a data
group, or a type not covered by the SDF encoding. This reference command always re-computes
these bonds from the group atoms. The original bond set when reading an SGROUP SDF is stored in
property G_XBONDS or G_BONDS (for data groups).

In other respects, this is a standard cross-referencing command. The usage of the filterset and
filtermode parameter is explained in the section about object cross-references.

Example:
set gh [group create $ehandle [list 1 2 3]]
group xbonds $ehandle $gh

gets the bond labels of all crossing bonds.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 345

CACTVS Tcl and Python Scripting Language Reference
The hierarchy Command

Hierarchy objects are multi-level ordered trees which store major objects (ensembles, reactions,
datasets, tables, networks, biologics) in their leave nodes and contain one or more levels of hierarchy
nodes which organize the object content and may themselves possess property data. Hierarchy
nodes may contain, in addition to the leaf objects, other hierarchy nodes.

Hierarchy objects are major objects. Associated properties start with a H_ prefix.

hierarchy add
hierarchy add hhandle ?handle?...
h.add(?handle/ref?,...)

Add objects to a hierarchy. The handles can be ensembles, reactions, datasets, tables, networks,
biologics or hierarchies. If an added object is a hierarchy, it is added as a subtree. The new objects
are added at the end of the current object set in the hierarchy. It is possible to use this command to
change the position of an object within a hierarchy, or to transfer it from a different hierarchy.

In addition to recognized handles, the arguments may also be identifiable reaction or structure line
encodings, such as SMILES or REACTION SMILES strings. These objects are decoded with standard
options, get their own handles, and immediately added to the hierarchy.

The command returns the hierarchy handle or reference.

hierarchy append
hierarchy append hhandle ?property value?...
h.append({?property:value,?...})
h.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

hierarchy assign
hierarchy assign hhandle srcproperty dstproperty
h.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same hierarchy. Both properties must be associated
with the hierarchy object class. This process is more efficient than going through a pair of
hierarchy get/hierarchy set commands, because in most cases no string or TCL/PYTHON script
object representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant hierarchy rename directly
exchanges the property name without any data duplication or conversion, if that is possible. In any
case, the original property data is no longer present after the execution of this command variant.
346 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The command returns the object handle for TCL, or object reference for PYTHON.

If the object class of the assigned property is not hierarchy, the command executes recursively on
all hierarchy objects.

Examples:
hierarchy assign $hh H_IDENT H_NAME
hierarchy assign $hh E_IDENT E_NAME

hierarchy biologics
hierarchy biologics hhandle ?filterlist? ?recursive?
h.biologics(?filters=?,?recursive=?)

Return a list of the handles or references of all biologics objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:
hierarchy biologics $hhandle

hierarchy create
hierarchy create ?handle?...
Hierarchy(?handle/ref?,...)
Hierarchy.Create(?handle/ref?,...)

Create a new hierarchy object with an initial set of embedded objects.

The arguments may be handles of structure ensembles, reactions, datasets, networks, tables, or
hierarchies themselves.

In addition to recognized handles, the arguments may also be identifiable reaction or structure line
encodings, such as SMILES or REACTION SMILES strings. These objects are decoded with standard
options, get their own handles, and immediately added to the hierarchy.

The command returns the handle or reference of the newly created hierarchy object.

hierarchy dataset
hierarchy dataset hhandle ?filterlist?
h.dataset(?filters=?)

Return the dataset handle or reference of the dataset the hierarchy is a member of. It the hierarchy
is not member of a dataset, or does not pass all of the optional filters, an empty string or None for
PYTHON is returned.

This command is not the same as hierarchy datasets.

Example:
hierarchy dataset $hhandle
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 347

CACTVS Tcl and Python Scripting Language Reference
hierarchy datasets
hierarchy datasets hhandle ?filterlist? ?recursive?
h.biologics(?filters=?,?recursive=?)

Return a list of the handles or references of all dataset objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

This is not the same as the hierarchy dataset command.

Example:
hierarchy datasets $hhandle

hierarchy defined
hierarchy defined hhandle property
h.defined(property)

This command checks whether a property is defined for the hierarchy. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The hierarchy valid command is used for this purpose.

hierarchy delete
hierarchy delete ?hhandle/hhandlelist/all?...
h.delete()
Hierarchy.Delete(“all”)
Hierarchy.Delete(?href/hrefsequence/hhandle?,...)

Delete hierarchy objects. The special parameter all may be used to delete all hierarchies currently
registered in the application. Alternatively, any number of hierarchy handles may be specified for
specific object deletions.

The command returns the number of deleted hierarchies.

Example:
hierarchy delete all
hierarchy delete $hhandle

hierarchy dget
hierarchy dget hhandle propertylist ?filterset? ?parameterdict?
h.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The difference between hierarchy get and
hierarchy dget is that the latter does not attempt computation of property data, but rather
initializes the property values to the default and return that default if the data is not yet available.
For data already present, hierarchy get and hierarchy dget are equivalent.
348 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
hierarchy dup
hierarchy dup hhandle ?dataset? ?position?
h.dup(?target=?,?position=?)

Duplicate a hierarchy with all objects in them and all attached data on the hierarchy object proper
and its contained objects.

The duplicate hierarchy is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (or None for PYTHON) places the duplicate outside
any dataset, regardless of the dataset membership of the source hierarchy.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the hierarchy
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the hierarchy is appended.

Example:
hierarchy dup $hhandle

The command returns a new hierarchy handle or reference.

hierarchy ens
hierarchy ens hhandle ?filterlist? ?recursive?
h.ens(?filters=?,?recursive=?)

Return a list of the handles or references of all structure ensemble objects in the hierarchy node
which additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy ens $hhandle

hierarchy exists
hierarchy exists hhandle ?filterlist?
h.exists(?filters=?)
Hierarchy.Exists(href,?filters=?)

Check whether a hierarchy handle or reference is valid. The command returns boolean 0 or 1.
Optionally, the hierarchy may be filtered by a standard filter list, and if it does not pass the filter, it
is reported as not valid.

Example:
hierarchy exists $hhandle

hierarchy expr
hierarchy expr hhandle expression
h.expr(expression)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 349

CACTVS Tcl and Python Scripting Language Reference
Compute a standard SQL-style property expression for the hierarchy. This is explained in detail in
the chapter on property expressions.

hierarchy fill
hierarchy fill hhandle ?property value?...
h.fill({?property:value,...})
h.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

hierarchy filter
hierarchy filter hhandle filterlist
h.filter(filters=)

Check whether the hierarchy passes a filter list. The return value is boolean 1 for success and 0 for
failure.

hierarchy get
hierarchy get hhandle propertylist ?filterset? ?parameterdict?
hierarchy get hhandle attribute
h.get(property=,?filters=?,?parameters=?)
h.get(attribute)
h[property/attribute]
h.property/attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
hierarchy get $hhandle {H_IDENT H_NAME}

yields the ID and name of the hierarchy as a list. If the information is not available, an attempt is
made to compute it. If the computation fails, an error results.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the hierarchy get command are hierarchy new, hierarchy dget, hierarchy
jget, hierarchy jnew, hierarchy jshow, hierarchy nget, hierarchy show, hierarchy
sqldget, hierarchy sqlget, hierarchy sqlnew, and hierarchy sqlshow.

In addition to property data, a hierarchy object possesses a few attributes, which can be retrieved
with the get command (but not by its related sister subcommands like dget, sqlget, etc.). Some of
them are also modifiable via hierarchy set.These attributes are:

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.
350 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• deletable
Flag indicating whether the object can be deleted with a standard hierarchy delete
command. This attribute is read-only. Objects which are, for example, property data values
cannot be deleted by standard means.

• failures
If the property computation failure cache is active, return a list of all properties which have
failed computation for this object after the last structural change. This attribute is read-only.

• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

• incomplete
Boolean status flag indicating an aborted input operation during the read of the object from
file, which returned the structure intact but without the complete set of associated data. An
aborted input may be either be the result of an explicitly set input control flag, or by
encountering property data which could not be decoded. This attribute is read-only.

• invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

• modcount
Object data modification count. This attribute is read-only.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 351

CACTVS Tcl and Python Scripting Language Reference
• refcount
If the TCL interpreter is using native CACTVS objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this object. This attribute is read-only.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

• uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

• y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

hierarchy getparam
hierarchy getparam hhandle property ?key? ?default?
h.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

hierarchy hdup
hierarchy hdup hhandle ?dataset? ?position?
h.hdup(?target=?,?position=?)

Duplicate a hierarchy with all objects in them and all attached data on the hierarchy object proper
and its contained objects. Additionally, hydrogen addition is performed on all objects which support
this operation.
352 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The duplicate hierarchy is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (or None for PYTHON) places the duplicate outside
any dataset, regardless of the dataset membership of the source hierarchy.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the hierarchy
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the hierarchy is appended.

Example:
hierarchy hdup $hhandle

The command returns a new hierarchy handle or reference.

hierarchy hierarchies
hierarchy hierarchies hhandle ?filterlist? ?recursive?
h.hierarchies(?filters=?,?recursive=?)

Return a list of the handles or references of all hierarchy objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

This command is not the same as the hierarchy hierarchy command.

Example:
hierarchy hierachies $hhandle

hierarchy hierarchy
hierarchy hierarchy hhandle ?filterlist? ?root?
h.hierarchy(?filters=?,?root=?)

Return the hierarchy handle or reference of the hierarchy the command object is part of. If the
command object is the root node, or does not pass all of the optional filters, an empty string or None
for PYTHON is returned. By default, the hierarchy object which directly contains the command object
is returned. If the root flag is set, the root hierarchy object is reported instead, which is the same only
if the hierarchy has only a single level.

This is not the same as the hierarchy hierarchies command.

Example:
hierarchy hierarchy $hhandle

hierarchy index
hierarchy index hhandle
h.index()

Get the position of the hierarchy in the object list of its dataset. If the object is not member of a
dataset, -1 is returned.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 353

CACTVS Tcl and Python Scripting Language Reference
hierarchy jget
hierarchy jget hhandle propertylist ?filterset? ?parameterdict?
h.jget(property=,?filters=?,?parameters=?)

This is a variant of hierarchy get which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

hierarchy jnew
hierarchy jnew hhandle propertylist ?filterset? ?parameterdict?
h.jnew(property=,?filters=?,?parameters=?)

This is a variant of hierarchy new which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

hierarchy jshow
hierarchy jshow hhandle propertylist ?filterset? ?parameterdict?
h.jshow(property=,?filters=?,?parameters=?)

This is a variant of hierarchy show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

hierarchy list
hierarchy list ?filterlist?
Hierarchy.List(?filters=?)

This command returns a list of the hierarchy handles currently registered in the application. This list
may optionally be filtered by a standard filter list.

hierarchy lock
hierarchy lock hhandle propertylist/hierarchy/all ?compute?
h.lock(property=,?compute=?)

Lock property data of the hierarchy object, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the hierarchy which would invalidate the information. Property data remains
locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the hierarchy object are locked. If the boolean compute flag is
set, an attempt is made to compute the property if it is not yet present. Otherwise, a request
to lock non-existent data is silently ignored. It is not possible to lock individual property
fields.

• all
All valid hierarchy properties are locked. The compute flag is ignored.
354 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• hierarchy
This is an object class identifier. All property data which is controlled by the hierarchy major
object and attached to the specified object class is locked. Since hierarchies do not contain
minor objects, this identifier is equivalent to all.

The lock can be released by a hierarchy unlock command.

The return value is the original hierarchy handle or reference.

hierarchy max
hierarchy max hhandle propertylist ?filterset?
h.max(property=,?filters=?)

Get the maximum value of one or more properties in from the elements in the hierarchy. The
property argument may be any property attached to hierarchy members, or minor objects thereof. If
the filterset argument is specified, the maximum value is searched only for objects which pass the
filter set.

hierarchy metadata
hierarchy metadata hhandle property ?field ?value??
h.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands hierarchy setparam and
hierarchy getparam can be used for convenient manipulation of specific keys in the computation
parameter field. Metadata can only be read from or set on valid property data.

hierarchy min
hierarchy min hhandle propertylist ?filterset?
h.min(property=,?filters=?)

Get the minimum value of one or more properties in from the elements in the hierarchy. The property
argument may be any property attached to hierarchy members, or minor objects thereof. If the
filterset argument is specified, the maximum value is searched only for objects which pass the filter
set.

hierarchy move
hierarchy move hhandle ?datasethandle|remotehandle? ?position?
h.move(?target=?,?position=?)

Make the hierarchy a member of a dataset, or remove it from a dataset. If the dataset handle or
reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed from
its current dataset. The dataset handle or reference may be the name of a remote dataset for moving
objects over a network connection.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 355

CACTVS Tcl and Python Scripting Language Reference
dataset objects minus one, the hierarchy is appended as per the default. It is legal to use this
command for moving objects within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset. Using this mode with remote datasets is currently not supported.

By default, datasets do not accept hierarchies as objects. This must be explicitly enabled by
modifying the acceptance bits, as for example in

dataset append $dhandle accepts hierarchy

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of a
dataset.

hierarchy mutex
hierarchy mutex hhandle mode
h.mutex(mode)

Manipulate the object mutex. During the execution of a script command, the mutex of the major
object(s) associated with the command are automatically locked and unlocked, so that the operation
of the command is thread-safe. This applies to builds that support multi-threading, either by
allowing multiple parallel script interpreters in separate threads or by supporting helper threads for
the acceleration of command execution or background information processing.

This command locks major objects for a period of time that exceeds a single command. A lock on
the object can only be released from the same interpreter thread that set the lock. Any other threaded
interpreters, or auxiliary threads, block until a mutex release command has been executed when
accessing a locked command object. This command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.
356 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
hierarchy need
hierarchy need hhandle propertylist ?mode? ?parameterdict?
h.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original hierarchy handle or reference.

hierarchy networks
hierarchy networks hhandle ?filterlist? ?recursive?
h.networks(?filters=?,?recursive=?)

Return a list of the handles or references of all network objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:

hierarchy networks $hhandle

hierarchy new
hierarchy new hhandle propertylist ?filterset? ?parameterdict?
h.new(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

hierarchy nget
hierarchy nget hhandle propertylist ?filterset? ?parameterdict?
h.nget(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy nget is that the latter always returns numeric data, even if symbolic names for the values
are available.

hierarchy nnew
hierarchy nnew hhandle propertylist ?filterset? ?parameterdict?
h.nnew(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 357

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy nnew is that the latter always returns numeric data, even if symbolic names for the
values are available, and that property data re-computation is enforced.

hierarchy objects
hierarchy objects hhandle ?filterlist? ?recursive?
h.objects(?filters=?,?recursive=?)

Return a list of the handles or references of all objects in the hierarchy node which pass the filter
set, if one is specified. Lower hierarchy node objects are not listed.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:
hierarchy objects $hhandle

hierarchy pack
hierarchy pack hhandle ?maxsize? ?requestprops? ?suppressedprops?
?compressionlib?
h.pack(?maxsize=?,?requestprops=?,?suppressedprops=?,?compressionlib=?)

Pack the hierarchy object into a base64-encoded compressed serialized object string. This string
does not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. The objects in the hierarchy and their property data are part of the dump. Further object
relationships, such as datasets the object might be a member in are not saved.

The maximum size of the object string (default -1, meaning unlimited size) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The other optional property parameter lists allow to request a specific property set to be part of the
package, even if it normally would not be included, and to explicitly omit properties from the dump.
No property computation is performed, and suppressed properties are not purged from the hierarchy.

Hierarchies can be restored from a packed object string by the hierarchy unpack command.

The hierarchy object and its contained objects remain in existence after using this command.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.
358 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
In PYTHON, hierarchy objects support the standard pickle/unpickle protocol.

Example:
set dbstring [hierarchy pack $hhandle]

hierarchy properties
hierarchy properties hhandle ?pattern? ?noempty?
h.properties(?pattern=?,?noempty=?)

Generate a list of the names of all properties attached to the hierarchy object. Optionally, the list may
be filtered by a string match pattern.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The command may be abbreviated to props instead of the full name properties.

hierarchy purge
hierarchy purge hhandle propertylist/hierarchy/specialname ?emptyonly?
h.purge(properties=,?emptyonly?)

Delete property data from the hierarchy. If a property marked for deletion is not present on an object,
it is silently ignored. If the hierarchy is not a dataset member, a request for the deletion of dataset
properties is also ignored.

If the object class name hierarchy is used instead of a specific property name, all hierarchy property
data (H_ prefix) is deleted from the object.

The optional boolean flag emptyonly can be used to restrict the deletion to those properties where
all the values for a property associated with a major object (such as on all atoms in an ensemble for
atom properties, or just the single ensemble property value for ensemble properties) are set to the
default property value.

The return value is the original object handle or reference.

hierarchy reactions
hierarchy reactions hhandle ?filterlist? ?recursive?
h.reactions(?filters=?,?recursive=?)

Return a list of the handles or references of all reaction objects in the hierarchy node which
additionally pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:
hierarchy reactions $hhandle
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 359

CACTVS Tcl and Python Scripting Language Reference
hierarchy ref
Hierarchy.Ref(identifier)

PYTHON only method to get a hierarchy reference from a handle or another identifier. For hierarchies,
other recognized identifiers are hierarchy references, integers encoding the numeric part of the
handle string, or the UUID of the hierarchy object.

hierarchy remove
hierarchy remove hhandle ?objhandle?...
h.remove(?oref/ohandle?,...)

Remove objects from the hierarchy. The object arguments must be a member of the command
hierarchy object.

The command returns the original handle or reference.

hierarchy rename
hierarchy rename hhandle srcproperty dstproperty
h.rename(srcproperty=,dstproperty=)

This is a variant of the hierarchy assign command. Please refer the command description in that
paragraph.

hierarchy set
hierarchy set hhandle ?property value?...
h.set(property,value,...)
h.set({property:value,...})
h.property = value
h[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

hierarchy setparam
hierarchy setparam hhandle property ?key value?...
hierarchy setparam hhandle property dictionary
h.setparam(property,?key,value?...)
h.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

The return value is the updated property computation parameter dictionary.

hierarchy show
hierarchy show hhandle propertylist ?filterset? ?parameterdict?
h.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
360 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, hierarchy get and hierarchy show
are equivalent.

hierarchy sqldget
hierarchy sqldget hhandle propertylist ?filterset? ?parameterdict?
h.sqldget(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The differences between hierarchy get and
hiedrarchy sqldget are that the latter does not attempt computation of property data, but
initializes the property value to the default and returns that default, if the data is not present and
valid; and that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON
script processing.

hierarchy sqlget
hierarchy sqlget hhandle propertylist ?filterset? ?parameterdict?
h.sqldget(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The difference between hierarchy get and
hierarchy sqlget is that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

hierarchy sqlnew
hierarchy sqlnew hhandle propertylist ?filterset? ?parameterdict?
h.sqlnew(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The differences between hierarchy get and
hierarchy sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

hierarchy sqlshow
hierarchy sqlshow hhandle propertylist ?filterset? ?parameterdict?
h.sqlshow(property=,?mode=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the hierarchy get command. The differences between hierarchy get and
hierarchy sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TCL or PYTHON script processing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 361

CACTVS Tcl and Python Scripting Language Reference
hierarchy subcommands
hierarchy subcommands
dir(Hierarchy)

Lists all subcommands of the hierarchy command. Note that this command does not require a
hierarchy handle.

hierarchy tables
hierarchy tables hhandle ?filterlist? ?recursive?
h.tables(?filters=?,?recursive=?)

Return a list of the handles or references of all table objects in the hierarchy node which additionally
pass the filter set, if one is specified.

By default, only those items directly stored on the command object are listed, but this can be
changed via the boolean recursive flag. If it is set, the command additionally traverses all hierarchy
objects below the current one. Recursively found objects are appended to the list without a level
indication. The hierarchy node they are attached to, and from there its level H_LEVEL or other
property value, can be obtained by the object’s hierarchy command.

Example:
hierarchy tables $hhandle

hierarchy transfer
hierarchy transfer hhandle propertylist ?targethandle? ?targetpropertylist?
h.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one hierarchy to another hierarchy or other major object, without going
through an intermediate scripting language object representation, or dissociate property data from
the hierarchy. If a property in the argument property list is not already valid on the source reaction,
an attempt is made to compute it.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple hierarchy get, i.e. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only
unlinked from the source object, but not destroyed. This means that the object handles returned by
the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

hierarchy unlock
hierarchy unlock hhandle propertylist/hierarchy/all
h.unlock(property=)
362 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Unlock property data for the reaction, meaning that they are again under the control of the standard
data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names or references
Valid property instances on the hierarchy are unlocked. Non-existent data is silently
ignored. It is not possible to unlock individual property fields.

• all
All valid hierarchy properties are unlocked.

• hierarchy
This is an object class identifier. All property data which is controlled by the hierarchy major
object and attached to the specified object class is unlocked. Since hierarchies do not contain
minor objects, this identifier is equivalent to all.

Property data locks are obtained by the hierarchy lock command.

The return value is the original hierarchy handle or reference.

hierarchy unpack
hierarchy unpack packstring ?compressionlib?
Hierarchy.Unpack(data=,?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by a hierarchy pack
command. The return value of this function is the handle or reference of the newly created hierarchy
object, which is an exact duplicate of the packed original hierarchy.

The default compression library is zlib. For more options, see reaction pack.

Example:
set packdata [hierarchy pack [hierarchy create C=O>>CO]]

set hhandle [hierarchy unpack $packdata]

hierarchy valid
hierarchy valid hhandle propertylist
h.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the hierarchy. No attempt at computation is made. For PYTHON, where single-item lists are
syntactically not the same as a single value, the return value is a single boolean if the argument was
a string or a property reference, and only a single property was decoded.

hierarchy has is an alias to this command.

hierarchy verify
hierarchy verify hhandle property
h.verify(property)

Verify the values of the specified property on the hierarchy. The property data must be valid, and a
hierarchy property. If the data can be found, it is checked against all constraints defined for the
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 363

CACTVS Tcl and Python Scripting Language Reference
property, and, if such a function has been defined, is tested with the value verification function of
the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.
364 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The majorobj Command

This command provides simple, generic versions of some commonly used major objects
(ensembles, reactions, datasets, molfiles, tables, networks) commands. The difference to the
object-specific commands is that any major object handle is accepted as object identifier, not just
the type of handle associated with the associated specialized object command. Specialized object
commands generally implement more powerful commands with additional, usually class-specific
options. This command is generally used when different types of objects (such as ensembles and
reactions) share a common simple processing path and code duplication for each type of object
would be tedious.

It is not possible to create generic major objects without specialization - this is an abstraction.

majorobj delete
majorobj delete ?handle?...
Majorobj.Delete(?mrefsequence/mref/handle?,...)

Delete major objects.

The command returns the number of deleted objects.

Example:
majorobj delete $ehandle $xhandle

majorobj dget
majorobj dget handle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj dget is that the latter does not attempt computation of property data, but rather initializes
the property values to the default and return that default if the data is not yet available. For data
already present, majorobj get and majorobj dget are equivalent.

A PYTHON implementation would not be useful because every major object has a dget() method,
which can be invoked without exact knowledge of the object class.

majorobj dup
majorobj dup handle ?dataset? ?position?

Duplicate a major object.

The duplicate object is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument places the duplicate outside any dataset, regardless
of the dataset membership of the source object.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the object is
inserted at the given position, starting with 0. If the requested position is larger than the current size
of the dataset, the object is appended.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 365

CACTVS Tcl and Python Scripting Language Reference
A PYTHON implementation would not be useful because every major object has a dup() method,
which can be invoked without exact knowledge of the object class.

Example:
majorobj dup $handle

The command returns a new object handle or reference.

majorobj exists
majorobj exists handle ?filterlist?

Check whether a handle is valid. The command returns boolean 0 or 1. Optionally, the object may
be filtered by a standard filter list, and if it does not pass the filter, it is reported as not valid.

A PYTHON implementation would not be useful because every major object has a exists() method,
which can be invoked without exact knowledge of the object class.

Example:
majorobj exists $handle

majorobj get
majorobj get handle propertylist ?filterset? ?parameterdict?
majorobj get handle attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the majorobj get command are majorobj new, majorobj dget, majorobj jget,
majorobj jnew, majorobj jshow, majorobj nget, majorobj show, majorobj sqldget,
majorobj sqlget, majorobj sqlnew, and majorobj sqlshow.

In addition to property data, all major objects possess a few common attributes, which can be
retrieved with the get command (but not by its related sister subcommands like dget, sqlget,
etc.). Object-specific attributes can only be retrieved via the object-specific access commands. The
common attributes are:

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object on
its workbench, encoded as integer pair.

• deletable
Flag indicating whether the object can be deleted with a standard majorobj delete
command. This attribute is read-only. Object which are, for example, property data values
or a part of a molfile loop command cannot be deleted by standard means.

• failures
A list of properties for which computation failed on this object. This is a read-only attribute.
Depending on configuration settings, this information may be used to block pointless
attempts at re-computation of incomputable data.
366 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench.

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• handle
The handle of the object, always reported as a string.

• header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections.

• invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering referring pointers.

• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

• modcount
Object modification count.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists.

• pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists.

• refcount
If the TCL interpreter is using native CACTVS objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this object.

• reference
The handle of the object, reported as TCL object reference object if the TCL interpreter is
configured to use these.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the network object is visible only in theTCL
interpreter which set the scope flag and thus claimed it. Object list commands executed in
other interpreters omit this object, and attempts to decode its handle in other interpreters will
fail. The most common use of this feature is the hiding of persistent chemistry objects in
scripted property computation functions.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 367

CACTVS Tcl and Python Scripting Language Reference
• selected
Flag indicating whether the object is selected.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench.

• uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object on its
workbench.

• y
f the toolkit was compiled with factory support, this is the y coordinate of the object on its
workbench.

A PYTHON implementation would not be useful because every major object has a get() method,
which can be invoked without exact knowledge of the object class.

majorobj hadd
majorobj hadd handle

Add a standard set of hydrogens to the object, if applicable (ensembles, reaction, datasets). The
command returns the total number of hydrogens added. This command version has less options than
the class-specific variants.

A PYTHON implementation would not be useful because all applicable major objects have a hadd()
method, which can be invoked without exact knowledge of the object class.

majorobj hdup
majorobj hdup handle ?dataset? ?position?

This command is the same as majorobj dup, except that a full set of hydrogens is added to the
duplicated objects if applicable (ensembles, reactions, datasets).

A PYTHON implementation would not be useful because all applicable major objects have a hdup()
method, which can be invoked without exact knowledge of the object class.

majorobj hstrip
majorobj hstrip handle ?flags?

This command removes hydrogens from all applicable objects (ensembles, reactions, datasets). By
default, all hydrogen atoms on the object are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:
368 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• deprotonate
If this flag is set, a single proton is removed from the first suitable atom. This command
variant triggers a standard atom and bond change property invalidation event, and it always
ends processing after removing the first proton. Proton removal decreases the charge of the
atom by one. In the reaction command variant, this flag is rarely useful - it is supported for
compatibility with the atom hstrip command

• keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

• keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

• keeporiginal
Hydrogen atoms which were not automatically added via a hadd command are retained.
Note that hydrogen addition commands can be run in a mode which does not leave
information about automatic addition - hydrogens added this way will also survive.

• keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

• keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

• keepwedge
keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

• normalize
Normalize the wedge pattern for standard cases, removing wedges from hydrogens if the
result is still stereochemically defined. Hydrogens which lose their wedge in this process are
no longer protected by the keepwedge flag.

• wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

The return value is the total number of hydrogens deleted.

A PYTHON implementation would not be useful because all applicable major objects have a hstrip()
method, which can be invoked without exact knowledge of the object class.

majorobj jget
majorobj jget handle propertylist ?filterset? ?parameterdict?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 369

CACTVS Tcl and Python Scripting Language Reference
This is a variant of majorobj get which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

A PYTHON implementation would not be useful because every major object has a jget() method,
which can be invoked without exact knowledge of the object class.

majorobj jnew
majorobj jnew handle propertylist ?filterset? ?parameterdict?

This is a variant of majorobj new which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

A PYTHON implementation would not be useful because every major object has a jnew() method,
which can be invoked without exact knowledge of the object class.

majorobj jshow
majorobj jshow handle propertylist ?filterset? ?parameterdict?

This is a variant of majorobj show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

A PYTHON implementation would not be useful because every major object has a jshow() method,
which can be invoked without exact knowledge of the object class.

majorobj ldup
majorobj ldup ?handlelist?...
Majorobj.ldup(?mref/mrefsequence/handle?,...)

Duplicate all objects in the handle list(s) in default mode.

The return value is a single list (even if multiple source lists are used) of the duplicated object
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string (or None) element at its position,
without raising an error.

majorobj lhdup
majorobj lhdup ?handlelist?...
Majorobj.lhdup(?mref/mrefsequence/handle?,...)

Duplicate all objects in the handle list(s) in default mode, and add hydrogens if applicable
(ensembles, reactions, datasets).

The return value is a single list (even if multiple source lists are used) of the duplicated object
handles. If an argument list element is an empty string (or None for PYTHON), it indicates a missing
object, and the output list also receives an empty string (or None) element at its position, without
raising an error.

majorobj new
majorobj new handle propertylist ?filterset? ?parameterdict?
370 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

A PYTHON implementation would not be useful because every major object has a new() method,
which can be invoked without exact knowledge of the object class.

majorobj nget
majorobj nget handle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj nget is that the latter always returns numeric data, even if symbolic names for the values
are available.

A PYTHON implementation would not be useful because every major object has a nget() method,
which can be invoked without exact knowledge of the object class.

majorobj nnew
majorobj nget handle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj nget is that the latter always returns numeric data, even if symbolic names for the values
are available.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj nnew is that the latter always returns numeric data, even if symbolic names for the values
are available, and that property data re-computation is enforced.

A PYTHON implementation would not be useful because every major object has a nnew() method,
which can be invoked without exact knowledge of the object class.

majorobj show
majorobj show handle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobnj get and
majorobj show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, majorobj get and majorobj show
are equivalent.

A PYTHON implementation would not be useful because every major object has a show() method,
which can be invoked without exact knowledge of the object class.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 371

CACTVS Tcl and Python Scripting Language Reference
majorobj sqldget
majorobj sqldget nhandle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The differences between majorobj get and
majorobj sqldget are that the latter does not attempt computation of property data, but initializes
the property value to the default and returns that default, if the data is not present and valid; and that
the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

A PYTHON implementation would not be useful because every major object has a sqldget() method,
which can be invoked without exact knowledge of the object class.

majorobj sqlget
majorobj sqlget nhandle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The difference between majorobj get and
majorobj sqlget is that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

A PYTHON implementation would not be useful because every major object has a sqlget() method,
which can be invoked without exact knowledge of the object class.

majorobj sqlnew
majorobj sqlnew nhandle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The differences between majorobj get and
majorobj sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

A PYTHON implementation would not be useful because every major object has a sqlnew() method,
which can be invoked without exact knowledge of the object class.

majorobj sqlshow
majorobj sqlshow nhandle propertylist ?filterset? ?parameterdict?

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the majorobj get command. The differences between majorobj get and
majorobj sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TCL or PYTHON script processing.
372 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
A PYTHON implementation would not be useful because every major object has a sqlshow() method,
which can be invoked without exact knowledge of the object class.

majorobj subcommands
majorobj subcommands
dir(Majorobj)

List all currently implemented subcommands of this command.

The PYTHON version is somewhat misleading, because it also lists methods which are implemented
in a generic fashion for all major objects and then inherited by specialized classes.

majorobj valid
majorobj valid handle propertylist

Returns a list of boolean values indicating whether values for the named properties are currently set
for the object. No attempt at computation is made.

majorobj has is an alias to this command.

A PYTHON implementation would not be useful because every major object has a valid() method,
which can be invoked without exact knowledge of the object class.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 373

CACTVS Tcl and Python Scripting Language Reference
The mol Command

The mol command is the generic command used to manipulate molecules. The syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel.

The mol command supports, in addition to the normal label decoding process, the magic value
primary as molecule label. The primary molecule is determined, in this order, by the maximum
value of properties M_HEAVY_ATOM_COUNT, M_NATOMS and M_HASHISY. When there is more than one
molecule where all properties are top-rated, the first molecule of these in the molecule list is chosen.
An empty ensemble has no primary molecule. The pseudo molecule labels first, last and random are
additional special values, which select the first molecule in the molecule list, the last, or a random
molecule.

Examples:
mol get $ehandle 1 M_WEIGHT
mol delete $ehandle 2
mol dup $ehandle primary
set pmol_label [mol mol $ehandle primary]

This is the list of officially supported subcommands:

mol append
mol append ehandle label ?property value?...
m.append({?property:value,?...})
m.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
mol append $ehandle 1 M_NAME “_linker”

mol align3d
mol align3d ehandle label box/center/masscenter/pmi ?usehydrogens? ?property?
m.align3d(?mode=?,?usehydrogens=?,?coordinateproperty=?)

Perform a 3D alignment by modifying standard atom coordinates property A_XYZ, or an alternative
explicitly specified atomic coordinate property.

The possible alignment modes are

• box
move center of enclosing 3D coordinate box to origin

• center
move average atom coordinates to origin

• masscenter
move mass-weighted atom coordinates to origin
374 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• pmi
align ensemble to principle moments of inertia (largest on x axis), and move the
mass-weighted center to the origin.

By default all atoms of the molecule are used to compute the alignment rotation and movement
vectors, including hydrogens. If these should be omitted from computing the movement vectors (but
not the subsequent atom movement), the optional usehydrogens parameter can be set to false.

The command returns the label or reference of the molecule.

mol atoms
mol atoms ehandle label ?filterset? ?filtermode?
m.atoms(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the atom in the molecule.
This is explained in more detail in the section about object cross-references.

Example:
mol atoms $ehandle !hydrogen

returns the labels of the non-hydrogen atoms in the molecule.

mol bondangles
mol bondangles ehandle label ?filterset? ?filtermode?
m.bondangles(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bond angle objects the
molecule contains. This is explained in more detail in the section about object cross-references.

mol bonds
mol bonds ehandle label ?filterset? ?filtermode?
m.bonds(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bonds the molecule
contains. This is explained in more detail in the section about object cross-references. Bonds which
cross into other molecules are not listed. Such bonds may exist if they are not of a bond type which
is used to group atoms into molecules.

Examples:
mol bonds $ehandle 1
mol bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds molecule 1 contains. The second example returns
the number of double or triple bonds in the molecule.

mol compare
mol compare ehandle label ehandle2 label2
m.compare(mref)

Compare two molecules, yielding a stable sort order. The compared attributes are, in this order, the
number of atoms, the number of bonds, the molecular weight, the number of ESSSR rings and
finally the stereo- and isotope aware 64-bit hashcode (M_ISOTOPE_STEREO_HASHY). The command
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 375

CACTVS Tcl and Python Scripting Language Reference
returns 1 if the first molecule is larger, -1 if the second is larger, and 0 if they are identical according
to the comparison scheme.

The compared property values, with the exception of the final hashcode tiebreaker, are compatible
with the RDKIT model.

mol defined
mol defined ehandle label property
m.defined(property)

This command checks whether a property is defined for the molecule. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

Example:
mol defined $ehandle 1 M_NAME

checks whether molecule 1 is of a type for which M_NAME is defined.

mol delete
mol delete ehandle ?label?...
mol delete ehandle all
m.delete()
Mol.Delete(eref,”all”)
Mol.Delete(mref,...)
Mol.Delete(eref,?mlabel/mref/mrefsequence?,...)

Delete molecules from the ensemble. All minor objects on the same ensemble which contain atoms
from the deleted molecules, such as rings, groups and ring systems, are also deleted. However, these
minor object sets are not completely destroyed and property data on the remaining objects remains
valid, if those properties are not invalidated by merge events.

Deleting a molecule triggers a merge invalidation event, but not atomchange/bondchange events.
Property data which is susceptible to this invalidation mode is recursively deleted from the
ensemble.

The special label all deletes all molecules in the ensemble. Usually this is equivalent to ens clear,
but in theory there may exist atom-class objects which are not part of a molecule, and these are then
retained.

The command returns the number of deleted molecules.

Example:
mol delete $ehandle 1

mol dget
mol dget ehandle label propertylist ?filterset? ?parameterdict?
m.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
376 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the mol get command. The difference between mol get and mol dget is that
the latter does not attempt computation of property data, but rather initializes the property values to
the default and return that default if the data is not yet available. For data already present, mol get
and mol dget are equivalent.

mol dup
mol dup ehandle label ?datasethandle? ?position?
m.dup(?target=?,?position=?)

Duplicate a single molecule into a new ensemble. The function returns the new ensemble handle or
reference.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string (or None for
PYTHON) is passed, the duplicate is not made a dataset member, even if the input ensemble is in a
dataset.

The new ensemble preserves ring information and associated property data and other minor object
data from the original ensemble for all minor objects which exclusively refer to atoms which are part
of the duplicated molecule. Minor objects outside the duplicated molecule, or spanning multiple
molecules are not duplicated.

Example:
mol dup $ehandle 1 [dataset create]

Duplicate the molecule with label one and move the new single-molecule ensemble into a newly
created dataset.

mol ens
m.ens()

PYTHON-only method to get the ensemble reference from a molecule reference.

mol exists
mol exists ehandle label ?filterlist?
m.exists(?filters=?)
Mol.Exists(eref,label,?filters=?)

Check whether this molecule exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the molecule does not exist, or fails the filter, and 1
in case of successful testing.

Example:
mol exists $ehandle 99

mol expand
mol expand ehandle label ?allowambiguous? ?noimplicith?
m.expand(?allowambiguous=?,?noimplicith=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 377

CACTVS Tcl and Python Scripting Language Reference
This command expands all superatoms in the molecule. The mechanisms for the expansion of
superatoms are described in detail for the atom expand command. This command is functionally
equivalent, working on all atoms in the molecule instead a single atom.

Example:
mol expand $ehandle 1

The command returns the total number of successfully expanded atoms.

mol expr
mol expr ehandle label expression
m.expr(expression)

Compute a standard SQL-style property expression for the molecule. This is explained in detail in
the chapter on property expressions.

mol fill
mol fill ehandle label ?property value?...
m.fill({property:value,...})
m.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.

Example:
mol fill $ehandle 1 B_COLOR red

sets the color of the first bond molecule 1 contains to red.

mol filter
mol filter ehandle label filterlist
m.filter(filters)

Check whether a molecule passes a filter list. The boolean return value is 1 for success and 0 for
failure.

Example:
mol filter $ehandle 1 [list carbon doublebond]

checks whether the molecule contains one or more carbon atoms and one or more double bonds. The
double bond does not need to be with a carbon atom.

mol get
mol get ehandle label propertylist ?filterset? ?parameterdict?
m.get(property=,?filters=?,?parameters=?)
m[property]
m.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
378 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Examples:
mol get $ehandle 1 {M_WEIGHT A_ELEMENT}

yields a list with two elements, consisting of the molecular weight as the first element and the
element numbers of all atoms in the molecule as a nested list as the second result list element. If the
information is not yet available, an attempt is made to compute it. If the computation fails, an error
results.
mol get $ehandle 1 B_ORDER ringbond

gives the bond orders of all bonds of the molecule which are ring bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the mol get command are mol new, mol dget, mol show, mol sqldget, mol sqlget,
mol sqlnew and mol sqlshow.

Further examples:
mol get $ehandle 1 E_NAME
mol get $ehandle 1 A_FLAGS(boxed)

mol groups
mol groups ehandle label ?filterset? ?filtermode?
m.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the molecule
contains. This is explained in more detail in the section about object cross-references. Groups which
contain atoms from more than one molecule are included.

Example:
mol groups $ehandle 1

mol hadd
mol hadd ehandle label ?filterset? ?flags?
m.hadd(?filters=?,?flags=?)

Add a standard set of hydrogens to the molecule. If the filterset parameter is specified, only those
atoms which pass the filter set are processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

• keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

• no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 379

CACTVS Tcl and Python Scripting Language Reference
• no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

• noanions
Do not add hydrogen to atoms with a negative formal charge.

• noatoms
Do not add hydrogen to atoms without any bonds.

• nocations
Do not add hydrogen to atoms with a positive formal charge.

• noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

• noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

• nofixatomtext
Do not adjust property A_TEXTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOEt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

• nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

• nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

• nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

• nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B_TYPE not normal).

• protonate
Add a single proton to the molecule, to the first suitable atom. The charge of the selected
atom is increased, only a single hydrogen is added regardless of the standard number of
missing hydrogens, and this command will issue the standard property invalidation event for
atom and bond changes. In the molecule command variant, this option is rarely useful. It is
supported for compatibility with the atom hadd command.

• resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.
380 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Adding hydrogens with this command, except if the protonate flag is set, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

The command returns the number of hydrogens which were added.

Example:
set ehandle [ens create {[C].[C]}]
mol hadd $ehandle 1

adds four hydrogens to the first carbon atom, transforming it into methane, but leave the second
carbon atom untouched.

mol hdup
mol hdup ehandle label ?datasethandle? ?position?
m.hdup(?target=?,?position=?)

This command provides the same functionality as mol dup, except that it also adds a standard set
of hydrogens to the new ensemble.

mol hstrip
mol hstrip ehandle label ?flags?
m.hstrip(?flags=?)

This command removes hydrogens from the selected molecule. By default, all hydrogen atoms in
the molecule are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

• deprotonate
If this flag is set, a single proton is removed from the first suitable atom. This command
variant triggers a standard atom and bond change property invalidation event, and it always
ends processing after removing the first proton. Proton removal decreases the charge of the
atom by one. In the molecule command variant, this flag is rarely useful - it is supported for
compatibility with the atom hstrip command.

• keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

• keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

• keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note these commands commands can be run in a mode which does not leave
information about automatic addition - hydrogens added this way are not protected.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 381

CACTVS Tcl and Python Scripting Language Reference
• keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

• keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

• keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

• normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

• wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
when the deprotonate flag is set. The system assumes that this operation is done as part of some file
output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that the structure may contain implicit hydrogens.

The return value of the command is the number of hydrogens removed.

Example:
mol hstrip $ehandle 1 [list keeporiginal wedgetransfer]

mol hydrogenate
mol hydrogenate ehandle label ?filterset? ?changeset?
m.hydrogenate(?filters=?,?changeset=?)

Reduce all bonds in the molecule to single bonds except those excluded by the filter set.

If a change set is supplied, its interpretation is the same as in mol hadd.

The command returns the number of added hydrogens.

Example:
mol hydrogenate $eh 1 {!arobond !ccbond}

This reduces all non-aromatic hetero bonds in molecule 1 to single bonds.

mol image
mol image ehandle label ?width? ?height? ?options?
382 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This command generates a TK image object displaying the molecule as an icon. The command is
only available in toolkit variants which are linked with the portable TK GUI toolkit library and which
are either statically linked with the GD image drawing library, or can load it dynamically. It is
currently not support in the PYTHON interface.

The default image size is 64x64 pixels, but this may be overridden by the width and height
parameters. If only width is set, it is also used for the height. The command returns a Tk image
handle. These images may for example be placed on Tk canvases as canvas objects, or used on
buttons and other GUI objects.

Because of the small size of the images, atoms are not displayed as symbols, but small color-coded
squares. This is a command for the implementation of graphical structure-handling applications
with icons. For serious structure visualization, use the E_GIF, E_EMF_IMAGE or E_EPS_IMAGE
properties.

Additional options may be added by an arbitrary sequence of option/value pairs. Color names can
be those registered in the X11 color database, or a numeric specification in the #rrggbb format. These
options are currently supported:

• -background color
Background color. The default is black.

• -border npixels
Thickness of the image border. The default are 5 pixels.

• -bordercolor color
Border color. The default is blue.

• -cmode none/special/all
Display mode for carbon atoms. The default is special, meaning that only carbon atoms
which usually are drawn with a C symbol are displayed as colored rectangle and not just a
bond node. Highlighted atoms are always displayed.

• -highlightatom label
Select an atom for highlighting. By default, no atom is highlighted.

• -highlightcolor color
Set the highlighting color. The default is chartreuse.

• -hmode none/special/all
Display mode for hydrogen atoms. The default is special, meaning that only hydrogen
atoms which usually are drawn with an H symbol are displayed as colored rectangle. Other
hydrogen atoms and the bonds leading to them are suppressed. Highlighted atoms are
always displayed.

• -imagename name
Explicitly set a name for the image. By default, a name of the form imagen is automatically
generated. It is possible to specify the name of an existing image, which will then be
overwritten.

• -linecolor color
Color of bond lines and wedges. The default is white.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 383

CACTVS Tcl and Python Scripting Language Reference
Images are cached. If an image for the selected molecule with the same display attributes exists, it
is reused.

Example:
set img [mol image $ehandle 1 80 80 -border yellow -linecolor blue]
canvas create .canvaswin image 50 50 -image $img

mol index
mol index ehandle label
m.index()

Get the index of the molecule. The index is the position in the molecule list of the ensemble. The
first position is index 0.

Example:
mol index $ehandle 99

mol isotopecheck
mol isotopecheck ehandle label ?failedatomvariable? ?extended?
m.isotopecheck(variable=,extended=)

Test whether the isotope labels on the atoms of the molecule, if they exist, are physically reasonable.
The command returns the number of failed atoms. If a capture variable is specified, the atom labels
or references of these atoms are stored therein. If no isotope labels are set in A_ISOTOPE, the
command always reports zero problems.

By default, a smaller isotope table is used which contains only isotopes which are sufficiently
long-lived to perform chemistry on. These include naturally occurring isotopes as well as isotopes
used for experimental labeling, such as 3H or 14C. If the extended boolean flag is set, a larger table
containing all known isotopes of the elements is used.
The isocheck command is an alias.

mol jget
mol jget ehandle label propertylist ?filterset? ?parameterdict?
m.jget(property=,?filters=?,?parameters=?)

This is a variant of mol get which returns the result data as a JSON formatted string instead of TCL

or PYTHON interpreter objects.

mol jnew
mol jnew ehandle label propertylist ?filterset? ?parameterdict?
m.jnew(property=,?filters=?,?parameters=?)

This is a variant of mol new which returns the result data as a JSON formatted string instead of TCL

or PYTHON interpreter objects.

mol jshow
mol jshow ehandle label propertylist ?filterset? ?parameterdict?
m.jshow(property=,?filters=?,?parameters=?)

This is a variant of mol show which returns the result data as a JSON formatted string instead of TCL

or PYTHON interpreter objects.
384 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
mol local
mol local ehandle label propertylist ?filterset? ?parameterdict?
m.local(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
mol local $ehandle 1 A_LABEL_STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

mol match
mol match ehandle label ss_ehandle ?ss_label? ?matchflags? ?ignoreflags?

?atommatchvar? ?bondmatchvar? ?molmatchvar?
m.match(substructure=,?substructuremol=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)

Check whether the selected molecule matches a substructure. Only the first molecule, or the
molecule selected by the substructure label parameter, is tested. The substructure may be part of any
structure ensemble, and even be in the same ensemble as the primary command molecule. Both the
atoms in the molecule and the bonds between them are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels. If no match can be found, the variable is set to an empty list. In case only a bond
or molecule match variable is needed, an empty string can be used to skip the unused match variable
argument positions.

Example:
set ss [ens create {c1ccccc1.c1ncccc1} smarts]
set m_contains_phenylring [mol match $ehandle $label $ss 1]

mol mol
mol mol ehandle label
Mol.Ref(eref,identifier)

Standard cross-referencing command to obtain the label or reference of the molecule as stored in
property M_LABEL. This is explained in more detail in the section about object cross-references.

Example:
mol mol $ehandle #0

returns the label of the first molecule of the ensemble molecule list.
mol mol $ehandle primary

returns the label of the primary molecule in the ensemble.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 385

CACTVS Tcl and Python Scripting Language Reference
mol new
mol new ehandle label propertylist ?filterset? ?parameterdict?
m.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol new is that
the latter forces the re-computation of the property data, regardless whether it is present and valid,
or not.

mol nget
mol nget ehandle label propertylist ?filterset? ?parameterdict?
m.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol nget is that
the latter always returns numeric data, even if symbolic names for the values are available.

mol pack
mol pack ehandle label ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?
m.pack(?maxsize=?,?requestprops=?,?suppressedprops=?,?compressionlib=?)

Pack the selected molecule into a base64-encoded compressed serialized object string. This string
does not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. Outside object relationship information, such as the dataset the ensemble of the
molecule might be a member of, or associated tables of the parent ensemble are not included, and
neither are any ensemble properties.

The maximum size of the object string (default -1, meaning unlimited) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The next two optional parameters allow to request a specific property set to be part of the package,
even if it normally would not be included, and to explicitly omit properties from the dump. No
property computation is performed, and suppressed properties are not purged from the ensemble.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

Single-molecule ensembles can be restored from a packed object string by the ens unpack and ens
create commands.

The PYTHON Mol class also supports the pickle protocol, but not unpickling. Restoring a pickled
molecule can be done via the Ens unpickle method - this is like unpacking the pack string, which
also returns a new single-mol ensemble.
386 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
mol pis
mol pis ehandle label ?filterset? ?filtermode?
m.pis(filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the
molecule contains. This is explained in more detail in the section about object cross-references.

Examples:
mol pis $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one  system and one  system in this representation.

mol ref
Mol.Ref(eref,identifier)

PYTHON only method to get a group reference. See mol mol command.

mol replicate
mol replicate ehandle label ?count?
m.replicate(?count=?)

Add duplicates of the selected molecule to the command ensemble. The default number of
duplicates is one, but any other number may be requested by setting the count parameter. If the count
is less than one, the command is silently ignored.

The command returns the labels or references of all newly created molecules as a list. New molecule
labels begin at one plus the highest old label. All atoms, bonds and other chemistry objects which
are created by the command are appended to the object lists in the ensemble and will thus bear higher
labels than any existing label of their class in the ensemble. This command triggers a merge property
invalidation event.

The mol dup command duplicates a molecule into a new ensemble, which is quite different from
what this command does.

Example:
set eh [ens create C.CC]
mol dup $eh 1 2
echo [ens get $eh E_SMILES]

returns C.CC.C.C, because the first molecule (label one) was duplicated twice.

mol rings
mol rings ehandle label ?filterset? ?filtermode?
m.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the molecule
contains. This is explained in more detail in the section about object cross-references. Rings which
are not restricted to the selected molecule are listed. Under certain circumstances, it is possible to
have rings which span more than one molecule.

Examples:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 387

CACTVS Tcl and Python Scripting Language Reference
mol rings $ehandle 1
mol rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the molecule contains. If the molecule does not
contain any rings, an empty list is returned. Only labels of rings in the SSSR or ESSSR set are
returned, even if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

mol ringsystems
mol ringsystems ehandle label ?filterset? ?filtermode?
m.ringsystems(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring systems the
molecule contains. This is explained in more detail in the section about object cross-references. Ring
systems which are not restricted to the selected molecule are included. Under certain circumstances,
it is possible to have ring systems which span more than one molecule.

Examples:
mol ringsystems $ehandle 1
mol ringsystems $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all ring systems the molecule contains. If the molecule does
not contain any ring systems, an empty list is returned. The second example filters the ring systems
- a ring system label is included in the output list only if that ring system contains one or more hetero
aromats.

mol rotate
mol rotate ehandle label angle axis ?center? ?property?
m.rotate(angle=,axis=,?center=?,?coordinateproperty=?)

Rotate the molecule in 3D space on property A_XYZ or a custom atom float vector coordinate
property.

This command requires 3D atomic coordinates. If these are not yet present, an attempt is made to
compute them. The rotation angle is specified in degrees. The first point is the axis vector - it can
be specified in any format the TCL vec command understands. By default the center of rotation is the
center of the molecule bounding box, but by providing explicit center coordinates, any center of
rotation can be set.

This operation triggers a 3Dop property invalidation event.

The command returns the original molecule label or reference.

Example:
mol rotate $ehandle 1 50 {1 1 0}

rotates the molecule around its center 50 degrees counter-clockwise along the 45-degrees
xy-diagonal.

mol set
mol set ehandle label ?property value?...
m.set(?property,value?,...)
m.set({property:value,...})
388 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
m.property = value
m[property] = value

Standard data manipulation command for setting property data. It is explained in more detail in the
section about setting property data.

The command returns the first data value.

Example:
mol set $ehandle 1 M_NAME “Pharmacon X-25”

mol show
mol show ehandle label propertylist ?filterset? ?parameterdict?
m.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol show is that
the latter does not attempt computation of property data, but raises an error if the data is not present
and valid. For data already present, mol get and mol show are equivalent.

mol sigmas
mol sigmas ehandle label ?filterset? ?filtermode?
m.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the
molecule contains. This is explained in more detail in the section about object cross-references.

Examples:
mol sigmas $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

mol sqldget
mol sqldget ehandle label propertylist ?filterset? ?parameterdict?
m.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The differences between mol get and mol sqldget
are that the latter does not attempt computation of property data, but initializes the property value
to the default and returns that default, if the data is not present and valid; and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

mol sqlget
mol sqlget ehandle label propertylist ?filterset? ?parameterdict?
m.sqlget(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 389

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The difference between mol get and mol sqlget is
that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

mol sqlnew
mol sqlnew ehandle label propertylist ?filterset? ?parameterdict?
m.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The differences between mol get and mol sqlnew are
that the latter forces re-computation of the property data, and that the SQL command variant formats
the data as SQL values rather than for TCL or PYTHON script processing.

mol sqlshow
mol sqlshow ehandle label propertylist ?filterset? ?parameterdict?
m.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the mol get command. The differences between mol get and mol sqlshow
are that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

mol subcommands
mol subcommands
dir(Mol)

Lists all subcommands of the mol command. Note that this command does not require an ensemble
handle, or a molecule label.

mol surfaces
mol surfaces ehandle label ?filterset? ?filtermode?
m.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of surface patches the
molecule is associated with. This is explained in more detail in the section about object
cross-references.

Example:
mol surfaces $ehandle $label

Note that surface patches are not required to be associated with any atom, and if they are not, they
are implicitly not associated with any molecule.
390 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
mol torsions
mol torsions ehandle label ?filterset? ?filtermode?
m.torsions(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the torsion angle objects
the molecule contains. This is explained in more detail in the section about object cross-references.

mol translate
mol translate ehandle label pt1 ?pt2? ?property?
m.translate(point1=,?point2=?,?coordinateproperty=?)

Move the atoms of the molecule by modifying their 3D coordinates in property A_XYZ, or a custom
atomic float vector coordinate property. This command requires atomic 3D coordinates and will
attempt to compute them if they are not yet present. If no 3D atomic coordinates can be generated,
the command fails with an error.

The movement vector may either be specified by a single vector, or two points. If two points are
used, the subtraction of the second point from the first is used to compute the movement vector. Both
point/vector arguments understand the same vector notation syntax as the vec command.

This command triggers a 3Dglop property invalidation event.

The command returns the original molecule label or reference.

Example:
mol translate $ehandle 1 {1 0 0} {2 0 0}

moves the molecule one Ångström in x-direction.

mol valencecheck
mol valencecheck ehandle label ?failedatomvariable? ?nitrogenmode?
m.valencecheck(?variable=?,?nitrogenmode=?)

Perform a valence check on the molecule, comparing the current bonding situation at all atoms to
the list of element-specific valence states in the system element table. This command is intentionally
quite picky, discouraging for example the use of pentavalent nitrogen by default. For the calculation
of valence, only bonds of type normal (VB bonds) are taken into account. Complex bonds and
pseudo bond types thus do not interfere in the calculation. Some more exotic metal atoms with many
different valence states, or few well-defined covalent compounds, such as vanadium or rhodium,
always pass.

The handling of nitrogen in pentavalent or ionic form can be controlled by setting the optional
nitrogenmode argument, or modifying the global ::cactvs(nitrogen_valence_check)
variable.Possible values are xionic, ionic (the default), asis, penta and xpenta. These are the same
values as with the ens nitrostyle command - please refer to that command for more information.
In asis mode, both ionic and pentavalent forms pass.

The return value of this command is the number of atoms which failed the valence check. If the
optional parameter failedatomvariable is specified as non-empty string, it is the name of a variable
which is set to a list of the atom labels or references which did fail, or is set to an empty list in case
no problems were found.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 391

CACTVS Tcl and Python Scripting Language Reference
Note that this command assumes that all hydrogen atoms are in place. Checking molecules with
implicit hydrogen atoms is not supported.

Example:
mol valencecheck [ens create {CN(=O)=O.C[N+](=O)[O-]}] 1 badatoms
mol valencecheck [ens create {CN(=O)=O.C[N+](=O)[O-]}] 2 badatoms

These sample commands check the valence situation of nitromethane in two encoding formats. The
first molecule, using a pentavalent nitrogen encoding, returns 1, indicating one failed atom, and the
variable badatoms is set to 2, the label of the pentavalent nitrogen. The second molecule, checked
with the line below, passes without problems, with a return value of 0 and an empty badatoms
variable.
392 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The molfile Command

The molfile command is the generic command used to manipulate chemical structure and reaction
files. These can be of any supported format, not just MDL molfiles.

Molfiles are major objects. They are uniquely identified by their label alone. Molfiles do not contain
minor objects.

Example:
set fhandle [molfile open myfile.sdf]
set ehandle [molfile read $fhandle]
molfile get $fhandle record

As explained in more detail in the section about working with structure files, the molfile handle
identifier can be replaced by a file name. This file is automatically opened, the command executed,
and the file closed in a single one-shot operation.

In the context of structure files, file-related data is usually provided as attributes. However, molfiles
can store property data like any other chemistry object.

Example:
molfile get $fhandle F_COMMENT

When property data is requested which is not of the molfile type, the next record is read from the
file into a temporary ensemble, reaction or dataset object, depending on the file configuration. An
attempt is then made to obtain the property data from that object. Afterwards, the object is
automatically deleted.

Example:
set mw [molfile get „somefile.smi“ E_WEIGHT]

This example temporarily opens the file, reads the first record into an ensemble, and computes the
molecular weight. Both the ensemble and the molfile object are transient and do no longer exist after
the command completes.

This is the list of currently officially supported subcommands:

molfile add
molfile add filehandle ?objecthandle/objecthandlelist?...
f.add(objectsequence/objectref,...)
Molfile.Add(filename,objectsequence/objectref,...)

If the filehandle argument refers to an open chemistry data file, this command is indistinguishable
from molfile write.

A difference only exists if the filehandle argument is a file name (or, in cased of PYTHON, the class
method is used). In that case, molfile write overwrites an existing file, while molfile add
attempts to temporarily open the file for appending, as with a molfile open filename a command.
If the format of the output file supports appending, the output objects are written as new records after
the last existing record.

It is not possible to append to single-record file formats.

Example:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 393

CACTVS Tcl and Python Scripting Language Reference
molfile add smilerecords.smi $eh

molfile append
molfile append filehandle ?property value?...
f.append({?property:value,?...})
f.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data. This is not a command to append file records. Use the
molfile write command for this purpose.

The command returns the first data value.

Example:
molfile append $fh F_GAUSSIAN_JOB_PARAMS(route) “Opt=(AddRed,CalcFC)”

molfile assign
molfile assign filehandle srcproperty dstproperty
f.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same ensemble. Both properties must be associated
with the same object class. This process is more efficient than going through a pair of molfile
get/molfile set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant molfile rename directly exchanges
the property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

The command returns the object handle for TCL, or object reference for PYTHON.

molfile backspace
molfile backspace filehandle ?nrecords?
f.backspace(?records=?)

Position the file pointer backwards. If no record counter is specified, the file is backspaced by a
single record. It is an error to attempt to reposition the file before the beginning of the file.

Examples:
molfile backspace $fh
molfile set $fh record [expr [molfile get $fh record]-1]

These two sample lines provide identical functionality.

The molfile backspace command is often used in combination with the molfile copy command
in order to copy records with specific properties verbatim:
set eh [molfile read $fh]
394 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
if {[strucuture_passes_condition $eh]} {
molfile backspace $fh
molfile copy $fh $outfilehandle

}

molfile blob
molfile blob enshandle/reactionhandle/datasethandle ?attribute value?...
molfile blob enshandle/reactionhadle/datasethandle? ?attribute_dict?
Molfile.Blob(eref/xref/dref,?attribute,value?,...)
Molfile.Blob(eref/xref/dref,attribute_dict)

This is an alias of molfile string. Please refer to the section on that command for more
information.

molfile close
molfile close ?filehandle? ...
molfile close all
f.close()
Molfile.Close(“all”)
Molfile.Close(mrefsequence/mref/mhandle,...)

Close one or more file handles. If the file handle corresponds to a scratch file, the file is deleted. If
it corresponds to a pipe, all programs in the pipe are shut down.

If all is passed instead of a set of file handles, all currently opened structure files are closed. Standard
TCL or PYTHON files upon which a molfile handle has been piggybacked are not affected, i.e. these
language channels are flushed and remain open, while the molfile object component is closed.

It is a good idea to close files when they are no longer needed. In addition, while most file format
I/O modules commit all data to disk after each record has been written, so that a clean close-down
is not absolutely required, there are file formats for which the I/O module has a cleanup or
finalization routine which is only called if the file is properly closed.

The command returns the number of files which were closed.

Example:
set fhandle [molfile open scratch]
molfile close $fhandle

The example closes a scratch file, which is automatically deleted from disk when it is closed.

On normal interpreter program exit, the close functions of all remaining open file handles are
automatically called.

molfile copy
molfile copy filehandle ?channel? ?count? ?startrecord/startrecordlist?
f.copy(?outfile=?,?count=?,?startrecord=?)

Copy a record to a TCL or PYTHON file I/O channel, to a CACTVS structure file handle, or retrieve it as
a byte image. No interpretation or formatting of the data in the file record(s) takes place - the data
is copied verbatim, byte by byte.

If file format conversion is desired, the data items (ensembles, reactions, datasets) must be explicitly
read (molfile read command) as chemistry objects and written to another molfile opened for
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 395

CACTVS Tcl and Python Scripting Language Reference
output in the desired format (molfile write command). That procedure involves re-formatting and
potential loss of formatting or information which was not captured by the input routine, or cannot
be written by the output routine.

By default the next record after the current file pointer position is returned as a byte image. The
optional parameters allow the selection of a specific start record (beginning with 1 for the first
record), the copying of multiple records in one command (by default, a single record is processed),
and output to alternative TCL or PYTHON file I/O channels or CACTVS molfile structure file handles.
If an empty string, None in PYTHON, or the value 0 are used as start record number, the file is copied
from the current position. If the start record is negative, it is interpreted as offset from the current
position. Therefore, passing -1 as parameter instructs the command to backspace by one record prior
to copying. Not all files can be backspaced. The start record can also be specified as a record list
(TCL) or record sequence (PYTHON). In that case, the input file pointer is positioned to every specified
record in order, and from that position the selected number of records is copied. If the special record
count values end or all are used, all remaining records in the input file are copied. Otherwise, if the
number of available records is smaller than the requested copy count, an error results.

If the output channel argument is omitted, or set to an empty string, the record(s) are returned as a
byte sequence command result. Otherwise, the data is written to the file handle the argument is
connected to. For CACTVS molfile handles, the destination is the current write position of the
underlying file handle. On UNIX/LINUX systems, writable active TCL file or socket handles (in the form
filexxx or sockxxx) are also supported, but not on Windows. Additionally, the special output channel
names stdout and stderr can be used. If output is written to a channel, and not returned as blob, the
number of actually copied records is returned as the command result.

The I/O modules for some formats like SDF provide optimized fast copy routines and are thus
notably faster to copy then other file formats without explicitly encoded record positions. These still
need to read the file line by line and maintain a parser state, though they can avoid decoding the
record contents as structures or reactions.

Example:
set eh [molfile read $fhandle]
set fhout [open “metal_compounds.sdf” w]
if {[ens atoms $eh metal exists]} {

molfile copy $fhandle $fhout 1 [expr [molfile get $fhandle record]-1]
}

This example reads a structure from an input file, checks whether is contains a metal atom, and if
yes, copies the record unchanged to an output file, which is opened as a simple TCL text file channel
in this example. The expression which forms the last parameter backspaces the input file by one
record, so that the same record which was just read can be copied. A simpler solution for the same
functionality is to simply pass -1 as argument. This works of course only if the input file can be
repositioned backwards. i.e. normal text files are fine, standard input or a socket connection do not
work.

molfile count
molfile count filehandle ?maxrecords? ?readscope?
f.count(?maxrecords=?,?readscope=?)
Molfile.Count(filename,?maxrecords=?,?readscope=?)

Count the number of records in the file.
396 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If the file format contains an internal or external record index with information about the complete
file, the answer is produced from the index, and thus is typically obtained fast. Otherwise, the file
is skipped from the current position until the end, and the sum of the number of records encountered
while skipping and the record index when the count started is returned. In case of files which are
rewindable, the original input file pointer position is then be restored. On non-rewindable files, the
file contents are consumed, and no return to the old input position is possible. For files which are
opened for writing, the count usually is simply the current output position, except for those few file
formats which support in-file record replacement in combination with a complete file index. In the
latter case, the count is again extracted from the index.

During the record skipping part the file contents are not physically read if possible. Rather, the skip
function of the responsible file format I/O module is used to scan the file effectively. After arriving
at the end of the file, a full in-memory record position index has been assembled for the file, and
future record selection within files which support re-positioning is fast.

The type of record boundaries counted depends on the input scope of the file. For file formats which
support multiple input modes, such as for extraction of ensembles or molecules or datasets, the count
is dependent on the type of object which is configured to be read. If the file input object type is
changed, the in-memory record index table is discarded.

If the maxrecords parameter is specified, and is not a negative number, it is the maximum count
reported. No attempt is made to position the file beyond this mark during the count process. This has
no effect on future input operations - these may still proceed beyond the reported count. This option
is not intended to be generally useful, but is used for example in the structure browser csbr with the
-m option to enable quick inspection of a file without full scanning.

The optional readscope parameter can be used to temporarily modify the read scope under which
the file is processed. It can be any of the generally recognized values (mol, ens, reaction, dataset).
If the file format does not support the specified mode, its default mode is silently used. If the file is
not positioned at the beginning of the data, the count reports the sum of the currently known records
as perceived by the previous read scope, and the remaining file records under the new one. If these
values are different, the result may only be useful under very specific circumstances. The the
parameter is not set, or an empty string is passed, the currently set, or, for one-shot file operations,
the default read scope, is used.

Example:
set nrecs [molfile count “thefile.sdf”]
set nrecs [molfile count “test.spl” -1 mol]

molfile dataset
molfile dataset filehandle ?filterlist?
f.dataset(?filters=?)

Return the handle of the dataset associated with the file handle. If no such dataset is set, the
command returns an empty string, or None for PYTHON. The command
molfile get $filehandle dataset

is equivalent.

This command is different from the dataset commands for ensembles, reactions or tables, where it
indicates membership in a dataset. File objects cannot be a member of a dataset. This dataset
association is explained in more detail in the molfile set command section.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 397

CACTVS Tcl and Python Scripting Language Reference
molfile defined
molfile defined filehandle property
f.defined(property)

This command checks whether a property is defined for the structure file. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The molfile valid command is used for this purpose.

molfile delete
molfile delete filehandle recordlist ?rebuildindex?
f.delete(records=,?rebuildindex=?)
Molfile.Delete(filename,records=,?rebuildindex=?)

Delete records from the file. The file must have been opened for writing or update, and be
rewindable. In case the file is not a simple record sequence, the I/O module for its format must
provide a deletion function, or the operation will fail.

The deletion record list is a single or set of record numbers in any order. They are sorted and
duplicates removed before file modification commences. It is no error to specify an empty removal
record list. The record numbering starts with one, and the record numbers are referring to the record
numbering at the moment the command is issued. There is no need to compensate for intermediate
record numbering shifts when more than one record is deleted.

The optional index rebuild parameter, a boolean value, can be set to optimize the deletion process
for files in formats which maintain field index information. By default, indices are updated as part
of the deletion process. In case many records are deleted, it may be more efficient to drop the indices
prior to the deletions and rebuild them after the records have been removed. In order to select this
alternative procedure, a true parameter value can be set. At this time, the only file format which
actually can use that parameter is the bdb database file format.

In case the file is to be truncated, the molfile truncate command is usually more efficient.

This command returns the number of deleted records. It does not close or destroy the file handle, or
the underlying file.

molfile dget
molfile dget filehandle propertylist ?filterset? ?parameterdict?
f.dget(property=,?filters=?,?parameters=?)
Molfile.Dget(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The difference between molfile get and molfile
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, molfile get and molfile dget are equivalent.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.
398 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
molfile dup
molfile dup filehandle
f.dup()

This command duplicates a file handle. The duplicate handle or reference points to the same
underlying file or other data channel, is opened in the same access mode, and positioned at the same
record. Also, all file object attributes and file properties are set to identical values.

Currently, it is not possible to duplicate virtual file sets opened by a molfile lopen command.

The command returns a new file handle or reference.

molfile exists
molfile exists filehandle ?filterlist?
f.exists(?filters=?)
Molfile.Exists(mref,?filters=?)

Check whether a molfile handle is valid. The command returns 0 or 1. Optionally, the molfile may
be filtered by a standard filter list, and if it does not pass the filter, it is reported as not valid.

molfile extract
molfile extract filehandle retrievallist
f.extract(retrievallist)

Extract the contents of data fields from the file, without reading full structure or reaction records if
possible. This operation requires a support function in the I/O module for the file format. Generally,
only formats optimized for query operations, such as the CACTVS bdb and cbs formats provide such
a function in their I/O module.

This command is essentially a shortcut for a molfile scan command with an empty query condition
and a propertylist retrieval mode. Please refer to that command for details about the possible
contents of the retrieval list.

The result is a nested list of extracted property values, with one outer list element for every file
record to the end of the file, and inner list with one element per retrieval field.

molfile filter
molfile filter filehandle filterlist
f.filter(filters)

Check whether the structure file passes a filter list. The return value is boolean 1 for success and 0
for failure.

Example:
molfile filter $fhandle $filter

molfile fullscan
molfile fullscan filehandle queryexpression ?mode? ?parameterdict?
f.fullscan(query=,?mode=?,?parameters=?)
Molfile.Fullscan(filename,query=,?mode=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 399

CACTVS Tcl and Python Scripting Language Reference
This command is the same as molfile scan, except that an automatic rewind (see molfile rewind)
is performed before the query is executed. The same effect can be achieved by setting the
startposition parameter value to 1.

molfile get
molfile get filehandle propertylist ?filterset? ?parameterdict?
molfile get filehandle attribute
f.get(property=,?filters=?,?parameters=?)
f.get(attribute)
f[property/attribute]
f.property/attribute
Molfile.Get(filename,property=,?filters=?,?parameters=?)
Molfile.Get(filename,attribute)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

The molfile object possesses a rather extensive set of built-in attributes, which can be retrieved with
the get command (but not its related subcommands like dget, sqlget, etc.). Most of them can also
be manipulated with a set command. In addition, molfile objects can possess file-level properties.
The standard prefix for these is F_.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

Example:
set c [molfile get $fhandle F_COMMENT]

These built-in attributes are:
• address_city

The city part of the author contact address.
• address_country

The country part of the author contact address, following the ISO3166 standard.
• address_state

The state part of the author contact address. Empty if not applicable.
• address_street

The street address part of the author contact address. Includes floor, house number, etc.
• address_zip

The ZIP code or other applicable postal code of the author contact address.
• affiliation

The institution the author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.
400 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• atomlabelproperty
The name of a property which holds data for a parallel user-defined atom numbering scheme
(see writeflags/writelabels attribute) which can be output by some I/O modules. The default
property is A_LABEL. The property must be associated with atoms, but is not required to be
an integer, if the I/O modules supports alternative data types (i.e. for CDX/CDXML the label
data in the file format is internally a string, and any different property data type is converted
as necessary). This attribute has an effect only if the writelabels flag is also set in the
writeflags attribute.

• author
The author of the file, as free-form string data.

• authorization
A service authorization URL, which might for example be presented to the user for approval
of access to a resource. In the case of dropbox file access, this data is copied from the global
value of the I/O module (see filex get command). For normal files, this attribute is empty,
and setting it to a string value has no effect.

• authorurl
A URL with information on the author, or an empty string if unset.

• batchsize
The number of records in a standard processing batch. The default batch size are 10 records.

• bondlength
The standard bond length to be used in the file. The unit is points (1/72 inch). If the value
is negative (the default), the standard format-specific bond length is used. This attribute is
only supported in a few graphics-oriented file formats, such as CDX or SKC files, or EMF
images.

• cachesize
The size of the record prefetch cache the file should use. Normally, the size is zero and no
such cache is employed. The I/O modules for a few file formats, such as PUBCHEM CID and
SID files, where the individual retrieval of a record via the Internet is almost as expensive
as fetching a sizable batch, use a cache if allowed and prefetch multiple records when a
record read operation is performed and the cache is empty or the requested record is not in
the cache. A later read can, if the input record is in the cached set, return the data without
establishing a new network connection.Using a cache is beneficial only when the expected
access pattern is linear and in ascending record order. It decreases performance if the record
access pattern is random and not limited to a continuous record set that fits into the cache.

• category
A category string to be used if the file is stored in a repository.

• chain
A single-letter code indicating the chain to be read from records with structure disorder data.
These can for example be found in PDB files. The default value ‘?’ automatically selects the
first chain which is encountered in the file record. After a record has been read, the attribute
is set to the actual character of the chain which was selected, so it needs to be reset in case
more than one record is input via this file handle. If the chain character is set to an empty
string, all atoms are read from files even if they belong to multiple overlapping disordered
structure instances. This can of course lead to problems in connectivity representation. The
alternative name disordered is an alias for this attribute.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 401

CACTVS Tcl and Python Scripting Language Reference
• classuuid
The base class UUID of this file object, copied from its I/O module UUID.

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed

• compact
A boolean flag indicating whether the file is present in a abridged form, or should be written
as compact as possible. This attribute effects few file formats. An example is the native
CACTVS ASCII format (cascii).

• complexresolver
A boolean flag which enables or disables bond type processing after input. It the flag is on,
typical complex bonds between metal atoms and ligands, or between metal atoms, are
recognized and re-coded as complex bonds, which provide connectivity, but do not
participate in valence electron counting. In many cases, this improves the general
representation quality of the structures. However, since most chemical data exchange
formats do not support this type of bonds, it can also make export of the data difficult. By
default, this flag is on. For maximum portability, it should be switched off. This attribute is
a convenience shortcut operating on the readflags attribute.

• computationlog
A read-only attribute. It is a list of all properties which were computed during a record write
operation, either implicitly or explicitly via the computelist attribute. This can be used to
determine which effects the output has had on the information content of a written object,
or to optimize I/O throughput by performing pre-computation of these properties in a
separate thread.

• computelist
A list of properties which are automatically computed before an output object is written if
they are not yet valid. Computation failures are silently ignored.

• compression
The detected file compression type. It can be one of none, compress, pack, gzip or bzip2.
Compressed files are automatically opened for reading via a pipe to the suitable
decompressor program, if it can be located. This attribute can also be set, but it currently has
no effect on the actual output in any format. In order to write compressed files, open an
output as a pipe to a compressor program.

• corsdomain
If specified, and the httpheader attribute is also set to a value larger than zero, the output
HTTP header contains a CORS domain header line (Access-Control-Allow-Origin:). Useful
values for this parameter are either * (for free access), a host name, or a domain name. If this
parameter is not specified, HTTP headers do not contain information, which usually is
equivalent to allowing access for AJAX queries only from the same server as the requesting
page.

• ctime
A read-only attribute reporting the time of the last status change of the file. Its unit are
seconds since January 1st, 1970. This value is meaningful only for normal disk files.

• date
The date the file structure was defined. This is not the same as the filesystem time stamps,
such as the ctime or mtime attributes.
402 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• deletable
Flag indicating whether this molfile can be deleted or closed with a standard molfile close
command. The attribute is read-only. Molfiles which are, for example, property data values
or a part of a molfile loop command cannot be deleted by standard means.

• deselection
This somewhat awkwardly named attribute is the inverse of the selection attribute. For
further explanation, refer to the paragraph on selection.

• device
A read-only attribute reporting the device number of the file. This is meaningful only for
normal disk files, and only supported on Unix/Linux.

• doi
A digital object identifier for the file content, if defined.

• downloadfilename
If the httpheader attribute is set to a value larger than zero, this value is included in the HTTP
header as save file name, with a MIME type of application/save-to-disk which overrides any
native file format MIME type.

• droplist
A list of properties which are not to be written to the file, even if they are already present
on output objects and the file format can encode them. Naming a property in this list does
not delete them from the property set of objects which are written to the file, just suppresses
their output.

• email
A contact email of the file author.

• embedformat
The format of embedded objects encoded in another format. This is meaningful only for a
few file formats, for example zip (which contains single-record files of a different type) or
rtf (which may contain cdx or skc embedded OLE objects). If this attribute is not set, the
default depends on the wrapper format (i.e. SDF files for zip, cdx OLE objects for rtf).
Setting it to an empty string or none disables embedding where applicable. The attribute is
updated on input and can be read when a file record is input which contains embedded data.

• encoding
The detected encoding type of the file. It can be one of ascii, binary or unicode. This is a
read-only attribute.

• eof
This read-only boolean attribute indicates whether the file read pointer is at the end of the
file.

• eolchars
A sequence of characters which are used as line terminators for the output of text-based file
formats which do not define a specific line end character. The default value is
platform-dependent. It is a single newline character on Linux/Unix, CR/LF on Windows and
a single CR on Macs. This attribute has no effect on input. All input routines automatically
recognize and read all three variants on all platforms.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 403

CACTVS Tcl and Python Scripting Language Reference
On setting, the magic strings windows, mac (both checked for the first three characters only)
as well as unix and linux are translated to the standard platform line terminators and not
copied verbatim. Alternative names for these standard system encodings are crlf, cr and lf.
The special value default resets the attribute to the platform-dependent default.

• eor
A read-only attribute which indicates at what type of record terminator the current read
position is located. Possible values are none, mol, ens, reaction and dataset. The none value
indicates that reading did stop in the middle of a record due to some problem.

• errorproperty
A read-only attribute which holds the name of the last property where input failed. This is
not supported by all file I/O modules. It is especially useful for binary formats where a line
number cannot be used for simple visual inspection of an input problem.

• failures
A list of properties for which computation failed on this object. This is a read-only attribute.
Depending on configuration settings, this information may be used to block pointless
attempts at re-computation of incomputable data.

• fd
A read-only attribute which reports the system channel number the file object is associated
with.

• fields
This is a list of the names and potentially attributes of data fields in the file. For simple
formats such as SD files, this is simply a list of property names, and it is updated after each
read record to track a potentially changing field set. For more complex formats such as bdb
and cbs, every list item is a nested list which contains the field name, field flags, field object
class association and partition file. The field output for simple formats such as SD is
controlled via the writelist attribute, and the value of the fields attribute has no effect on
output. However, the I/O modules for complex database-type formats such as bdb and cbs
provide a handler function which translates an updated value of this attribute into a changed
database layout. Depending on the I/O module, this may be supported only for an empty file
(cbs), or may be possible even for files which already store records (bdb). This attribute can
also be addressed by the alias fieldnames.

• filelock
On reading, this is a boolean flag indicating whether a file lock is currently set on the file
or not. On setting, the argument can be release, trylock, forcelock or test. The first variant
attempts to release an existing file lock, the second variant attempts to set a file lock, but
returns immediately if that is not possible, the third variant blocks until the lock can be
established, and the fourth version tests for the presence of a lock. The return value is a
boolean status result. This command is not supported on Windows. File locking may pose
special problems if the file is not residing on a local file system.The underlying system call
is lockf64() or lockf(). Please consult your operating system manual for more details.

• fileset
A read-only attribute containing a list of the names of the physical files which are behind
the file handle. For normal files, this is a single list element for a single file. However, for
file handles opened by means of the molfile lopen command to access a virtual file
assembled from multiple physical files, this can be a list with more than one element.
404 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• filter
A query expression (see molfile scan command) which input records must match to yield
a result object when a molfile read command is run. The read command is automatically
looped until a matching record is found, or the end of the input source is reached. Since the
test is only applied after a prospective input object has already been fully read internally, this
style of record filtering is in many cases considerably less effective than using molfile
scan for file formats which possess query acceleration features, such as CBS, BDB or the
PUBCHEM virtual file module. For the reading of simple text files, such as SDF, there is no
performance difference to using molfile scan in the ens or reaction object retrieval mode,
and this type of filter which can be easily adjusted or disabled (by setting it to an empty
string) can be convenient.

• fontsize
The standard font size for text in graphics-oriented formats, such as CDX or SKC. The value
is a floating point number measured in points (1/72 inch). A value of zero or less, which
corresponds to the default, lets the software chose a suitable value, which is dependent on
scaling and bond length.

• fold
The number of characters after which the software should look for a good position to use a
continuation character and line break. This is only used in a few formats, such as SLN.

• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

• format
The standard name of the file format the molfile object is linked to. This is normally only
set in scripts for output files, because the format for input files is auto-detected.
Nevertheless, it is possible to set a format explicitly also for input files, and even to switch
it when records have already been read. When setting a format, generally a set of alias names
are recognized in addition to the short official name.

• from
The sender of a file. This is only set when the file has been extracted from a mail message
or attachment.

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• handle
The handle of the file as a read-only attribute. Not generally useful, because in standard
access modes you already need the handle to identify the file object.

• header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

• height
The maximum height of a structure or reaction depiction in points (1/72 of an inch). This is
only used for graphics-oriented formats, such as CDX, SKC or EMF. If the attribute is set to
a negative value, which is the default, the size is indirectly controlled by the bond length and
atom coordinates. In case this attribute is set to a positive value, and the depiction would
exceed the maximum height, it is automatically scaled down proportionately.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 405

CACTVS Tcl and Python Scripting Language Reference
• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering object selections. This attribute can be set.

• highmaprecord
The maximum record to include in a memory-mapped section of the file for accelerated read
access. If set to a negative value, which is the default, the system automatically determines
if mapping is worthwhile, and if it is, map the full file. This attribute is primarily useful for
the acceleration of queries which repeatedly operate in a section of a larger file, for example
when running distributed queries with multiple processes handling different parts of a large
file.

• host
This is a shortcut for the host name part of a file or virtual file addressed via an URL. For
simple retrieval it is equivalent to the URL field attribute url(hostname). For some I/O
modules, for example the interface to access MYSQL tables as virtual structure files, a change
of the host name does have an effect and results in (re)-connection to a different database
host. For normal files accessed via a URL a change of the attribute is ignored after the file
has been opened. Files that are not associated with an URL have an empty host name value.

• httpheader
Configure whether the file content output should be prefixed by a HTTP header. This can be
useful when scripting CGI or FCGI applications. The value can be 0 (no HTTP header prefix,
the default), 1 (standard HTTP header prefix, without status code) or 2 (HTTP header
including 200 status code). String values none, default and status are also recognized. Not
all table I/O modules support this feature. This attribute has an effect only if the file is
opened for output, and has no records when it is opened. The data is written immediately
after the file is opened, before any other output is performed. The configured corsdomain,
mimetype and downloadfilename attribute data is part of the output. Note that prefixed files
are only useful in Web application CGI/FCGI contexts, where the header is stripped before
the data is seen. They cannot be read as normal structure files.

• hydrogenfilter
A hint about the desired output style of hydrogen atoms of the structure. In contrast to the
hydrogens attribute, this hint does not actually change the structure by adding or removing
hydrogen atoms, neither on the original output object nor a temporary processed structure
or reaction duplicate. Not all I/O modules support this flag. Its availability can be queried
via the capabilities attribute of the filex command for the format. The possible values are
default (or -1), which is the default and selects the default hydrogen write mode of the file
format, none (or 0) which suppresses hydrogen output, special (or 1) which writes
hydrogens shown normally with a symbol only, and all (or 2), which writes all extant
hydrogens. Since this attribute does not change the hydrogen atom set, setting for example
the mode to all when there are no hydrogens attached to the structure has no effect.

• hydrogens
The hydrogen processing mode of the file. Its default can be controlled via the system
variable ::cactvs(default_hydrogen_addition_mode). Its standard setting is asis, meaning
the hydrogen set is to kept as it stored in the objects for output, or defined in the original file
records for input. Possible modes for this attribute, or the system control variable, are add
(add a complete standard set of hydrogens), asis (keep unchanged), strip (strip hydrogens
except those which are normally displayed, such as bonded to hetero atoms or at stereo
centers), stripall (strip all hydrogen), stripadded (strip all hydrogens which were added by
406 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
a hydrogen add command, automatic hydrogen addition on input, or similar mechanisms)
and addblind (which is the same as add, but does not register the added hydrogen atoms as
implicit in property A_IMPLICIT). When writing a structure object to a file with enabled
hydrogen processing, the original object is not changed. Hydrogen processing takes place
on a ephemeral duplicate object. On input, hydrogens which are no explicitly encoded, but
defined via implicit valence rules in the format specification are still instantiated in asis
mode. For example, a single C atom in an MDL Molfile is read as a single atom, because there
are no default valence rules, but a C as a SMILES string is expanded into one carbon plus four
hydrogen atoms. For a method to suppress the expansion of valence-implicit hydrogen
atoms, see the readflags attribute.

• hydrogenstatus
An enumerated value providing information about the hydrogen status of the file. Possible
values are unknown, complete (all hydrogens present), partial (some hydrogens present)
and missing (no hydrogens present). This attribute is updated when data is read from files
which encode this information. It may also be set and has an effect on some post-processing
operations on objects read from the file.

• ignoreempty
A boolean flag which instructs, when set, the I/O module of the file format associated with
the molfile object to ignore empty records without atoms when reading from the file. By
default, this flag is not set and empty records are retrieved as empty ensembles or other
objects.

• ignoreerrors
A boolean flag which tells the I/O module of the file format associated with the molfile
object to ignore errors and to attempt to read or write the next record instead. By default the
flag is not set and errors in I/O result in Tcl script command errors.

• ignorelist
A list of properties which should not be read from the file, even if they are explicitly encoded
in the records.

• incomplete
This is a boolean read-only boolean flag which indicates that a record was only read
partially. This is the same as checking for the presence of the incomplete flag in the flags
attribute.

• infourl
A URL with information on the file content, or an empty string if unset.

• inode
A read-only attribute reporting the inode number of the file. This is meaningful only for
normal disk files, and only supported on Unix/Linux.

• instanceuuid
The UUID for this object instance.

• invisible
Flag indicating whether the molfile object is invisible. This is not the same as the hidden
state. An invisible object is no longer accessible via its handle. This is usually the case for
objects which are scheduled for deletion, but still have lingering referring pointers. This
attribute is read-only.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 407

CACTVS Tcl and Python Scripting Language Reference
• iscompressed
A boolean read-only attribute which is set when the file is compressed by one of the
recognized compression algorithms (gzip, bzip2 by default). In that case, the file is not
accessed directly but via a pipe the the appropriate decompression program, which changes
the file handling characteristics.

• ismapped
A boolean read-only attribute which is set when the file is read via a memory-mapping
method.

• ispipe
A boolean read-only attribute which is set when the file is accessed via a pipe, either because
it was explicitly opened to a pipe, or because decompression (gzip, bzip2) or character
encoding (iconv) programs where automatically spliced in.

• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

• jstreversal
A boolean flag indicating whether the JST special encoding variant for MDL Molfiles should
be used.

• keywords
A list of keywords associated with the file.

• lastrecord
The value of the file record read position before the last molfile read command. This is
normally the value of the record molfile attribute after the read operation minus one and
corresponds to the file record number of the read object in the data file.

• license
The license class associated with this file. Setting the license to a standard type updates the
associated URL with a standard location.

• licenseurl
A URL with details about the network object license.

• literature
A free-form literature reference.

• line
A read-only attribute returning the current line number. lc is an alias name for this attribute.
Generally this attribute is meaningful only for text-based file formats. For most binary
formats, the value of this attribute is the same as the record number. This line number always
refers to the current physical file. To get the global line number of a virtual file set, use the
vline attribute.

• loinc
The LOINC code (https://loinc.org/) describing the file contents. For I/O formats where
this information us used (currently SPL) and the attribute is not set, the default is 64124-1
(Indexing - substance). Setting a LOINC value for the first time takes a second or two because
this is a controlled vocabulary, and the term table is loaded from disk for verification.

• loopitem
The current file input item in a molfile loop statement. This is the same as the content of
the loop variable. If no loop is active, this is an empty string. This is a read-only attribute.
408 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• lowmaprecord
The minimum record to include in a memory-mapped section of the file for accelerated read
access. If set to a negative value, which is the default, the toolkit automatically determines
if mapping is worthwhile, and if it is, map the full file. This attribute is primarily useful for
the acceleration of queries which repeatedly operate in a section of a larger file, for example
when running distributed queries with multiple processes handling different parts of a large
file.

• mailencoding
This is a read-only attribute which is only set if the file has been extracted from an email
message or attachment. Possible values are unknown, ascii, iso (for ISO 8859-1), quoted
(for quoted printable), base64 and utf8.

• mailproperties
This is a read-only attribute which is only set if the file has been extracted from an email
message or attachment. It is a list of properties which were requested for computation in a
header field. This attribute is typically used for setting up email-based property computation
services.

• maxblobsize
The maximum size of CACTVS ensemble or reaction blobs which are part of the file records,
measured in bytes. This attribute only applies to those few file formats which store structure
and reaction data as CACTVS toolkit blobs. Currently these are CBS and BDB. If the blob size
exceeds the limit, the input or output of the record fails. The default value are 256K, which
is more than sufficient for standard applications. If the attribute is changed, a minimum
value of 64K is silently enforced. Increasing the attribute can have a small negative effect
on I/O performance, but is otherwise safe.

• mimeboundary
This is a read-only attribute which is only set if the file has been extracted from an email
message or attachment. This is the string which was used to separate MIME data blocks in
the message.

• mimedefaulttype
A read-only attribute giving the default MIME type associated with the current file format.

• mimetype
The currently configured MIME type for the file. Initially, it is set to the default type (attribute
mimedefaulttype). However, it can be changed, and it is used for transmitting the file data
via various types of Internet connections.

• modcount
The molfile object modification count. This is a read-only attribute.

• mode
This is a read-only attribute which describes the general file access mode which was
established when the file handle was created by a molfile open or molfile lopen
command. Possible values are append, pipe, read, string, write and update. Note that in this
attribute there is no difference between the standard read and the restricted read-only modes
(see molfile open). The file mode cannot be changed at a later time by directly changing
the mode attribute. However, with some limitations, a file may be switched back and forth
between input and output modes with the aid of the molfile toggle command.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 409

CACTVS Tcl and Python Scripting Language Reference
• mtime
A read-only attribute reporting the time of the last modification of the file. The unit is
seconds since January 1st, 1970. This value is meaningful only for normal disk files.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• name
On input, this attribute simply reports the full path name of the underlying file, or the
original magic name in case of special files. This attribute can also be set, and in case of
normal disk files, the physical file is renamed, too, if the file access permissions are
sufficient for this operation.

• nitrostyle
The nitro (and similar) group encoding conventions associated with the file handle. There
are actually independent settings of this attribute for input and output. The version reported
by the command is dependent on whether the file is in input or output mode. Possible values
are asis, ionic neutral, xionic and xneutral. The default input value is ionic, while the default
output value is asis. When the value is modified, the new value is stored both for input and
output. If the value is not asis and a structure item is read, its nitro group (and related groups)
connectivity is automatically adjusted to the preferred style. If processing is requested for
output, the connectivity change is performed on a temporary duplicate, so that the original
output object is not modified.

• nullstring
A string which on input is used to identify NULL values, or used on output to encode NULL
values. This attribute is only used by a few I/O modules. The most important application is
in reading text-based tables with embedded structure notations by means of the table
structure I/O module.

• offset
A read-only attribute reporting the current byte offset position of the read or write pointer.
It is not meaningful for all types of data channels.

• orcid
The ORCID code of the author (see www.orcid.org).

• orientation
This value can be none (the default), landscape or portrait. It describes the orientation of a
drawing area specified via the paper attribute. Few I/O modules use this information. The
most important formats which implement this is are CDX and CDXML.

• originalname
The name as originally used to create the molfile object. The standardized name, with path
information in case of disk files, can be accessed via the name attribute. Changing this
attribute has no effect on the file system. This is different from the handling of the name
attribute.

• pagecount
The number of (vertically stacked) pages in the document. This attribute is currently only
used for the CDX and CDXML formats.
410 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• paper
An attribute describing the size of the drawing areas for formats such as CDX or CDXML,
which can encode this type of information. Possible values are none (the default), a3, a4,
a5, a6, a7, b3, b4, b5, b6, letter, legal and executive. The associated orientation of the
drawing orientation can be set via the orientation attribute.

• parameters
A free-form string which can be used to pass additional, non-standardized parameters to a
file format I/O module. Few I/O modules use this, one example is the XFIG output code.

• password
A file access password. It is used in various contexts, for example for authentication when
using URL-based access to files, to enable the I/O of encrypted records in files which
support partial data encryption, such as the CACTVS CBS and BDB formats, or to proceed with
the execution of a remote query received via a listener port. In most cases a change of the
attribute value after a file has been opened has no effect. An exception are modules which
access database tables as virtual structure files. These will react to a changed user name with
re-authentication to the database and table, which may result in different access
permissions.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the file author.

• polysymbol
A free-form string used to override the standard symbol used by a file format I/O module
to indicate polymer components. If set to an empty string, the standard symbol is used,
which depends on the file format. The default is an empty string.

• port
The number of a port on which the file handler should accept remote query requests. If set
to a negative value (the default), no such requests are accepted, and in case a monitor thread
was executing before the value was changed, it is shut down. If a positive port number is set,
a monitor thread is automatically started as listener on the specified port.

• position
This read-only attribute describes the relative position of the read or write pointer in the full
file, as an integer in the range between 0 and 100. It is primarily intended to be used in
progress meters and similar widgets. In case the relative position is unknown, for example
because the total size of the input file is unknown, the value is zero.

• preservelist
A list of properties which should not be changed if a file record is updated, even if the value
in principle depends on, for example, changed connectivity of the main structure record.
Currently, the only I/O module which supports this feature is BDB.

• previousrecord
This read-only attribute is a convenience function to obtain the value of the record number
of the file handle that before the current record was read. Usually, it is the same as the
record attribute minus one, but if reactions from files where reagents and products are
separate sub-records, or complete datasets were read, the difference may be larger.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 411

CACTVS Tcl and Python Scripting Language Reference
• progress
A user-defined progress value intended to track the state of lengthy operations on the file.
It is an integer between zero and one hundred and is initially set to zero. When the argument
is set, it accepts a floating point value, but the stored value is automatically rounded to the
next integer and forced into the 0..100 range.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with Python support, this attribute contains the reference count
of the Python wrapper class instance, if it exists. This attribute is read-only.

• reactioncolumn
This attribute is the numerical index of a column in table-style data files which are, for
example, read by the reaction table I/O module. The column is expected to contain a string
notation for the reaction object which is returned by a molfile read operation. To this
decoded object the contents of the other columns is attached as property data. Typically the
content of the structure column is a Reaction SMILES string or similar line notation. A
negative value of this attribute indicates that the presence of structure data in a specific
column is unconfirmed. In that case, an attempt is made to determine the reaction column
automatically, and the attribute is updated accordingly. However, setting it explicitly may
still be required in case there are multiple columns with reaction data, or there are too many
unreadable or NULL row entries to allow automatic determination.

• reactionscreen
The name of the property which is used for bitvector screening in filtering records for
reaction transform matching. Its default default value is controlled by the global variable
::cactvs(default_reaction_screen_property) and is usually X_SCREEN. If a file is
opened that contains information about the screen property set when the file was written (for
example, CBS and BDB formats), this attribute is automatically set to the value stored in the
file.

• readflags
This attribute controls a set of input processing flags. If the attribute is queried, the result is
a list of the names of all flags which are currently set. For modification, the preferred method
is to use the bit manipulation prefixes for generic bitset operations. In case just additional
flags should be activated, the molfile append command can also be conveniently used.
There are also a few shortcut alias attribute names which set or reset selected, frequently
used flags directly (complexresolver). The following flag names are currently recognized:

• none
no flags.

• aroresolver
resolve aromatic bonds into a Kekulé form. A frequent application is the input of records
from MDL SD files which are not used as query structures, but where aromatic bonds in
the original data are nevertheless and illegally encoded as the aromatic structure query
bond type with magic bond order 4. This flag should not be used on formats which are
guaranteed to already encode a proper Kekulé form. This includes all native toolkit
formats (cbin, cbs, bdb, cda, cpc).
412 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• autowrap
When the end of the file has been reached, automatically start reading from the
beginning of the file again, until the full file has been scanned once. This operation
effects only the molfile scan command and is used there in order to perform full-file
queries starting from an arbitrary position in the middle of the file.

• basiconly
only read basic property data set, not full record. This is supported in CBIN, CBS and BDB
formats in order to accelerate fast filter and query operations.

• chargebalancer
Try to neutralize and balance charges.

• chargecombiner
Try to merge opposing charge pairs where possible, changing the bond orders of paths
between them if necessary.

• complexresolver
perform a bond analysis and re-code typical bonds in metal complexes as non-VB bonds,
which do not participate in valence electron counting. For a more detailed explanation,
see the alias shortcut complexresolver. This flag is set by default.

• continueafterhetatm
For PDB files, consider any atom line after the first HETATM to be a heterogen, regardless
of the line type. This feature helps to cope with ligands which contain amino acid
substructures and which some other PDB write software misclassified as part of the
protein.

• fixdoublespace
If set, this flag instructs I/O modules with support for this feature to read structure files
which contain one spurious empty line after each data line, which unfortunately appears
to happen sometimes when DOS-encoded files are transferred to Apple systems. This is
not the same as reading CR/LF files on CR-only or NL-only platforms, or vice versa, which
is always possible and fully automatic. This flag addresses the problem that, due to
mishandling by obscure transfer software, duplicated EOL-markers are introduced in the
file (two identical CR/LF, or CR, or NL pairs after each data line).

• fixstereo
Remove spurious stereo descriptors on atoms and bonds which are not stereogenic.

• fixwedges
Re-code wedges which are attached with the broad base to a stereo center (for example
as written by IDBS software) into standard IUPAC format with tips at the stereo centers.

• hetatmonly
In PDB files, read only HETATM lines.

• ignorecr
Allow an isolated carriage return (ASCII 13) character without following NL (ASCII 10)
character as data content instead of examining it as potential line break symbol. This flag
is necessarily ignored on Mac-style input files which only use CR as EOL markers.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 413

CACTVS Tcl and Python Scripting Language Reference
• ignoreitherdb
If set, ignore any either attribute data for double bonds in MDL Molfiles. Instead,
determine their stereochemistry from coordinates.

• ignoreempty
When reading an empty record, with no atoms, from a multi-record file, ignore the
record and immediately proceed with the next.

• ignoreerrors
When reading a corrupted record from a multi-record file, ignore the error and instead
attempt to re-synchronize and read the next record.

• ignorenorecall
If set, the norecall field flag supported in some file formats (CBS, BDB) is ignored. By
default, data from fields which carry this flag is not merged into the property set of
ensembles or reactions when they are retrieved as objects from these files, as an
optimization to avoid recalling data which is useful for queries, but not so much as object
data (for example, screen bits, element counts). With a set attribute flag, all fields of the
record are attached as property data to recalled objects.

• ignorevisibility
Ignore any display attributes in the input data which would make atoms or bonds
invisible in renderings.

• latehprocessing
If this flag is set, the standard hydrogen addition/removal operations are performed after
other selected processing steps have been performed. By default, hydrogen processing
takes place before charge equilibration, radical charging, etc. This flag should be set if
the hydrogen set in the file records is known to be complete, but the charge and radical
situation is dubious.

• lockmemory
Lock the shared memory mapping arena of the file into memory, preventing it from
being swapped out. This is only supported on Linux, and has an effect only if the
sharedmap flag has been set. Depending on the size of the arena, and the system
configuration, this operation may require enhanced privileges.

• logqueries
If the file formats supports operation logging, activate the log.

• keepcoords
In case multiple molecules or ensembles are read in one operation, the system normally
verifies that they do not have overlapping 2D display coordinates, and moves them apart
if necessary. If this flag is set, the 2D display coordinates in property A_XY are always
passed unchanged.
414 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• mergedata
In case there are repeat instances of the same data item in an input record, attempt to
append it in a suitable fashion to the first property instance on the input object. By
default, multiple data items with the same name are not merged, but result in multiple
property data instances. This is a problem which is encountered typically while reading
data from formats with limited syntactic expressiveness that cannot properly distinguish
between these cases.

• multibondcheck
attempt to correct unlikely clusters of multiple bonds.

• nocoordinatecheck
do not attempt to discover and fix mixed-in missing 2D or 3D coordinates, for example
encoded as all-0 values. All coordinate data is to be preserved verbatim.

• noorigin
do not register the origin of the property data values from the current file as metadata
information.

• noeof
do not attempt to detect EOF. More data may be coming.

• noimplicith
do not add a standard valence set of hydrogens to explicitly encoded atoms, even if the
file format specification defines such a set. The most common application is for reading
SMILES strings without the default hydrogen atoms. nohadd is a (slightly misleading)
alias for this flag. This flag is independent of the generic hydrogen addition/removal
processing option, which can be configured with the hydrogens attribute.

• nometa
if this flag is set, it asserts that the file does not contain metal atoms. This is for example
useful for reading PDB files which frequently possess ambiguous encodings such as CA
for calcium or alpha carbon.

• nometalh
suppress addition of hydrogens to metal atoms.

• noradicals
assert that the file does not contain records with atoms that are radicals. This is a hint
which is used for hydrogen addition, radical charging, and other operations.

• pedantic
apply pedantic checking of file syntax rules. For some frequently abused file formats,
such as MDL Molfiles or PDB, this may result in quite a percentage files being rejected
for file format specification violations.

• radicalcharger
Edit radicals which are typically formed by reading a file without formal atomic charge
information by adding standard formal charges, for example replacing NR4 with N(+)R4
and OR with O(-)R. This only works reasonably well if the file contains a complete
hydrogen set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 415

CACTVS Tcl and Python Scripting Language Reference
• readas2d
Force the interpretation of atomic coordinates as 2D, regardless of the file type encoding
or presence of a third coordinate column, which may have been abused as an additional
atom data store.

• readparity
If this flag is set, the parity fields in MDL Molfiles and derivatives are read and the data
stored in property A_LABEL_STEREO. In accordance with MDL rules, this field is normally
ignored, and stereochemistry decoded from wedge bonds and atom coordinates.

• sharedmap
If the file is memory-mapped, use a shared memory segment for the data. This can be
useful if there are many processes accessing the same file for reading. This flag is only
supported on Unix/Linux.

• simpleradicals
If this flag is set, the input file is assumed to contain only simple doublet radicals, if any.
Any encoding of other, probably miscoded radical forms is changed to a doublet.

• tautoresolver
Perform a tautomer standardization on the read structure. This operation invalidates
numerous atom and bond properties, such as coordinates, but in this special case all
ensemble properties which were attached to the processed structure are retained,
regardless of their sensitivity toward atom and bond changes. Tautomer resolution
requires a complete hydrogen set, so either these must be present in the input file, or a
suitable hydrogen addition mode must have been set on the file handle. The processing
behind this input option is comparatively expensive. For normal input, when speedy
input and maximum fidelity of the data to the original file is desired, this flag should not
be set.

• readkey
This attribute is only used in certain library configurations which have been configured to
restrict read access to specific types of files. The key and data computed from the file name
must together match the signature. Usually restricted applications have a compiled-in
signature, and one or more read keys which enable read access to the same number of
specific files.

• readkeysignature
This attribute is used for certain library configurations which have been configured to
restrict read access to specific files. This signature is required to verify the read access key.

• readkeystatus
A read-only attribute which reports the access key status for a file for which a read key has
been specified. It can be unchecked, verified or error.

• readscope
This attribute controls which types of objects are read from a file, in case the file contains
more than one object type. For example,. MDL RXN files can be read as en ensemble record
stream, or as a reaction record stream. CACTVS CBIN files can be read as a multi-record stream
of individual ensemble or reaction records, or as a single dataset with additional dataset
properties. CTX files allow access to individual molecules or ensembles. The hierarchical
FDA SPL format supports read modes for molecules, ensembles, and datasets. The default
value for this attribute depends on the file format and is automatically updated whenever the
416 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
format is analyzed or changed. It is generally set to the most commonly used access variant
for that format, for example reactions for RXN files and ensemble streams for CBIN, but it
may also be set explicitly. Possible values are none, mol, ens, reaction, dataset, biologics,
hierarchy and auto. In case a file format does not support a specific variant, the next
supported type to the right in this sequence is automatically used. The auto mode performs
a new content analysis for every record and use the most suitable scope. Examples where
this is useful are RDF files with mixed structure and reaction records, or RTF documents
which mix reaction and structure OLE objects. The dataset mode is potentially dangerous
when reading large multi-record files which do not contain multiple smaller datasets. In that
case, the whole file is interpreted as a single dataset, and that can lead to a large amount of
memory being consumed.

• record
The number of the next record to be read or written, starting with one. This value always
refers to the current physical file, even if the file handle manages a virtual file. In case a
virtual file is read, the vrecord attribute can be used to access the global record number. rc
is an alias name for the attribute.

It is possible to set this attribute in order to reposition the file pointer. In case the file is
opened for output, and is not in update or append mode, this operation truncates the file.
Repositioning while reading does not modify the file. It is not possible to position the file
pointer any further to the rear of a file than immediately behind the end of the last existing
record. In case of virtual files, a record setting implicitly changes the vrecord attribute, not
the current physical file record.

When setting the attribute, the special values end and last can be used to position the file
pointer behind the last, or before the last record, and a negative value is interpreted as a
backspace from the current position. The return value is the resolved record number.

• recordtable
This is a read-only attribute. It returns a nested list of the attributes of the currently known
record positions in the file. Every list element is itself a list which contains, in this order, the
record number, the file offset, the line number (which is the same as the record number for
binary formats), the eor type of that record, a boolean flag indicating whether the record is
physically present in the disk file (0) or virtual (1)., and the original file name used to create
the handle. In case of multi-file handles, this is not a constant over all records. In order to
guarantee that all records of a file and their offsets are known, execute for example a
molfile count command before querying the record table.

• refcount
If the TCL interpreter is using native CACTVS objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this object. The attribute is read-only.

• references
Cross references of the file. This is a nested list of class UUIDs and reference type tags.

• replyto
The future recipient of a file. This is only set when the file has been extracted from a mail
message or attachment. In order to send mail messages to specific destinations via the mail
wrapper I/O module, this attribute may also be set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 417

CACTVS Tcl and Python Scripting Language Reference
• resolution
A resolution value in DPI (dots per inch). The default value is 0, meaning that it is
undefined. This information can be used by a couple of I/O modules, for example for
reading structure data from image files by performing chemical OCR via the interface to the
OSRA program.

• returnformat
The name of the desired return format if the original file was received by mail. This is only
set when the file has been extracted from a mail message or attachment.

• scandata
This is a read-only attribute which reports statistics on the last molfile scan command. The
returned data is a TCL dictionary with keys start_time (in seconds since 1970-1-1), stop_time
(in seconds since 1970-1-1), scan_time (in seconds), ens_read (count of ensemble objects
instantiated), miniens_read (count of Minimol objects decoded), reactions_read (count of
reaction objects instantiated), properties_read (count of property records read),
ens_screened (count of bit-screen filtering operations performed for
substructure/superstructure searches), reactions_screened (count of bit-screen filtering
operations performed for reaction matching), records_examined (count of records looked
at), records_matched (number of matched records), start_record (record the scan started at),
end_record (last visited record), eof_reached (boolean indicator whether the end of the file
was reached), max_mmap_used (maximum used size of memory mapping arena),
max_mmap_requested (maximum requested size of memory mapping arena),
records_skipped (number of records which where skipped with need for
re-synchronization), records_repositioned (number of records which were finished without
the need for a re-synchronizing skip operation) scores_computed (the number of scoring
function calls executed).

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed.

• selection
This attribute is not a molfile handle attribute, but a flag attached to individual records. If
queried, the return value is a list of all record numbers for which this flag is set. Using
molfile set with a list of record numbers in any order to modify the attribute resets the
current flags, and creates a new set. Modifying the attribute via molfile append adds
selection flags without resetting the current selection. The selection flag can only be set for
existing records. If an attempt is made to set the selection flag ahead of the currently known
position set, the command scans the record structure (as in molfile count), which can be
a problem in case of non-rewindable input. In order to facilitate resetting of selection flags,
the virtual attribute deselection can be accessed as the inverse of the selection. Setting it to
an empty list selects all records up to the end of the file (again this triggers automatic
forward scanning, if necessary), and appending a list of records removes them from the
selection. The default value of the selection flag for any record is false.
418 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• separator
A string containing one or more column separator characters. This is used for example by
the structure and reaction table I/O module. The attribute is also set when a table with an
auto-detected separator character was read via the file handle. The default separator is a
single tab character.

• sessionkey
A free-form string intended to be used to identify sessions.

• shmid
In case the memory map arena of the file is in shared memory, this is the shared memory key
as read-only value. If the file is not mapped into shared memory, or on platforms where
memory mapping is not supported, the value is always minus one.

• signature
The signature of a mail message. This is only set when the file has been extracted from a
mail message or attachment.

• similarityproperty
The name of the property which is used for bitvector similarity computation in file scans.
Its default default value is controlled by the global variable
::cactvs(default_similarity_property) and is usually either E_SCREEN or
E_QUERY_SCREEN. If a file is opened that contains information about the similarity property
set when the file was written (for example, CBS and BDB formats), this attribute is
automatically set to the value stored in the file.

• size
The file size in bytes as read-only data. In case it is not known, for example because the file
is accessed via a special stream or a pipe, zero is reported.

• sizehint
The expected maximum record count of the file. This attribute is used by some I/O modules
to pre-allocate room in files with complex storage layout, in order to avoid the need for
expensive re-organization during later record writes. The CBS format especially benefits
from this information. File formats which are simple record sequences have no use for this
information. A value of zero, which is the default, specifies an unknown future size. If the
final size is not known exactly, it is generally preferable to overestimate it somewhat than
to be slightly short.

• statusflags
A list of boolean flags which describe the status of the machinery behind the I/O operations
of this handle. All set flags are reported. When checking for the presence of a flag, make sure
not to use simple string comparison, because other flags may also be set. While it is possible
to change the flags, this is not a common operation, and if done carelessly can disrupt the
I/O functionality of the handle. The older attribute name flags is still a valid alias. The
following flags are commonly seen:

• append - all file output is append to the end of the file, ignoring the current write pointer
position.

• binary - the file is binary, without a line structure.

• bzip2-compressed - the file is accessed via a pipe to the bzip2 program.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 419

CACTVS Tcl and Python Scripting Language Reference
• checkedbinary - the file contents were checked to determine whether they contain
non-ASCII characters.

• edited - the file contains virtual edited records, or virtual deletes.

• fakeposition - the file has no meaningful offset positions for the beginnings of records,
the offset data structures contain other forms of access information

• gzip-compressed - the file is accessed via a pipe to the gzip program.

• incomplete - the last file record was not read completely. This can be intentional in file
formats which support basic and extended data groups, or can be an indication of a
non-critical decoder problem.

• indexed - the file is accessed via an index file with record positions, not directly.

• nommap - memory-mapping of the file contents is suppressed.

• initialized - an initialization function of in the associated I/O module has been called

• locked - there is currently a flock()/lockf() style file lock active on the file.

• mapallocated - the memory mapping arena for the file was allocated and filled via some
read operation, not mmap()ed.

• memlocked - a mapping of the file are locked into memory and are not swapped out.

• readable - the file handle can be read from.

• readonly - the file has been opened for read-only access, without the possibility to switch
the handle to a different mode.

• remotefs - the physical file resides on a non-local file system.

• rewindable - the file can be rewound if necessary

• scratch - the file is a scratch file and is automatically deleted when the file is closed.

• shared - the file contents reside in shared memory.

• validcount - the current number of known positions is known to correspond to the total
of records in the file.

• virtual - the file is a virtual file build from multiple physical files.

• ucs2-encoded - the file is accessed via a pipe to the iconv program.

• url - the file is accessed via a URL, not a file system path.

• updating - the file is currently being updated

• writeable - the file handle can be written to.

• xdr - the file is associated with an XDR encoder or decoder structure.
420 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• style
A free-format string identifying a predefined attribute bundle for graphics-oriented file
formats. This is currently supported for CDX, CDXML, SKC and TGF, where, for example, the
acs value selects settings corresponding to the “ACS Journal” settings in ChemDraw or
ISISDraw.

• structurecolumn
This attribute is the numerical index of a column in table data files which are, for example,
read by the structure table I/O module. The column is expected to contain a string notation
for the basic structure object which is returned by a molfile read operation. This string is
decoded and the content of the other columns is attached as property data to this object.
Typically the content of the structure column is a SMILES, SLN or InChI string. A negative
value of this attribute indicates that the presence of such structure data is not confirmed. In
that case, an attempt is made to determine the structure column automatically, and the
attribute is updated accordingly. However, setting it explicitly may still be required in case
there are multiple column with structure data, or there are too many unreadable or NULL row
entries to allow automatic determination.

• subformat
A enumerated value which encodes the subtype of the main file format. The most common
values are mol2d, mol3d and mol0d, to indicate structure records with 2D or 3D or no
coordinates. The type reaction can be encountered for RDF and CTX files with reaction data,
since these can also be structure files in other cases. The attribute is automatically set when
a file is read,. For some formats a explicit specification of the attribute controls the output
formatting, for example for all file formats which contain an MDL ctab block, which can
store either 2D, 3D, or 0D information, but not simultaneously.

• substructurescreen
The name of the property which is used for bitvector screening in filtering records for
substructure matching. Its default default value is controlled by the global variable
::cactvs(default_substructure_screen_property) and is usually either E_SCREEN or
E_QUERY_SCREEN. If a file is opened that contains information about the screen property set
when the file was written (for example, CBS and BDB formats), this attribute is
automatically set to the value found in the file.

• superstructurescreen
The name of the property which is used for bitvector screening in filtering records for
superstructure matching. Its default default value is controlled by the global variable
::cactvs(default_superstructure_screen_property) and is usually either
E_NO_HYDROGEN_SCREEN or E_NO_HYDROGEN_QUERY_SCREEN. If a file is opened that contains
information about the screen property set when the file was written (for example, CBS and
BDB formats), this attribute is automatically set to the value found in the file.

• template
The name of a template file to be used for output formatting. At this time, only the RTF I/O
module uses this information. It switches between de novo RTF formatting and replacing
chemistry tags in the template file. If this value is set to an empty string, no template is used.

• timeout
The maximum number of seconds to spend in a molfile scan command. When the time
is exhausted, the scan terminates after the respective current record has been cleanly
processed by all query threads, even if the end of the file has not been reached. Setting the
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 421

CACTVS Tcl and Python Scripting Language Reference
attribute to zero, which is the default, allows an unlimited time to be spent on a query.
Another function where the timeout value is used is in reading a record via an Internet
connection, for example an http or ftp URL. If the timeout expires and the record has not
been downloaded, an error results.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

• url
A read-only attribute with the URL in case the file is accessed via an Internet connection.
If no such connection exists, the result is an empty string. If a URL has been set, this attribute
may be indexed using the same fields as a URL property data item in order to retrieve URL
components.

The allowed field names are hash, host, hostname, href, pathname, port, protocol, search,
user, password, directory, file, ipaddr, lastmodified and mimetype. Note that in this context
the port field name is the port the file is transferred via the Internet connection, which
generally is not the same as the listener port for remote requests (see molfile get attribute
port). Likewise, the mimetype here is the MIME type as reported by the server, not the file
MIME type defined by the file format handler module. Example:
set ip [molfile get $fh url(ipaddr)]

• user
This is a shortcut for the user name part of a file or virtual file addressed via an URL. For
simple retrieval it is equivalent to the URL field attribute url(user). For some I/O modules,
for example the interface to access MYSQL tables as virtual structure files, a change of the user
name has an effect and results in a re-authentication of the database and table access, which
can result in different access permissions. For normal files accessed via a URL a change of
the attribute is ignored after the file has been opened. Files that are not associated with an
URL have an empty user name value.

• uuid
An automatically generated UUID globally identifying the object. This attribute is
read-only, different for every object, and not dependent on the contents or format of the disk
file this object is associated with.

• valencelevel
For files which support this concept, an indicator what kind of structure (stable,
intermediate, MS ion, etc.) is stored in the file.

• version
The file format version as a string. This attribute is set automatically when a file is opened
for reading. If it is not set, files are generally read or written in the latest supported version.
If a data file contains a known version indicator, input routines in some cases adjust to older
encoding standards. The I/O modules of some file formats support the writing of old
versions. An example are the CDX and CDXML modules, which in the context of file versions
explicitly set to less than 8.0 do not write the InterpretChemically tag which is not
understood by older ChemDraw releases.

• versionuuid
The version UUID associated with this file as per its authorship attributes.
422 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• vline
The current virtual line count as a read-only attribute. For simple files, this is identical to the
standard line count (attribute line or lc). However, for virtual files opened by means of the
molfile lopen command, this attribute is the global line number in the virtual file, while
line/lc refers to the line count within the current physical file. The attribute name vlc is an
alias.

• vrecord
The virtual record number of the next record to be read, starting with one. For simple files,
this is identical to the standard record count (attribute record or rc). However, for virtual
files opened by means of the molfile lopen command, this attribute is the global record
number in the virtual file, while record/rc refers to the record count within the current
physical file. The attribute name vrc is an alias.

This attribute can be set and changing it results in repositioning of the file pointer, and
potentially even a change in the active physical file.

When setting the attribute, the special values end and last can be used to position the file
pointer behind the last, or before the last record, and a negative value is interpreted as a
backspace from the current position. The return value is the resolved record number.

• width
The maximum width of a structure or reaction depiction in points (1/72 of an inch). This is
only used for graphics-oriented formats, such as CDX, SKC or EMF. If the attribute is set to
a negative value, which is the default, the size is indirectly controlled by the bond length and
atom coordinates. In case this attribute is set to a positive value, and the depiction would
exceed the maximum width or height, it is automatically scaled down proportionately.

• writeend
An enumerated value indicating what kind of record end marker should be written on
output, if the file format has such a concept. Possible values are none, mol and block. The
default value is block, which translates into the standard record terminator for almost all file
formats. The mol type is only significant for CTX format output. The none value can be
useful if a programmer wants to add custom data to the end of a record and then writes an
end marker himself, as it could be done without too much effort for example for an SD file.

• writeflags
A collection of boolean flags controlling output details. When queried, this attribute returns
a list of the names of all set flags. Modification of this flag supports the standard bit
manipulation prefixes. The following flag names are currently recognized:

• none - no flags

• computeprops - attempt to compute properties in the write list if they are not yet present
in the output objects.

• contracthydrogens - whether to store displayed hydrogens as explicit atoms, or
contracted and linked to their bond partner atom as a hybrid object. This option only
applies to the CDX and CDXML formats. By default, the option is not set.

• miniheader - keep the file header as concise as possible.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 423

CACTVS Tcl and Python Scripting Language Reference
• nohydrogenisotopesymbol - if set, the default isotope symbols for heavy hydrogen (D
and T) are not used in output. Instead, a simple H symbol is always written. Setting this
flag does not suppress isotope output per se - if the file supports other means to define
isotopes (e.g. M ISO lines in MDL files) these are still used.

• multiwriter - prepare the file to handle multiple simultaneous writers. The only file
format I/O module which currently supports this is BDB.

• noimplicith - do not output hydrogen atoms which were added as implicit atoms.

• nomoleculesplit - do not split the ensembles into individual sub-records when this is
normally required by the output format. This currently is only used by the MDL RXN and
RD I/O modules. RXN files usually store every reaction component as a sub-record. This
flag can be used to force writing of a single reagent and product record each, where each
part may contain multiple un-separated components.

• nopropertymapping - always synthesize property descriptions, do not attempt to map
them onto existing standard system definitions. The only module currently supporting
this feature is the PUBCHEM ASN.1 module.

• nostereo - do not write stereo information into the file, even if present in the output
structures.

• nostereoperception - do not attempt to perceive stereochemistry from the available
object data such as 2D coordinates and wedges, or 3D atomic coordinates, even if the file
format normally requires this information.

• omitct - if the inclusion of a structure connectivity table is optional, this flag can be used
to suppress the output this block.

• pedantic - perform pedantic output format checking, for example by refusing to write
long lines in text formats which exceed the exact format specification, or refusing to
write structures with more atoms than officially supported.

• rawcoordinates - do not perform any coordinate checking, scaling, and centring but
write the coordinates exactly as they are currently stored.

• recalcbaseprops - if the output file content is a single property (for example E_GIF for
GIF or PNG files, E_EMF_IMAGE for EMF and WMF files), force recalculation of this
property before output.
424 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• supergroupexpansion - If a file format can either be written with expanded or contracted
superatom groups (specified as type SUP in property G_TYPE and group label in G_NAME),
the default is to write them contracted. If this flag is set, the expanded form is used
instead. This option affects few file formats (currently cdx and cdxml). It does not
perform expansion of superatoms which are only present as a single pseudo atom in the
ensemble by decoding their tag (see ens expand command to achieve this). Rather, it
expects the full set of atoms of the expanded form in the ensemble, plus one or more
properly set up group objects indicating the atoms of the expanded form of a functional
group or fragment which are not shown in the contracted style. If these groups are
present, only the first atom in any group is shown, with the G_NAME data as atom tag,
which overrides all other label information. However, the output file still contains the
hidden atoms and their data. Tools like ChemDraw use this data to support interactive
group expansion utilizing the original layout coordinates of the previously hidden atoms
and other information.

• synchronous - use synchronous writes for files which normally use buffering to increase
performance, for example in the bdb format.

• splitmol - Split output into individual ensembles and write each molecular fragment as
a separate record.

• upgrade - if this flag is set, and the format of a file is not of the most current version, but
there is an upgrade function available in the support library, invoke the upgrade function
to change the file layout to the most current version. The bdb module is the only one
which currently supports this feature.

• write0d - write records without coordinates if possible

• write2d - write 2D records if possible

• write3d - write 3D records if possible

• writearo - write aromatic bonds instead of a Kekulé form if the file format supports this.
An example where this makes sense are SMILES files. A counterexample are MDL
Molfiles - you can enforce the encoding of aromatic bonds of non-query structures as the
aromatic query bond type with this option, but that is technically incorrect and violating
the format specification. Nevertheless, there are third party programs which require data
in that format aberration for further processing.

• writecolor - write atom and bond colouring information if this is an optional part of the
file format specification.

• writeenzymes - if the output data contains enzyme superatoms, include them in the
output if that is an option. The SDF3000 I/O module is an example for a module
recognizing this flag.

• writelabels - write explicit atom labels, as defined in the attribute atomlabelproperty, if
the file format supports it. This does not override the natural numbering of the written
atom objects. It only applies to formats which support a parallel user-defined labelling
scheme, such as CDX/CDXML.

• writename - write a structure name section if this is optional information in the output.
An example are SMILES files.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 425

CACTVS Tcl and Python Scripting Language Reference
• writekey
This attribute is only used in certain library configurations which have been configured
to restrict write access to specific types of files. The key and data computed from the file
name must together match the signature. Usually restricted applications have a
compiled-in signature, and one or more write keys which enable write access to the same
number of specific files.

• writekeysignature
This attribute is used for certain library configurations which have been configured to
restrict write access to specific files. This signature is required to verify the write access
key.

• writekeystatus
A read-only attribute which reports the access key status for a file for which a write key
has been specified. It can be unchecked, verified or error.

• writelist
A list of properties that should be included in the output if the file format supports this.
Standard properties defining basic connectivity etc. usually do not need to be listed
because they are written out by default where needed. Normally, this list contains only
ensemble- or reaction-level properties, like SD data fields. Properties listed both in the
write list and the drop list are not written. By default properties listed here are not
computed. If they are not already present in the output objects, they are omitted. The
computeprops bit in the writeflags attribute can be used to automatically initiate a
computation attempt. Still, if a computation attempt fails, the output of that property data
is silently omitted.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

• y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

The attribute list above is also referenced by the molfile set command. This is the reason why it
contains information about the read-only status of the individual attributes. Only attributes that can
be set can be addressed by the molfile set command.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Filters in the optional filter set must apply directly to the file object. Filters which operate on other
object types are ignored.

Variants of the molfile get command are molfile new, molfile dget, molfile jget,
molfile jnew, molfile jshow, molfile nget, molfile show, molfile sqldget, molfile
sqlget, molfile sqlnew, and molfile sqlshow. These commands only work on property data
and cannot be used to access attributes..

molfile getline
molfile getline filehandle ?skiprecord?
426 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
f.getline(?skiprecord=?)

Read a text line from the file, with repositioning of the file pointer. This operation is only possible
on text files which have been opened for reading. The command is not frequently used, because it
tends to disrupt the normal file record parsing.

If the skiprecord boolean argument is set, the file is positioned to the beginning of the next record
after the line has been retrieved.

The command returns the line read. Line termination characters are removed.

molfile getparam
molfile getparam filehandle property ?key? ?default?
f.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

Example:
molfile getparam $fhandle F_QUERY_GIF format

returns the actual format of the data in that property, which could be a GIF, PNG or a bitmap format.

molfile hloop
molfile hloop filehandle objvar ?maxrec? body
f.hloop(function=,?maxloop=?,?variable=?)
Molfile.Hloop(filename,function=,?maxloop=?,?variable=?)

This command is functionally equivalent to the molfile loop command. The difference is that for
the duration of the loop command hydrogen addition is enabled for the file handle. The original
hydrogen addition mode of the file object is restored when the loop finishes.

molfile hread
molfile hread fhandle ?datasethandle/enshandle/#auto/new? ?recordcount?
molfile hread fhandle ?datasethandle/enshandle/#auto/new? ?parameterdict?
f.hread(?target=?,?parameters=?)
Molfile.Hread(filename,?target=?,?parameters=?)

This command is identical to the molfile read command, except that standard hydrogen addition
is enabled for the duration of the command. The original hydrogen mode is reset when the command
completes.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

Example:
set eh [molfile hread “myfile.mol”]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 427

CACTVS Tcl and Python Scripting Language Reference
This is a simple single-record structure input with hydrogen addition, using a file name instead of
a file handle. The file is automatically opened and then close for the duration of the command.

molfile jget
molfile jget filehandle propertylist ?filterset? ?parameterdict?
f.jget(property=,?filters=?,?parameters=?)
Molfile.Jget(filename,property=,?filters=?,?parameters=?)

This is a variant of molfile get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

molfile jnew
molfile jnew filehandle propertylist ?filterset? ?parameterdict?
f.jnew(property=,?filters=?,?parameters=?)
Molfile.Jnew(filename,property=,?filters=?,?parameters=?)

This is a variant of molfile new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

molfile jshow
molfile jshow filehandle propertylist ?filterset? ?parameterdict?
f.jshow(property=,?filters=?,?parameters=?)
Molfile.Jshow(filename,property=,?filters=?,?parameters=?)

This is a variant of molfile show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

The Python class method is a one-shot command. The transient dataset created from the
initialization items is automatically deleted when the command finishes.

molfile list
molfile list ?filterlist=?
Molfile.List(?filters=?)

This command returns a list of the molfile handles currently registered in the application. This list
may optionally be filtered by a standard filter list.

Example:
molfile list

lists the handles of all open molfiles in the application.

molfile lock
molfile lock filehandle propertylist/objclass/all ?compute?
f.lock(property=,?compute=?)
428 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Lock property data of the file handle, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the file handle which would invalidate the information. Property data remains
locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the file object are locked. If the boolean compute flag is set, an
attempt is made to compute the property if it is not yet present. Otherwise, a request to lock
non-existent data is silently ignored. It is not possible to lock individual property fields.

• all
All valid file properties are locked. The compute flag is ignored.

• molfile
This is an object class identifier. All property data which is controlled by the file major
object and attached to the specified object class is locked. Since files do not incorporate
minor objects, this identifier is equivalent to all.

The lock can be released by a molfile unlock command.

This command is a generic property data manipulation command which is implemented for all
major objects in the same fashion and is not related to disk file locking. Disk file locks can be set
or reset by modifying the molfile object attribute lock. This is explained in more detail in the
paragraph on the molfile get command.

The return value is the original molfile handle or reference.

molfile loop
molfile loop filehandle objvar ?maxrec? body
f.loop(function=,?maxloop=?,?variable=?)
Molfile.Loop(filename,function=,?maxrecords=?,?variable=?)
for obj in f:

Execute a loop over the file. Objects are read from the file from the current file position onwards.
The type of object read (usually ensemble or reaction, but in principle it could also be a table or
dataset object) depends on the read scope of the file. In the TCL variant, the handle of every object
input from a file record is assigned to the specified TCL object variable. Next, the TCL script code in
the body argument is executed. The body code typically uses the value of the variable to perform
some operations with the currently read object. After the body code has been executed, the object
which was just read is deleted, and the cycle is repeated, either until EOF has been reached on the
file (the default), or the maximum number of records specified by the optional parameter has been
reached, whichever comes first. In either case, no error is generated when the end of file has been
reached. Setting the maximum record count parameter to an empty string, or to a negative value,
results in the default processing style running until the end of the file.

For TCL scripts, within the loop, the standard TCL break and continue commands work as expected.
If the body script generates an error, the loop is exited. If the loop code generates an error, the loop
is terminated and the error reported. Programs should not expect that the same object handle value
stored in the variable is reused in each iteration.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 429

CACTVS Tcl and Python Scripting Language Reference
Since the input objects are automatically deleted after they have been processed, it is not required
to delete them in the loop code. Deletion requests on the loop object executed within the loop are
ignored. Any other operation on the structure object is allowed. The loop code may perform
repositioning operations on the input file, but not close it.

The PYTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TCL construct),
or a function reference. Functions are called with the reference of the current loop object as single
argument, and have their own context frame, so that the specification of a reference variable is not
generally useful in that call style, though is is allowed. For string function blocks the code is
executed in the local call frame, and the variable with the current object reference is visible locally.
Script code blocks must be written with an initial indentation level of zero. Within the PYTHON
functions, the normal break and continue loop control commands cannot be used to to scope
limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can be raised. These are
automatically caught and processed in the loop body handler code.

In PYTHON, there is also an object iterator so that simple loops over structure file contents can be
written with a for statement. The molfile object iterator is of the self style (i.e. there is one per
molfile, these are not independent objects), so nesting them is not possible on the same dataset.
There is no distinct hloop iterator, but that can be emulated by setting the hydrogens attribute on the
molfile object.

PYTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PYTHON scripting.

The return value is the number of processed records.

Example:
set th [table create]
table addcol $th E_NAME
table addcol $th E_WEIGHT
molfile loop $myfile eh {

table addrow $th #auto end [list [ens get $eh E_NAME] [ens get $eh E_WEIGHT]]
}

This sample loop successively reads all records from the file and stores the ensemble handles in
variable eh. In the loop body, the handle is used to extract name and molecular weight information
from the structure and store it in a table object.

molfile lopen
molfile lopen filelist ?mode? ?attribute value?...
molfile lopen filelist ?mode? ?attributedict?
Molfile(filenamesequence,?mode=?,?attribute=?)
Molfile.Open(filenamesequence,?mode=?,?attributes=?)
Molfile.Lopen(filenamesequence,?mode=?,?attributes=?)

Open a list of files as a virtual file. The files identified by the file list items are implicitly
concatenated in the list order. In addition to normal files, the standard set of special input types such
as URLs, pipes, TCL file handles or standard channels may be used. This command returns a single
file handle, regardless of the number of input files passed as parameter.
430 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
A file list can only be opened for read operations on input objects. Writing, appending, updating or
string input are not supported.

Most input file operations can be performed on virtual files. One important exception is currently
file scanning with query expressions. This only works for lists of standard sequential files, not files
which contain optimized query layouts, such as the native CACTVS CBS and BDB file formats. These
can only be used as a single file for molfile scan commands. However, simple structure input is
possible across file boundaries even with these formats.

The rest of the options are processed in the same way as the standard molfile open command.

In the PYTHON interface, there is no distinction between the lopen and open commands, because it
can be unequivocally established whether the filename argument is a sequence (tuple or list of
filenames), or a single file name. The interpretation is performed according to the argument type.
The PYTHON command always uses a file attribute dictionary, not a keyword/value argument set.

Example:
set fhandle [molfile lopen [lsort [glob *.mol]]]

molfile max
molfile max filehandle property ?filterset?
f.max(property=,?filters=?)
Molfile.Max(filename,property=,?filters=?)

Scan the file for the maximum value of the specified property from the current read position to the
end of the file. If no error occurs, the file is at end-of-file after the end of the command.

If a filter set is provided, it is applied to the objects read from the file during the scan, not the molfile
object proper. Objects which do not pass the filter are ignored.

The property may correspond either to a data column in the file, or to a computable property on the
structure or reaction objects read during the scan. Read objects are transient and automatically
discarded. The property argument may contain a field specification, and in that case, only the field
value is compared.

The maximum value determination uses the standard property comparison function associated with
its data type. For properties which are implicitly defined during file I/O, an explicit property
definition with a correct data type may be beneficial. For example, when testing the values of an SD
data field, by default the data is read as an implicitly created string property. If the field content is
actually an integer, the comparison as a string value does not yield the same results as when the data
is compared as an integer. For file formats which encode a proper data type of its contents this is not
necessary.

The return value is the maximum property or property field value found, or an empty string if no
input was processed.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile metadata
molfile metadata filehandle property ?field ?value??
f.metadata(property=,?field=?,?value=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 431

CACTVS Tcl and Python Scripting Language Reference
Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands molfile setparam and molfile
getparam can be used for convenient manipulation of specific keys in the computation parameter
field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

molfile min
molfile min filehandle property ?filterset?
f.min(property=,?filters=?)
Molfile.Min(filename,property=,?filters=?)

Scan the file for the minimum value of the specified property from the current read position to the
end of the file. If no error occurs, the file is at end-of-file after the end of the command.

If a filter set is provided, it is applied to the objects read from the file during the scan, not the molfile
object proper. Objects which do not pass the filter are ignored.

The property may correspond either to a data column in the file, or to a computable property on the
structure or reaction objects read during the scan. Read objects are transient and automatically
discarded. The property argument may contain a field specification, and in that case, only the field
value is compared.

The minimum value determination uses the standard property comparison function associated with
its data type. For properties which are implicitly defined during file I/O, an explicit property
definition with a correct data type may be beneficial. For example, when testing the values of an SD
data field, by default the data is read as an implicitly created string property. If the field content is
actually an integer, the comparison as a string value does not yield the same results as when the data
is compared as an integer. For file formats which encode a proper data type of its contents this is not
necessary.

The return value is the maximum property or property field value found, or an empty string if no
input was processed.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile mutex
molfile mutex filehandle mode
f.mutex(mode)

Manipulate the object mutex.

During the execution of a script command, the mutex of the major object(s) associated with the
command are automatically locked and unlocked, so that the operation of the command is
thread-safe. This applies to toolkit builds that support multi-threading, either by allowing multiple
parallel script interpreters in separate threads or by supporting helper threads for the acceleration of
command execution or background information processing.

Going beyond this automatic per-statement protection, this command locks major objects for a
period of time that exceeds a single command. A lock on the object can only be released from the
same interpreter thread that set the lock. Any other threaded interpreters, or auxiliary threads, block
432 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
until a mutex release command has been executed when accessing a locked command object. This
command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if any exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

molfile need
molfile need filehandle propertylist ?mode? ?parameterdict?
f.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original file handle or reference.

Example:
molfile need $fhandle F_AVERAGE_ATOM_COUNT

molfile new
molfile new filehandle propertylist ?filterset? ?parameterdict?
f.new(property=,?filters=?,?parameters=?)
Molfile.New(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The difference between molfile get and molfile
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile nget
molfile nget filehandle propertylist ?filterset? ?parameterdict?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 433

CACTVS Tcl and Python Scripting Language Reference
f.nget(property=,?filters=?,?parameters=?)
Molfile.Nget(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The difference between molfile get and molfile
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile nnew
molfile nnew filehandle propertylist ?filterset? ?parameterdict?
f.nnew(property=,?filters=?,?parameters=?)
Molfile.Nnew(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the molfile get command. The difference between molfile get and molfile
nnew is that the latter always returns numeric data, even if symbolic names for the values are
available, and that property data re-computation is enforced.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile open
molfile open filename ?mode? ?attribute value?...
molfile open filename ?mode? ?attributedict?
Molfile(filenamesequence,?mode=?,?attribute=?)
Molfile.Open(filenamesequence,?mode=?,?attributes=?)

This command opens a structure file or other input source for input or output. The filename argument
may be any of:

• A disk file

This is the most common case. File names may be absolute or relative. On the Windows
platform, the path naming follows the TCL convention, with backslashes replaced by forward
slashes, and optional drive letters, in the same way as the standard TCL open command. Tilde
substitution is also supported and built into the command. In case a file name could possibly
collide with a reserved name, the file name can be prefixed with ./ in order to force interpretation
as a file name. File name expansion can be conveniently performed by means of the standard
TCL glob command. File names must currently be spelled in the 8-bit ISO8859-1 character set.
Unicode file names are not yet supported. On Unix platforms, named pipes and sockets may also
be opened with this command.

Examples:
molfile open ./stdout r

molfile open ~theuser/data/newleads.sdf

molfile open C:/temp/calicheaamycin.pdb w
434 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• A standard channel

The file names stdout, stderr and stdin are reserved and connect the file handle to a standard I/O
channel. stdout and stderr can only be opened for output, and stdin can only be read from. The
character ’-’ (minus) is an alternative name for standard input.

Example:
molfile open stdout w format mdl

molfile open ./stdout

The first line opens an MDL file for output on standard output. The second sample line opens the
file in the current directory which is named “stdout” for input. By prefixing file names with
directory information any file with a reserved name can be opened as standard file.

• A scratch file

The name scratch is reserved as the name of a generic scratch file. The file is initially opened
for writing, but may be switched to input later by a molfile toggle command. The magic
filename is translated into the name of a platform-specific temporary file. Every invocation of
this command variant generates a new scratch file, with a different name. The true file name can
be obtained with an attribute query:
set fh [molfile open scratch]

set name [molfile get $fh name]

Scratch files are automatically deleted when they are closed, or when the program exits.

• A pipe

If a file name starts with a vertical bar character “|”, a pipe is opened from (in read mode) or to
(write mode) the commands listed after the bar.

Example:
molfile open “|gzip >thefile.sdf.gz” w format mdl

When the file is closed, the pipe and all programs connected to it are automatically shut down.
Pipes cannot be rewound, or switched from input to output and vice versa.

• An URL

The CACTVS toolkit supports reading from various types of URLs. Currently, the schemes ftp,
http, file and gopher are supported. file URLs are just another notation for normal disk files, as
described above. From among the other URL schemes, only ftp and http connections may be
opened for writing. The support for ftp URLs includes username and password components. If
the server side supports it, passive ftp is the preferred mode. Http connections opened for writing
use the PUT http command, which often is not activated in standard Web server set-ups and may
therefore be of limited practical usefulness. URL connections can be rewound and backspaced,
but this is costly because the existing connection has to be disconnected and the initial data from
the beginning of the file to the desired position needs to be re-transferred and discarded.

Examples:
set fh [molfile open http://www.yourcompany.com/repository/jcamp/ir1.jcp]

molfile open ftp://yourid:yourpasswd@ftp.yourcompany.com/upload/ideas.sdf
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 435

CACTVS Tcl and Python Scripting Language Reference
• A directory

If the target is a directory, all files in the directory are scanned. Those files which were identified
as structure data files by any of the built-in or currently loaded I/O module extensions are
concatenated to a virtual file which comprises all individual files. The order in which the files
are concatenated is largely unpredictable, because it is defined by the order of the file name
entries in the directory, and not any alphabetic sort criterion. The files may be of different
formats, and may be any mixture of single-record and multi-record files. Subdirectories of the
opened directory are not entered by default, but this may be activated by appending a ‚d‘
character to the open mode. Directories may only be opened for reading.

Example:
set fh [molfile open .]

set fh [molfile open $mydir rd]

The second example opens not only perceived structure files in the source directory, but also in
all subdirectories thereof.

• A string

The CACTVS toolkit can read most file formats directly from a string. There is no need to write
structure data which was obtained as a string image to a temporary file to decode it. Data strings
are opened as structure file with mode ’s’. Only input is possible, but navigation within the
string with molfile rewind etc. works as expected. The complementary molfile string
command can be used to generate a string image of a file record.

Example:
set fh [molfile open $thedatablob s]

set eh1 [molfile read $fh]

set eh2 [molfile read $fh]

molfile close $fh

• A TCL file or socket handle, or a PYTHON file reference

Any file name beginning with file or sock, and where the rest of the file name is a sequence of
digits, are interpreted as references to TCL file handles.

Example:
set tcl_fh [open thefile.txt w]

set cactvs_fh [molfile open $tcl_fh w]

A TCL handle can only be accessed by this command in a mode which is compatible to the mode
it was opened with, i.e. it is not possible to write to a file via a Tcl handle if it was opened for
reading. If a structure file coupled to a TCL handle is closed with a molfile close command,
the TCL handle remains valid, and my be used freely once the association to the structure file I/O
object is broken. Closing the TCL file handle while the piggybacked structure file handle is being
used is illegal. No input, output or positioning should be performed on the TCL handle with
standard TCL commands while it is being referred to by a molfile object.

In the PYTHON interface, the same mechanisms apply, except that the argument is a PYTHON file
handle object.
436 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The TCL handle functionality is not available on Windows, because on this platform TCL
internally uses Windows handles for I/O, while the CACTVS toolkit builds on standard Posix C
library FILE* pointers.

• A virtual file

Some I/O modules implement access to a variety of information sources as a virtual file, which
has neither a presence on the local disk, nor is one of the standard magic file names or access
methods. Such virtual file names are by convention written with pointed brackets.

Example:
set fh [molfile open <pubchem>]

This command loads the PUBCHEM virtual file access module, and returns a handle which may
be used in a similar fashion as, for example, a handle to a huge local SD file. Depending on the
I/O module, various operations on the handle may be optimized to be performed remotely. For
example, the PUBCHEM module offloads as many query operations of molfile scan commands
as possible to the NCBI computers and downloads result structures only if they are needed as
results, or query sub-expressions were specified which cannot be processed by the NCBI
system.

The first optional parameter is the file access mode. It may be one of:

• r
Open for reading, but with the option of later changing the mode to writing or appending.
This is the default.

• rt
As above, but automatically start a thread which immediately starts gathering file status
information, such as the record count and record positions. This mode can be useful when
operations, such as reading data for display, are to be commenced immediately, but
ultimately overall record count information needs to be displayed, which can take a while
to collect for larger files. The status thread is only started for rewindable files, and has no
effects on files which directly provide record index and total record count information.
Operations which would duplicate the efforts of the statistics thread, such as molfile
count, are automatically blocked until the thread has completed,, and then directly use its
results. Operations which change the nature of the access to the file, or its record contents
or positions, silently terminate the status thread.

• ro or rot
Open for read-only. If a file is opened in this mode, it is not possible to switch to write access
later via a molfile toggle command. If the file permissions do not allow write access, the
standard ‘r’ mode automatically falls back to this variant. Mode ‘rot’’ is also possible and
additionally starts a file status thread (see mode ‘rt’).

• w
Open for writing. If the file exists, it is overwritten. If not overridden by an explicit format
specification, the file format is inferred from the suffix of the file name, if possible.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 437

CACTVS Tcl and Python Scripting Language Reference
• a
Open for appending. If the file exists, new data written to it is appended. If not overridden
by an explicit format specification, the file format is inferred from the suffix of the file name,
if possible. Not all file formats support appending.

• u
Open an existing file for updating, i.e. the replacement of specific records. Not all file
formats support this mode. It is generally useful for database-style formats such as CACTVS
BDB and, to a limited degree, CBS. It can also be used for simple record sequence files like
SD, though in this case it can be inefficient because a lot of data copying may be required
to adjust the file layout. For single-record file formats, this command is not useful, and
multi-record files which are not simple record sequences and for which the I/O module does
not provide a special function, this mode is not supported.

• s
Open string image of a file. If the mode is used, the file name is interpreted as an in-memory
image of a structure file in any of the formats the toolkit understands, and not as a file name,
URL, or any of the other types of input objects. Binary file formats may be used with this
command.

• p
Open in pipe reader mode. The input is expected to be a pipe or socket, where sporadically
new data is posted. If an attempt is made to read from the file, a check is made if any data
is present. If no data is waiting, the input command immediately returns without blocking.
At a later time, new data may be present and the input succeed. If just a single byte of data
is present on a pipe input channel, the read routine hangs on until the record for which input
has begun has been read completely.

• R, Ro, Rot
Open the file for reading and infer the format of the file from the suffix alone, without
actually attempting to read the initial section of the file contents, which is the default method
to determine its format. This mode can be useful in case the data contains text with
embedded structure data, where the plain text is read by scripted commands and the
occasional embedded structure or reaction record is to be extracted by means of molfile
read commands. For such files, an automatic format detection would fail. The ‘o’ and ‘t’
flags may also be appended, and have the same meaning as in the standard ‘r’ mode.

For some files and file formats, two more mode characters have meaning if appended to the primary
mode: They are silently ignored if the file argument or file format do not support them.

• d
Recursive opening. This is for example useful when opening a directory as a pseudo file for
input. If this flag is set, the all files recursively found under the specified directory form the
virtual file, not just the files directly located under the specified directory.

• f
Fast mode. The file is opened for maximum performance, taking chances with respect to
data integrity in case of program or computer crashes, etc. One file format where this flag
is supported is the Cactvs Data Archive (CDA) format.
438 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The remaining parameters of the molfile command are optional keyword/value pairs, or
alternatively a single dictionary with the same function. The processing of these parameters is
exactly the same as in the molfile set command.

In the PYTHON interface, there is no distinction between the lopen and open commands, because it
can be unequivocally established whether the filename argument is a sequence (tuple or list of
filenames), or a single file name. The interpretation is performed according to the argument type.
The PYTHON command always uses a file attribute dictionary, not a keyword/value argument set.

Example:
set fhandle1 [molfile open thefile.pdb]
molfile set $fhandle1 hydrogens add nitrosyle ionic
set fhandle2 [molfile open thefile.pbp r hydrogens add nitrostyle ionic]

The first two lines and file final line perform exactly the same task: Open an input file, and set up
input flags so that a complete set of hydrogens is added, and nitro groups and similar groups are
converted to an ionic (as opposed to pentavalent) representation.

When a file is opened for reading, its format is automatically determined. Do not use the format
attribute except under very special circumstances.

The command returns the file handle or reference of the opened input file. This is the handle which
is required by most other molfile commands which refer to an opened file.

Depending on the encoding of the opened file, the actual access mode to the file may be different
than expected. In case a disk file is compressed with gzip or bzip2, the file is opened via a pipe to
the responsible decompressor program. Likewise, an UCS-2 encoded file is opened via a pipe to the
iconv program which converts the contents to the UTF-8 encoding. Files which are opened indirectly
via such helper pipes have different access characteristics than directly addressed files. For example,
backspacing is expensive, because the pipe has to be closed, re-opened, and the data stream skipped
to the desired position. This takes much longer than simply repositioning a file pointer.

molfile peek
molfile peek filehandle
f.peek()
Molfile.Peek(filename)

This is a convenience command which combines three operations: Read the next record (molfile
read), discard whatever object is read by the command as configured by the file handle settings
(ens/reaction/dataset delete), and backspace by one record (molfile backspace).

The purpose of this command is to learn more about the contents and characteristics of the file by
performing a full parse of the next record. One of the most common applications of the command
is to detect the field structure (such as SD data fields) of that record before the read. The detected
field set is consequently the return value of the command, equivalent to a molfile get filehandle
fields statement.

This command can only be used on files which can be backspaced, or at least rewound and skipped
forward to the last position. It cannot be used on files not opened for input, on empty files, or files
which are at EOF. In all these cases, an error results.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 439

CACTVS Tcl and Python Scripting Language Reference
molfile properties
molfile properties filehandle ?pattern? ?noempty?
f.properties(?pattern=?,?noempty=?)

Generate a list of the names of all properties attached to the molfile object. Optionally, the list may
be filtered by a string match pattern.

In most cases, this list is empty. Only structure file properties, such as F_COMMENT, etc., are listed,
but no object attributes, such as readflags, nitrostyle, etc. Few file formats support the concept of
storing file-level properties, and therefore an empty property set is usually reported. Since file
objects do not contain minor objects, and currently cannot be a member of other major objects such
as datasets or reactions, no properties belonging to other classes except file objects are ever listed.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The property list may become modified by input operations. In some cases, the defined file-level
properties may vary with the record position, or may become only available only after the first input
operation, not immediately after opening the file.

The command may be abbreviated to props instead of the full name properties.

Example:
set plist [molfile properties $fhandle]

molfile purge
molfile purge filehandle propertylist/molfile/all ?emptyonly?
f.purge(?properties=?,?emptyonly=?)

Delete property data from the molfile object. Only molfile property data may be deleted with this
command (these usually have a F_ prefix). Molfile attributes are not deletable.

If the optional flag is set, only file property values which are identical to the default of the property
are deleted. By default, or when this flag is 0, properties are deleted regardless of their values. In
case a listed property is not present, or not a file property, the request is silently ignored, but using
property names which cannot be resolved leads to an error. If the object class name molfile is used
instead of a property name, all file-level property data is deleted from the molfile object.

The command returns the original molfile handle or reference.

Example:
molfile purge $fhandle F_COMMENT
molfile purge $fhandle all

The first command deletes a specific property, the second command deletes all file property data
associated with the handle.

molfile putline
molfile putline filehandle ?lines?
f.putline(?line?,...)

Write user-specified string lines to a file, bypassing the normal record writing mechanism. This
operation is only supported on files which are opened for output and contain text data. The lines
440 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
should not contain end-of-line characters. These are automatically supplied depending on the file
object configuration set in the eolchars attribute.

The command returns the original file handle or reference.

molfile read
molfile read fhandle ?datasethandle/enshandle/#auto/new? ?recordcount?
molfile read fhandle ?datasethandle/enshandle/#auto/new? ?parameterdict?
m.read(?target=?,?parameters=?)
Molfile.Read(filename,?target=?,?parameters=?)

This important command reads chemistry objects from a structure or reaction file. The type of
objects returned depends on the read scope of the file. They can be ensembles, reactions, or datasets.
Read scope mol returns single-molecule ensembles, but (with I/O modules supporting this feature)
reads only individual molecules into the output ensemble, splitting a multi-molecule file data
ensemble if necessary. The return value of the command is a list of the handles or references of all
objects which were generated, except when the #auto dataset creation method was used, or an
unlimited number of objects was read into a dataset. In that case, the recipient dataset handle or
reference is returned.

By default, the returned objects are not a member of any dataset. If a dataset handle is passed as
fourth parameter, the returned objects are appended to that dataset if possible. The special value
#auto or new creates a new dataset as container. This is equivalent to using the nested statement
[dataset create] as dataset handle argument. If the fourth parameter is an ensemble handle, and
the object read from the file is also an ensemble, the read data is stored in the shell of the old
ensemble, after all old ensemble data has been deleted. Its object handle remains unchanged, as is
its dataset membership. The reuse of reaction handles is currently not supported. This parameter can
be skipped by specifying an empty string.

In addition to passing an empty string, or a simple dataset or ensemble handle or reference, as the
fourth command argument, a list/tuple consisting of a handle or reference and a modifier flag set can
be specified. The only flag value which is currently recognized is checkroom. If that flag is set, and
the input objects are to become members of a dataset with enabled maximum size or insertion mode
control, a test is made whether the dataset has sufficient room to allow the insertion of the new
object(s), or whether a suitable alternative action is configured to handle the read object in a different
fashion, such as discarding it. If that is not the case, the command returns immediately, without
performing any input, and returns an empty string (None for PYTHON). If the test succeeds, the input
operation is atomic, since the dataset is locked for the full duration of the command, so that no other
threads can manipulate its status between the initial check and the file input result object transfer.

The final optional parameter is either a single argument specifying the number of objects which
should be read, or a dictionary with key/value attributes. The default is equivalent to passing a
simple numerical value of one, in the first, simple format. In order to read until the end of the file,
the special value all may be used instead of a numerical count. With an all parameter value, the input
operation is finished when no more data is available on the file. Until this condition is met, an
unlimited number of records is read. No error is generated when EOF is met. There are also no EOF
errors reported if a numerical record count of more than one was specified, and at least one object
could be successfully read. Another magical value of the simple argument form is batch, which is
substituted by the batch record set size configured on the molfile handle (see molfile get/set).
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 441

CACTVS Tcl and Python Scripting Language Reference
In the second form of the final parameter, an attribute dictionary is persistently applied equivalent
to a molfile set command before the input commences. Standard file handle attributes and an
input limit may be both set in parallel by using the special attribute name limit as part of the
dictionary. It is only recognized in this context, but not with molfile set or molfile string. The
allowed values of the limit attribute are the same as in the simple command variant.

The command raises an error if input could not be completed, regardless whether the reason is a file
syntax error, or simple EOF (but see above for exceptions). If an input error occurs, the EOF attribute
of the file handle should therefore be checked in order to distinguish between these two conditions.
In case the input file was opened for pipe reading (mode ’p’), or is connected to a TCL channel, an
EOF report may only indicate that no current data is available on the pipe or TCL channel, but it could
still arrive at a future point in time.

Examples:
if {[catch {molfile read $fhandle} ehandle]} {

if {![molfile get $fhandle eof]} {
puts “Error: $ehandle”

}
} else {

puts “Read [ens get $ehandle E_NAME]”
}

The prototypical snippet above shows the input of the next ensemble record from a previously
opened file, with proper error checking.
molfile read “acd.sdf” [dataset create] all

This sample command reads a complete input file (we are using the single-operation feature of the
molfile command to open and close the file acd.sdf automatically for the duration of this
command) into a newly created dataset in memory. Reading huge datasets is of course not
necessarily a good idea without large amounts of RAM. On typical current workstations, 10.000 or
20.000 compounds are no problem, but beyond that the risk of running out of memory is a real
problem.

In default mode, hydrogens are not automatically added to the read items with the exception of file
formats where a clearly defined hydrogen set is implied, like SMILES, but not MDL molfiles). This
is probably the most common problem developers run into when using this command. Generally,
Cactvs wants to operate on hydrogen-complete structures, and its internal file formats use explicit
hydrogen encoding. Working with hydrogen-incomplete structures is possible, and sometimes
useful, but can lead to unexpected artifacts like radical centers on atoms with missing hydrogens.
In order to continue with a standard hydrogen set, the most common options are:

• Use molfile set to change the hydrogens attribute to a suitable automatic hydrogen
addition mode. The molfile open command can also configure this attribute directly in a
single statement, or you can use the attribute dictionary form of this command for the same
purpose.

• Use molfile hread instead of molfile read

• Execute a ens/reaction/dataset hadd command after the input object is returned and
before processing the read objects further.
442 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
molfile ref
Molfile.Ref(identifier)

PYTHON only method to get a molfile reference from a handle or another identifier. For molfiles, other
recognized identifiers are molfile references, integers encoding the numeric part of the handle string
or the UUID of the molfile object.

molfile rename
molfile rename filehandle srcproperty dstproperty
f.rename(srcproperty=,dstproperty=)

This is a variant of the molfile assign command. Please refer the command description in that
paragraph.

molfile reorganize
molfile reorganize filehandle
f.reorganize()

This command only has an effect for file formats for which the I/O module provides a reorganizer
function. This function typically optimizes and compacts the file for input and queries, and should
usually be called after all records have been written. Writing to a reorganized file is typically at least
initially slower than writing to a file which has not been processed.

The function returns a boolean value indicating whether any reorganization has actually been
performed. In case the command is applied to a file which is not writable, an error results.

molfile rewind
molfile rewind filehandle
f.rewind()

Reposition the file before first record, and clear all error status information. If the file is already at
the first record, and no error condition is set, this command does nothing.

Not all file channels can be rewound, and for some which can, it can be an expensive operation. For
example, standard input or pipe input channels are not rewindable, and an FTP URL channel has to
be closed and re-opened.

Rewinding a virtual file set positions the file pointer before the first record of the first file in the set.

Standard text-stream style output files can be rewound, too. This effectively truncates them. Files
which are opened for appending are truncated to their original length.

Rewinding is not necessary in all cases. The molfile scan command automatically rewinds the
input file if it is at EOF at the begin of a scan.

The return value of the command is the original file handle or reference.

molfile rewrite
molfile rewrite filehandle recordlist propertylist ?values? ?query? ?callback?
m.rewrite(records=,properties=,?values=?,?query=?,?callback=?)

This command updates specific property fields in a file, without rewriting the complete record. This
is only supported if the file was opened for writing or updating, and the I/O module for the format
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 443

CACTVS Tcl and Python Scripting Language Reference
of the file supports this operation by a special function. This typically limits the applicability of this
command to database-style file formats such as CACTVS CBS and BDB.

The record list parameter is either a simple sequence of numerical records, with one as the first file
record, or one of the special values all (all file records are updated), current, next, previous (the
indicated record is updated), or a table handle, optionally followed by a table column name. In the
last case, the table is expected to contain the data for rewriting, and in case a column name is
specified, that column should contain the applicable record numbers. If the table version is selected
without a record column, the file records from one to the number of table rows are updated. None
of the special values can be combined with the simple numerical record sequence style. If the
parameter is a numerical record sequence, the order of the records is significant.

The values sequence can be empty, or it must match the length of the property list. In the latter case,
every specified value must be a valid value for the property in the same list index position. Note that
while it is possible to manipulate multiple records in one step with this command, it is not possible
to assign a different set of values to the data fields for each processed record. For this operation,
multiple rewrite statements must be issued. If the value list is absent, or empty, the values are
recomputed from the structure or reaction object that is temporarily read from the file record for this
purpose. This is a useful feature in case the computation function for a computable property has
changed. In case the record list references a table instead of a numerical record list or a magic record
name, the value list is ignored. Instead, the table is expected to contain table columns which match
the properties in the list, but not necessarily in the same column order, or containing exclusively the
properties in the list.

The optional query argument is a query expression in the same style as used in the molfile scan
command. If a filter expression is supplied, only records which match the expression are changed.
Non-matching records are skipped. In case no filter is used, all records selected by the record list are
processed

After processing, the file pointer is on the last processed record.

If the name of a callback procedure is specified in the TCL interface, it is called after each processed
record. The TCL procedure arguments depend on the processing mode. In case of table-based
processing, the arguments are the table handle, the current table row, the file handle and the current
file record. In the PYTHON interface, the callback is either a function name given as string, or a
function reference.

This command is not fully implemented yet. CBS files currently only support re-computation of
property data from object data, not updates from explicit value lists. Neither BDB nor CBS I/O
modules currently call the TCL or PYTHON callback procedures except in table-based processing
mode.

The command returns the number of updated records.

Example:
molfile rewrite $fh current E_NAME “Black tar, grade A”
molfile rewrite $fh all E_XLOPG2
molfile rewrite $fh [list $mytable records] [list E_IDENT E_REGID]

The first command changes the property field E_NAME in the current record to the specified value.
The second variant recomputes all E_XLOGP2 values in the file from the stored structure data - for
example after updating the computation function of that property, or having added it as a new field
444 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
to the file. The final version changes the fields E_IDENT and E_REGID for the records stored in table
column records, replacing them with the data found in the table columns of the same name.

A complication in the use of this command is that database-type files like the CACTVS CBS and BDB
formats store property definitions themselves. After opening the file, a newly set up property
definition, which may for example possess an upgraded computation function, can have been
replaced by the old definition from the file. In that case, the new property definition must be
explicitly re-read to gain the upper hand again, for example with a prop read command.

molfile scan
molfile scan filehandle|remotehandle expression/queryhandle ?mode?
?parameterdict?
f.scan(query=,?mode=?,?parameters=?)
Molfile.Scan(filename,query=,?mode=?,?parameters=?)

Execute a query on the file and return results. The structure file is scanned, by default starting from
its current read position, and results are gathered until either the end of the file has been reached (or
the scan wrapped once around the file, if the wraparound file flag has been set) or a scan condition
caused the stopping of the scan procedure. If the scan finished without reaching the end of the file,
it can be resumed with another molfile scan command at a later time.

The file scan works in principle on any file, but with very different efficiency. Files managed by file
format I/O modules which support direct field access, and can supply structure and reaction data in
binary form, can be queried much (often a factor of 1000 or more) faster than, for example, a plain
SD file. In the latter format, every record needs to be fully parsed, the structure compared against
the query expression, and most of the structure data is discarded immediately after the record has
been checked. Files in formats which support various types of indexing for numerical values,
bit-screen filtering for super- and substructure searches, hash codes for full-structure matching and
other means of acceleration can be effectively queried with typical expressions in a few seconds,
even while containing millions of compounds.

The two basic built-in CACTVS formats for effective searching are CBS (static files, good performance
on CDROM and other linear media) and BDB (efficiently updateable, and with more advanced
indexing than CBS). In contrast the systematic reading of a million-record SD file takes a few hours.
Nevertheless, the feature of universal query support is very useful for working with typical data sets
of a few thousand records. These do not need to be converted from their original formats to a query
file for a quick exploratory data scan.

Query expression syntax classes

The toolkit currently supports two syntactically unrelated classes of query expressions: Native
Cactvs expressions, which are described below, and Bruns/Watson structure queries as described in
J. Med. Chem. 2012, 55, 9763-9772, The exact syntax supported is that of the internal Lilly suite in
October 2014, which is significantly extended from the description in the paper, but also discards
some outdated syntactic elements briefly mentioned in the paper.

Example:
set demerits [molfile scan $fh [read_file 9_aminoacridine.qry] {record demerit}]

This expression returns a nested list of records which match the query, and their merit/demerit score
computed by that rule. Note that records which do not match the expression are omitted, they do not
report a zero demerit in the result. Internally, Bruns/Watson queries are mapped to the standard
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 445

CACTVS Tcl and Python Scripting Language Reference
toolkit query expression data structure. Many of the queries in the standard Lilly rule set can be
expressed equivalently as a native query. However, at this time there are a few specific Lilly query
features which cannot be expressed in native toolkit syntax.

If a query expression cannot be parsed as Bruns/Watson code, an attempt is made to interpret is as
native Cactvs expression, and all error messages relate to that interpretation attempt. The following
paragraphs all apply exclusively to the native toolkit expression style.

Branch node expression classes

The expression argument is a tree of individual query statements. It is formatted as a nested Tcl list.
The he allowed depth of branching as well as the allowed number of leaf nodes is unlimited. The
following branch operations are supported in this tree:

• and
One to any number of child branches. The branch query only succeeds if all branches match.

• or
One to any number of child branches. The branch query succeeds if any of the branches
match. As soon as the first branch is a match, the other child branches are no longer
executed. This is usually desired because it accelerates the processing of the query.
However, in some circumstances, for example when computing similarity scores or coloring
matched atoms or bonds, this is not the desired behavior. The orcontinue operator has the
same query branch logic, but all branches are visited.

• orcontinue
See above, an or operator variant where all child branches are always executed. This can
also be written as orcont.

• xor
One to any number of child branches. The branch query succeeds if an odd number of the
child branches match. eor is an alias name of the operator.

• not
Exactly one child branch. This operator inverts the match/nomatch status of the child
branch, and lets all other status conditions reported by the child branch pass unchanged.

• bind objclass
One or an odd number of child branches. This is a rather unique operator. Its effect is to force
the use of the same minor object in all controlled branches. For example, if the child
branches were to contain two molecule property checks connected by an and operator, by
default the molecules of database structure ensembles which pass these conditions are
independent and can be different. If a bind node is located upstream, those two molecules
must be the same. Only when the first of a series of conditions is checked, all molecules are
iterated as potential matches. If the query continues with a match of the first condition, the
molecule is no longer unbound, and only the molecule already matched with the first
condition is tested with the other conditions. Bind nodes can be used with any ensemble
minor object class on structure queries (such as atom, mol, ring) or ensembles (ens) on
reaction queries. The objclass argument part must be set to the desired class name. Bind
nodes only affect controlled nodes which are property queries with properties belonging to
the bound object class.
446 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If more than one branch is specified, the query expression branches (first, third, etc.
argument) are linked by an identifier which determines how these branches interact under
the umbrella of the bind node. The link argument it itself a list. Its first element is the link
type identifier (currently one of independent, singlebond or doublebond). Except in case of
the first mode, the next element is the index (starting with 0) of the query branch in the bind
node. It must refer to an existing branch index, i.e. forward declarations are not possible. For
the determination of the branch index only the query branches count. The interspersed link
arguments do not generated query branches.

If the mode is not independent, the allowed atoms or other minor objects which are tested
in the additional branches depend on the current minor object in the referred branch. In
modes singlebond and doublebond, these can only be atoms linked via the specified bond
type to the referrer object, not the full atom set of the tested ensemble. In case of linked
query branches, these are recursively checked. If a minor object in the leading branch
matches, but fails to match in a dependent linked branch, more allowed minor object
combinations are tested until they are exhausted or a combination of suitable minor objects
is found which matches all branches. In any case, a minor object is only utilized once per
bind node, so that for example a chain of three singlebond connected query branches needs
to match three different atoms - the third branch cannot go back on the bond between the
atoms selected for the first and second branch matches.

Example:
set q {
bind atom {and {A_ELEMENT in {7 8 16}} {A_NEIGHBORS = 2} {A_RING_COUNT = 0}}
{singlebond 0}
{and {A_ELEMENT = 6} {A_UNSATURATION = 0} {A_RING_COUNT = 0}}
{singlebond 1}
{and {A_ELEMENT in {7 8 16}} {A_NEIGHBORS = 2} {A_RING_COUNT = 0}}
}
molfile scan $fh $q

This query tests for a fragment of three atoms, which are connected by single bonds and
where the individual atoms are each subject to a check on different set of atomic attribute
conditions. The same query could also be realized as a SMARTS pattern. The advantage of
this notation is that arbitrary properties can be used as attributes and an extended operator
set and the full set of comparison mode flags is available. The disadvantage is a less readable
pattern representation, and that no substructure query accelerator techniques such as
bitvector screening are automatically employed.

• passswitch
A switch where a single child node depending on the current value of the pass index is
selected. All other child nodes are ignored in that query pass. This is internally used for
smart similarity queries and of limited usefulness for normal user-written queries, but it may
be used in expert queries. In standard queries, only a single pass, with index zero, is ever
executed. The maximum number of passes of a query is determined by the largest number
of child nodes in any passswitch node in the query.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 447

CACTVS Tcl and Python Scripting Language Reference
• range
A node which requires that the number of its children matches are within a range. The syntax
of this node is the node type keyword, followed by an (possibly open) integer range
indicating the minimum and maximum number of child matches, followed by any number
of child nodes of arbitrary type. Regardless of the range check, all child nodes are tested
because the score pseudo-property can be used in the retrieval set to get the actual number
of branch hits.

Example:
range {0-1} [list structure >= $ss1] [list structure >= $ss2] \
[list structure >= $ss3]

This expression requires that zero or one of the three test substructures match.

Here are a few simple expression patterns:
molfile scan $fh $leafexpression1
molfile scan $fh [list “and” $l1 $l2]
molfile scan $fh [list “or” $l1 [list “and” $l2 $l3 $l4]]
molfile scan $fh [list “orcontinue” [list not $l1] [list “xor” $l2 $l3]]
molfile scan $fh [list bind mol [list and $l1 $l2]]

All branch nodes need to end in leaf expression nodes. An empty query expression is valid and
matches every input record. Also, it is legal and actually a common case to have an expression which
is just a single leaf node expression. The order of the branches does not matter. An automatically
invoked optimizer sorts the branches, and simplify them, in order to achieve maximum
performance.

Leaf node expression classes

These are the supported classes of leaf node expressions:

• all (or true)
This is just a placeholder. It will matches every record.

• false
This node never matches.

• filename
A condition on the name of the current physical file. This is only useful for scans involving
virtual files.

• formula
A molecular formula expression.

• isnull
Check whether property data is absent.

• notnull
Check whether property data is present.
448 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• property
A condition of a property value. If possible, this is evaluated without reading a full structure
or reaction object from the file. However, if necessary, the checked property data is
extracted from, or even computed on, the full record data item. The first word of a property
leaf node expression is the name of the property, not the class name.

• reaction
A reaction query to find records with reactions containing specific bond transformations.

• record
A condition on the file record of the current physical file. For simple single-file scans, this
is the same as the virtual record.

• smartsearch
A special variant on the structure search node. This node is internally expanded into four
internal alternative queries controlled by a pass-dependent switch node. The expanded
queries are a full structure query, a substructure query, and Tanimoto similarity queries with
thresholds of 95% and 90%. The complete query is automatically re-run with the next
branch of the series of alternative queries until at least one hit has been found. This query
mode only works on data sources where the file or other input source can be repositioned
to the original start position if a second or later pass is required.

• structure
A structure match operation on the primary database structure, a derived version thereof, or
a reaction component. This type of query supports a variety of full-structure, substructure,
superstructure and similarity matching methods. Some of these expressions, such as
full-structure queries, are internally rewritten to property queries. For full-structure queries,
these are hash code checks. Others, such as substructure matching, are handled by special
routines. The first word of the leaf node specification can either be structure, for the main
record structure, which is expected to be cleaned up and standardized, or any other of the
recognized structure file ensemble classes (reagent, product, solvent, catalyst, parent,
scaffold, original, deprotected, salt). If a tested file record does not contain the requested
structure variant, an attempt is made to derive it from the main record structure. This works
with, for example, the parent structure, but not, for example, for obvious reasons with the
original.

• true
An alias for all.

• vrecord
A condition on the virtual file record. For simple files, this is the same as the physical record.

The various leaf expression classes have different syntax schemes, which are explained in the next
paragraphs.

record and vrecord expressions

The record and vrecord expression classes are always written with three list elements: The
expression class name, the operator, and the value or value list. The operators can be from the
standard six numerical types, the range operator (<->), and the in or notin set operators. Numerical
comparisons require a single comparison value, the range operator a pair of values, and the set
operators a list. Examples:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 449

CACTVS Tcl and Python Scripting Language Reference
“record <= 100”
“vrecord <-> {1 1000}”
“record in {1 7 19 230}”

filename expressions

The filename expression class is even simpler. It always consists of three elements: The expression
class name, the operator (which can only be = or !=), and the file name. The actual file comparison
operation uses device and inode identifiers on Linux/Unix platforms if the file is accessible, so the
exact spelling of any path components does not matter. Example:
“filename = part1.sdf”

isnull and notnull expressions

The isnull and notnull expression classes are written with two elements. The first element is the
expression class name, and the second a property name. The property name may be qualified with
an ensemble class modifier. If the modifier is not specified, the query applies to the main database
structure. Otherwise, the property of the specified ensemble class is addressed. Examples:
“isnull E_NAME”
“notnull product:E_ASSAY_RESULT”

random/subset expressions

random or subset node expression classes (these names are aliases) are written with two elements.
The first element is the expression class name and the second a floating point value between zero
and one. When this node is encountered for evaluation, a random number between zero and one is
generated. If it is less than or equal to the specified value, the node is considered to match. Example:
„subset 0.6“

This expression will match 60% of the time and let the query proceed for further evaluation or result
output.

property expressions

The property query expression class is a little bit more complex. It has a variable number of
elements, between three and eight. The general syntax scheme is
property {operator ?modifiers?..} value ?threshold? ?multimode? ?filter? ?c1? ?c2?

The first three elements are always the property name, which can be qualified with an ensemble
class, the comparison operator, and one or more values. The number of required values is dependent
on the operator. The comparison operator can be a nested list. It needs to contain as a list element
the basic comparison operator (numerical, range or in/notin set operators) and may additionally
contain modifier words, which are translated into flags potentially influencing the datatype-specific
comparison functions. It depends on the data type of the property whether any flag word has an
effect.

If the object flag word is supplied as part of the operator list, the value part of the query is parsed
as a chemistry object handle, more specifically an ensemble handle, a decodable string
representation of an ensemble, a reaction handle, or a decodable string representation of a reaction.
The ensemble variants are accepted if the query property is attached to an ensemble or an ensemble
minor object, and the reaction variants can be used if the property is reaction-related. The value of
the query is then automatically extracted, even computed if needed, from the object. Properties with
450 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
fields can be entered with the basic name, or any qualified field name. In addition, the property name
may be prefixed by a structure class designator (see paragraph on structure queries). By default a
property is assumed to be data of the main structure of the file record, or the main reaction.
Examples:
“E_NAME = methane”
“solvent:E_NAME {in ignorecase} [list benzene toluene ethylbenzene]”
“E_IRSPECTRUM(source) {= shell nocase} *bruker*”
“E_WEIGHT {<= object} $ehtest”
“E_CAS {= ignoredashes ignorecase} 88337-96-6”

These are the comparison flag words which are recognized:

• absolute
Use absolute numerical values for comparison.

• alternative
Use alternative variant of comparison algorithm, if supported. For example, the
bitset/bitunset comparison methods by default report 0 (equality) only if all bits are
identical. The alternative version reports 0 when there is any common bit.

• approximate
Use an approximate version of the comparison operator. For strings, this means that case,
whitespace, numbers and punctuation are ignored. For floating point data, it means that the
comparison employs rounded integer values. This can also be specified by an at @ character
directly attached to the operator.

• asnumber
Extract number from, for example, a string and use that for numerical comparison instead
of literal comparison.

• bitset
Interpret the query expression value as bit mask and check whether all bits in that mask are
also set in the file value.

• bitunset
Interpret the query expression value as bit mask and check whether all bits in that mask are
unset in the file value.

• contained
Test whether the query expression value is contained in the file value. For strings, this is
simple substring matching. For vectors, this is an element match.

• cosine
Compute cosine similarity coefficient percentage from query expression and file value and
remember this as score. This comparison is only supported for bit vectors.

• correlation
Compute correlation coefficient from numerical vector types.

• dice
compute Dice similarity coefficient on bit vectors, bit sets or strings (via bigraphs).

• euclidean
Compute Euclidean distance from numerical vector types.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 451

CACTVS Tcl and Python Scripting Language Reference
• extended
Use an extended version of a comparison method. For example, in conjunction with regular
expressions, this enables extended regexp syntax.

• glob
Interpret query value as shell expression. This can also be specified by an asterisk *
character directly attached to the operator.

• ignorecase
Ignore case for string-related comparisons. This can also be specified by an i character
directly attached to the operator.

• ignoredashes
Ignore dash/minus characters in string-related comparisons

• ignorewhitespace
Ignore whitespace in string-related comparisons

• ignorezero
For numerical vector comparisons, ignore zero elements.

• needelementmatch
For vector comparisons with the contained flag, the default method is to check whether all
elements of the query vector value compare to one element in the file vector data, but not
necessarily in the same position. If this flag is supplied additionally, any single element
match will suffice for a positive comparison result.

• needelementmismatch
For vector comparisons with the contained flag, the default method is to check whether all
elements of the query vector value compare to one element in the file vector data, but not
necessarily in the same position. If this flag is supplied additionally, there needs to be at least
one element mismatch for a positive comparison result.

• object
Decode value as object, and compute comparison value from it The the object is a string
representation, the object is only created temporarily and discarded as soon as the value was
obtained. Persistent objects that are addressed via their handles remain valid and unchanged,
except that their property data set is potentially extended by the computation.

• precision
Use the precision as defined in the property description to check for equality. By default, full
CPU precision is used.

• regexp
Interpret query value as regular expression. This can also be specified by a tilde ~ character
directly attached to the operator. Starting with toolkit version 3.352, the regular expression
syntax on all platforms is that of the PCRE library, also known as the Perl style.

• swap
Swap left and right side of the expression in the comparison. This makes especially sense
for asymmetric operations such as regular or shell expressions. With a swap word, the
regular or shell expression is the string from the file, not the written query value.
452 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• tanimoto
Compute Tanimoto similarity coefficient percentage from query expression and file value
and remember this as score. This comparison is only supported for bitsets and bit vectors.

• tversky
Compute Tversky similarity coefficient percentage from query expression and file value
and remember this as score. This comparison is only supported for bitsets and bit vectors.

• trim
Ignore leading and trailing whitespace. Spaces in the middle of a string are still significant.

• unique
Hint for the query processor that the value is expected to match only once in the file, if at
all. This is useful for query optimization. If a hit has been found, additional records need not
to be checked.

• vectorrange
For numerical vector comparisons. The query expression value vector is expected to contain
twice as many elements as the file values. Every pair of values in the query vector is
interpreted as a required upper and lower bound for the file values.

• withdigits
In conjunction with the approximate modifier, make digits significant again.

If the operator is the in or notin word, the value part is interpreted as a list. The value, or value list
item, must be parseable according to the property data definition. Enumerated values and similar
encodings may be used if properly defined in the property descriptor record.

If the comparison function computes a score (for example, the Tversky or Tanimoto variants), the
next optional argument is a threshold value which needs to be exceeded to register as hit. If the
threshold parameter is not specified, or given as a negative value, any score passes. Example:
“E_SCREEN {>= tanimoto object} $eh 95”

The next two optional arguments concern the case when there is more than one file data value to
compare against the expression value. This generally happens when the tested property is not a
major object property, but a minor object property, such as an atom or molecule property. In that
case, the database record often contains multiple values, because there is more than one atom, or
more than one molecule in the structure in the record. The first argument is the general match
criterion. It can be set to one, all, none, or both. The default is one. Mode one means that it is
sufficient if one of the record values matches. Mode all requires all to match, mode none requires
that none matches, and mode both requires that there are both matches and mismatches.

The next optional parameter is a filter which can be used to restrict the values tested. If it is not
present, or an empty string, no filter is applied. Example:
“A_ELEMENT = 6 {} all ringatom”

Above expression checks whether all ring atoms in the structure are carbon. Any record with a
hetero ring atom fails the test.

The final two optional arguments are integer constants which may be used by the comparison
operation. If they are not specified, both are implicitly passed as zero. If the first is specified, but
not the second, the second is set to 100 minus the first value. Almost all comparison operations on
the various data types ignore these.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 453

CACTVS Tcl and Python Scripting Language Reference
One comparison mode which does make use of them is the Tversky bit vector similarity score. Here
c1 and c2 are the weights of the bits in the first and second compared value. For scoring, both
parameters are divided by one hundred and the floating point results are used as weight multipliers.
Example:
“E_SCREEN {>= tversky object} $eh 90 {} {} 30 70”

Above expression computes a Tversky score on the standard structure search screen E_SCREEN with
30% weight for the database structure features and 70% of the query structure features (i.e.
imbalanced towards a substructure rating), and report the record if the score is 90% or higher.

Starting with version 3.358 of the toolkit, property expressions where the data type of the query
property is structure or reaction are no longer parsed as standard property expression, but as
structure or reaction query expressions, respectively. Example:
"V_ONTOLOGY_TERM(substructure) {>= swap stereo isotope charge} $eh"

Since the data type of the field of V_ONTOLOGY_TERM is structure, the syntax rules of normal property
expressions no longer apply. Instead, the syntax for structure expressions explained below is
substituted.

structure expressions

Structure expressions are used to invoke structure comparison operations, such as sub- and
superstructure search. The expression is a list, with three to eight elements. A structure expression
starts with the structure identifier, followed by the operator, which, as in property queries, may be
written as a list with auxiliary modifier words, and as third mandatory argument the comparison
structure source.

The structure identifier is the name of a structure class. Usually it is present as part of the record in
the queried file, but some structure classes can be computed from the main structure if necessary. If
a structure class can neither be found in a file record, nor computed, the node will not match. The
following structure classes are supported:

• structure
The main structure. Usually expected to be a standardized, normalized form.

• original
An original structure, un-standardized. deposited is an alternative name.

• salt
A salt form

• deprotected
A variant without protective groups

• parent
A parent compound. There is a standard computation function for this form.

• scaffold
A structure core, isolated by some algorithm.

• reagent
A reagent ensemble. Usually this is a part of a reaction record, but it can be present also on
its own.
454 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• product
A product ensemble. Usually this is a part of a reaction record, but it can be present also on
its own.

• solvent
Solvent for a reaction. Usually this is a part of a reaction record, but it can be present also
on its own.

• catalyst
Catalyst for a reaction. Usually this is a part of a reaction record, but it can be present also
on its own.

At minimum, the operator section (the second, mandatory argument) contains a standard numerical
operator symbol. Additionally, modifier words may be present as additional list elements. The
following operators are supported.

• =
Structure identity, i.e. full-structure search. This is internally re-written to an equivalent
hash code search as a property comparison node. A suitable hash code is automatically
selected depending on the operator modifiers such as stereo and isotope.

• !=
Structure inequality, i.e. a negated full-structure search. This is internally re-written to an
equivalent hash code search as a property comparison node. A suitable hash code is
automatically selected depending on the operator modifiers such as stereo and isotope.

• >=
Substructure search.

• >
Substructure search, excluding identity.

• <=
Superstructure search. This operation ignores hydrogens on the database structures (see
below).

• <
Superstructure search, excluding identity. Superstructure search ignores hydrogens on the
database structures when the database entries are used as sub-graphs - otherwise a normal,
fully specified database molecule will not match much. For the identity check, hydrogens
are significant.

• ~>= or ~>
Tanimoto similarity search with a reporting limit. This is internally re-written to an
equivalent property search.

• %>= or %>
Tversky similarity search with a reporting limit. This is internally re-written to an equivalent
property search.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 455

CACTVS Tcl and Python Scripting Language Reference
• <->
Substructure match count range search. This automatically changes the default substructure
match mode to distinctinneratoms (see match ss command and the count modifier below).
The optional fourth argument can be used to set a range condition for this mode. If only a
single number is supplied, the match count for a successful node match must be exactly this
number. If a list of two numbers is used, these define a range of acceptable match counts.
If no explicit range is set, its implied value is one to 65535. It is possible to use a lower bound
of zero which lets structure mismatches pass the query condition. This can be useful when
match-dependent data is retrieved, for example the matchcounts pseudo property (see
below).

The default substructure match mode has the bondorder, useatomtree and usebondtree flags set (see
match ss command). The initial flag set can be modified with modifier words linked to the operator.
As far as it makes sense, the modifier words also change the operation of derived query modes, such
as full-structure matching via hash codes.

These are the modifier words which can be used in structure expressions:

• absolutestereo
Perform absolute stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties A_QUERY
and B_QUERY as part of the query substructure specification. An alternative syntax is to
directly attach an uppercase S character to the operator.

• allowmissingstereo
If set, absent stereochemistry descriptors in file structures can be matched by explicit stereo
centers in the query structure. However, stereo center mismatches still lead to a match
failure.

• anyfragment
Report a match for full-structure search if any molecule of the file structure is identical to
the query structure. For substructure/superstructure queries, this flag has no effect, since
their default operation mode already covers the effects of the flag.

• anyoverlap
If the substructure contains multiple fragments, they may match overlapping parts of the
structure ensembles. By default, matched substructure fragments cannot overlap. This flag
cannot be combined with atomoverlap.

• arotautomer
A more aggressive form of the tautomer mode. In this mode, tautomers involving the
dissolution of aromatic systems are also found, in addition to the more low-energy tautomer
forms matched with the normal tautomer mode.

• atomoverlap
If the substructure contains multiple fragments, they may match overlapping atoms, but not
overlapping bonds. By default, matched substructure fragments cannot overlap at all. This
flag cannot be combined with anyoverlap.
456 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• charge
Match formal charges of query atoms. By default, charges are not compared, except if set
up explicitly as atom-specific query attribute in property A_QUERY in the query substructure
specification.

• count
For substructure and superstructure matching, check not only for the presence of a match,
but count the number of distinct matches equivalent to the match mode distrinctinneratoms
in the match ss command. The normal substructure match mode is equivalent to the first
mode in the match ss command, yielding only counts zero or one.

• distinctatoms
Set the substructure match mode to this value (see match ss command). Has an effect only
for substructure matches. The default substructure match mode is first, except if the match
operator is range for counted pattern matches. In that case, it is distinctinneratoms.

• distinctfgatoms
Set the substructure match mode to this value (see match ss command). Has an effect only
for substructure matches. The default substructure match mode is first, except if the match
operator is range for counted pattern matches. In that case, it is distinctinneratoms.

• distinctheavyatoms
Set the substructure match mode to this value (see match ss command). Has an effect only
for substructure matches. The default substructure match mode is first, except if the match
operator is range for counted pattern matches. In that case, it is distinctinneratoms.

• emptyssismismatch
By default, a substructure without any atoms matches anything. If this flag is set, it matches
nothing instead.

• exactaro
Match aromatic bonds exactly. By default, simple single or double query structure bonds
match structure file record aromatic bonds.

• exactringsystem
Rings in substructure fragments must match complete ring systems only. For example, with
this flag a benzene substructure no longer matches naphthalene, anthracene, etc. Non-ring
parts of the substructure can still, if other query attributes do not prevent this, match both
ring and chain parts of file structures. For full-structure queries, this flag has no effect.

• extended
Use extended versions of the match procedures. For similarity queries, this enables the
PUBCHEM extended scoring mechanism. If the query structure is identical to a file structure
both in stereochemistry and isotope labels, an artificial score of 104 is computed, 103 if
isotopes or stereochemistry match, but only one of these, 102 for basic equivalence of
connectivity without isotopes or stereochemistry, and 101 for a tautomer. Compounds
which are not structurally identical to the query structures using one of these criteria are
scored normally.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 457

CACTVS Tcl and Python Scripting Language Reference
• fragmentsplit
Treat every molecule in the query structure as a separate fragment. The query ensemble is
implicitly split, and every component therein is stored in an independent structure
expression node. These nodes are then connected with an or or orcontinue branch mode.
This is similar to using a file handle pointing to a file with multiple records as query
structure data source (see below).

• framework
Substructure carbon atoms cannot have any unmatched, directly bonded carbon or hetero
atom neighbors in the structure. Unmatched bonded hydrogen is allowed. This flag has an
effect only for sub- and superstructure match modes.

• implicitsinglearo
If this flag is set, bonds which were created with an implicit bond order when the query
structure was decoded are matched as if they were explicit single/aro query bonds. This is
a useful mode for emulating Daylight software.

• isotope
Perform isotope matching. By default, isotope labels are not used in the queries, except if
set up explicitly as atom-specific query attribute in property A_QUERY in the query structure
specification. An alternative syntax is to directly attach an i character to the operator.

• matchallheavyatoms
Require that all heavy atoms in the file structures are matched. This feature generates
matches of file structures similar to full-structure matches while allowing the use of
substructures with variable match conditions, such as atom lists.

• nobondorder
Do not compare bond orders. This flag has an effect only for sub- and superstructure match
modes.

• nochainonaro
Do not match chain parts of the query substructure on aromatic bonds in the file structures.
This flag has an effect only for sub- and superstructure match modes.

• nochainonring
Do not match chain parts of the query substructure on ring bonds in the file structures. This
flag has an effect only for sub- and superstructure match modes.

• nodoubleonaro
Do not match otherwise unmarked double bonds in the substructure onto aromatic bonds of
the structures.

• noquerytree
Deactivate extended matches requiring full checks of the query tree fields in the A_QUERY
and B_QUERY properties in the query structures. Certain query inputs need these trees for
precise matching, because the query cannot be expressed as a flat set of query attributes.
Examples for queries requiring tree matching for proper execution are complex SMARTS
expressions beyond those using only simple explicit or implicit and in atomic or bond
expressions, and Recursive SMARTS. Disabling the flag may lead to a small speed-up for
simple substructure queries.
458 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• nosingleonaro
Do not match otherwise unmarked single bonds in the substructure onto aromatic bonds of
the structures.

• nosubstructureh
For substructure match, ignore any hydrogens present in the query structure. This is a
convenient shortcut to allow the use of hydrogen-complete structures as simple
substructures. A similar scheme is automatically invoked for superstructure search, where
hydrogens in the file structures are ignored in matching.

• reactionflags
Match reaction transform flags in the substructure. Both query and file structures need to
have data for property B_REACTION_CENTER set. The supported set of comparisons is
compatible with MDL’S ISIS database. Note that this flag can be used gainfully in structure
expressions for half-reaction matching. It is not limited to full reaction queries. This flag is
on by default in reaction queries, but off for structure queries.

• relativestereo
Perform relative stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties A_QUERY
and B_QUERY in the query structure specification. An alternative syntax is to directly attach
a lowercase s character to the operator.

• sethighlight
In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles with the highlight flags in properties B_FLAGS and
A_FLAGS. In case multiple matches occur, the highlight set is an union of all processed
matching substructure mapping. This flag is also automatically set if the property retrieval
set in the molfile scan command includes related pseudo properties, such as matchatoms
or matchbonds.

• setmatchproperty
In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles by attached properties A_SSMATCH and B_SSMATCH. These
are set to the labels of the matching substructure atoms or bonds. Unmatched structure
ensemble parts have match property values of zero. In contrast to the sethighlight flag, this
option attaches a new match property instance for any successful and processed match.
Returned ensembles may therefore possess series of property instances like A_SSMATCH,
A_SSMATCH/2... and so on.

• swap
Swap the left and right structures in the query. This means, for example, that the database
is expected to contain substructure definitions, and the query value argument a fully defined
structure. This is not exactly the same as a superstructure search because of the different
style how hydrogens are handled. For superstructure search, hydrogen atoms in the file
records are ignored, generating a simplified structure from the record data for matching, but
in case of a swapped substructure search, the file record is submitted as substructure for
matching without any processing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 459

CACTVS Tcl and Python Scripting Language Reference
• tautomer
Match tautomers of the query structure. If this flag is active, non-aromatic single and double
bonds in tautomer systems need not to be matched exactly, as long as the overall bond order
count is a match. Mobile hydrogens can either be specified explicitly, or a full implicit set
can be used if the useimplicith flag of property B_ISTAUTOMERIC is set. The standard mode
does not consider tautomeric forms which destroy aromatic systems. If you need to find
matches between aromatic and non.aromatic tautomer systems, use the more aggressive
arotautomer mode.

• unique
Hint for the query processor that the query ensemble is expected to be matched only once
in the file, if at all. This is useful for query optimization. If a hit has been found, additional
records need not to be checked.

Many of these global flags can be overridden, or activated on a local level, for individual atoms or
bonds, in the A_QUERY and B_QUERY properties. For example, A_QUERY has fields for flags which can
request the matching of stereo or charges for specific atoms, or to allow missing stereochemistry at
a specific center. These per-atom or per-bond requests override global query flag settings.

The third mandatory expression list element is the structure source. It can be one of

• an ensemble handle
The ensemble is directly decoded.

• a list of ensemble handle and molecule label
The fragment indicated by the molecule label is extracted from the ensemble and used for
the query as isolated entity. If the molecule label cannot be found, an error is reported.

• structure line notation string
For example, a SMARTS/SMILES/SLN/INCHI/CID string or a packed CACTVS ensemble -
anything which can be decoded by the ens create command. The string is decoded into a
transient ensemble, which is automatically discarded when it is no longer needed. The exact
decoding specifications depend on the operator. For full-structure search, a fully specified
structure is created, while for substructure-type queries implicit hydrogens are not attached,
and the full range of query specifications of the encoding format is allowed.

• a dataset handle or reference
A dataset containing at least one ensemble. All dataset ensembles are checked, and
internally for every ensemble a separate expression node is created. The nodes are then
linked via an or or orcontinue (in case a scoring operator is used) branch node. Dataset
objects which are not ensembles are silently ignored. The hydrogen status of the dataset
ensembles is not changed. In case there is only a single ensemble in the dataset, this
command is indistinguishable from using the ensemble handle directly. In case the dataset
does not contain any ensembles, an error is raised.

• a reaction handle or reference
A reaction containing as least one ensemble. All reaction ensembles are checked, and
internally for every ensemble a separate expression node is created. The nodes are then
linked via an or or orcontinue (in case a scoring operator is used) branch node. The hydrogen
460 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
status of the reaction ensembles is not changed. In case there is only a single ensemble in
the reaction (i.e. a half-reaction), this command is indistinguishable from using the
ensemble handle directly. In case the reaction does not contain any ensembles, an error is
raised.

• a molfile handle or reference
An opened structure file. All remaining records are read, and internally for every record a
separate structure expression node is created. The nodes are then linked via an or or
orcontinue (in case a scoring operator is used) branch node. If the match operation is
full-structure, the file is read with automatic hydrogen addition (see molfile set),
otherwise without any conversion flags. However, since the hydrogen addition flag is the
only file attribute which may be temporarily overridden, other molfile object attributes may
be set before the file is used in the query expression. Of course, using a file with a huge
number of records in this fashion may cause problems. In case the file does not contain any
records behind the read pointer at the time the command is parsed, an error is raised.

Query specifications found in structure sources are understood in a variety of formats. DAYLIGHT and
MDL formats are decoded and translated into an internal representation in an almost completely
compatible fashion. That includes RECURSIVE SMARTS, ISIS 3D queries, MDL stereo groups and MDL
reaction queries. A significant range of SYBYL SLN and CAMBRIDGESOFT CHEMFINDER query expressions
are also understood, as well as features found in the CSD CONQUEST software. Finally, in CACTVS there
is no fundamental difference between a query fragment and a normal structure object. Query
structures are just structures with additional information stored in properties A_QUERY, B_QUERY and
possibly B_REACTION_CENTER. For basic matching, any structure object will do, even if they do not
possess these query attribute properties. However, an eye should be kept in the hydrogen status of
query fragments. If no specific flags are set, substructure matches attempt to match hydrogen atoms
just like any other atom. Example:
set ehss [ens create C]
set ehss [ens create C smarts]

The upper substructure ensemble does not, in the absence of hydrogen ignore flags, match any
structure ensemble except those which contain a full methane (one C plus four H) molecule as
fragment, because that is what the substructure represents. The second code line decodes the
substructure in full SMARTS mode. Not only now the full range of SMARTS expressions can be
parsed (though absent in this example), but the structure is also be created without implicit
hydrogens. The first substructure could still be used in a molfile scan command as a simple carbon
match test if the nosubstructureh modifier flag were supplied.

In order to read query structures from a file, the following generic open statement is the standard
approach:
molfile open $file r hydrogens asis readflags noimplicith

Simple query formats, such as MDL ISIS query Molfiles, are read into a flat set of attributes. More
complex formats, such as SMARTS, may require the use of a tree of expressions on individual atoms
and bonds, similar to the overall query tree with branch and leaf nodes described here for the
molfile scan command. These complex formats are nevertheless also translated, to the degree
possible, to the flat model. For example, a SMARTS expression with only uses simple atom lists or
atom and bond query attributes all connected just by and can be fully represented in this way. This
also means that, format translation into other query file formats is also possible for these simple
expressions. The use of the full query trees in matching can in some cases be a performance issue.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 461

CACTVS Tcl and Python Scripting Language Reference
The noquerytree flag is available to restrict the match to those parts of the full query which can be
expressed in the flat model.

The fourth and optional expression list element in the query expression is used only for a few match
modes. If it is not set, the default value is minus one.

• similarity queries: The minimum score required to report a hit

• substructure count ranges: A list of the acceptable minimum and maximum occurrence
counts of the substructure. If only a single value is supplied, is
is used both as minimum and maximum value. If not set, the
implicit range is 1 to 65535.

Example:
“structure ~=> $eh 90”
“product <-> C(=O)\[OH\] {2 3}”

The first sample expression is a standard Tanimoto similarity query, with a 90% threshold. The
second query matches product structures with two to three carboxyl groups.

Optional expression list elements five and six correspond to the c1 and c2 parameters in property
query expressions. These are currently only used in Tversky similarity queries:
“structure %>= $eh 90 30 70”

This is an expression for a skewed Tversky similarity (70% query structure, 30% file structure
weight) with a 90% reporting threshold.

The seventh optional structure expression list element can be used to specify exclusion
substructures. It only applies to substructure matching. In this mode, the parameter encodes a list of
substructures which are matched first on the test structure, before the actual substructure match. All
atoms which are matched by the exclusion substructures are blocked from consideration in the main
match operation. Every exclusion list element can either be an ensemble handle, a list consisting of
an ensemble handle and a molecule label, or a structure line notation string (usually a SMARTS
string) which is decoded in default pattern mode. Exclusion substructures are for example useful to
hide structure parts which are already matched by a different pattern, without actually removing
structure atoms. Exclusion substructures are always matched exhaustively, so a single exclusion
fragment can block multiple matched structure locations.

An example:
set ss [ens create {C=C=C.C=C} smarts]
set q "and {structure {<-> exactaro distinctfgatoms} {$ss 1} 1} {not {structure
{>= exactaro} {$ss 2} {} {} {} {{$ss 1}}}}"
echo [dataset scan [list C=C C=C=C C=C=CCCCC=C] $q reclist] (2)

The example scan only matches the second test structure. It first tests that the first (allene) fragment
is matched exactly once (under application of the distinctfgatoms duplicate filter, so two different
possible positionings of the substructure on the structure count only once) by the test structure, and
then checks that the second (ethylene) fragment does not match the sane structure. Without an
exclusion substructure on the second substructure match node, the test would always fail because
the ethylene fragment also matches part of the larger allene fragment. In order to prevent this, the
negative ethylene query also uses the allene fragment as exclusion fragment. In that case, all carbons
in the second test structure are covered, and the query succeeds. In the third test structure, the allene
462 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
exclusion fragment also covers part of the test structure, but the true simple ethylene part remains
unblocked and matches the negative structure query, which results in overall rejection.

An optional eighth argument can be used to fine-tune how exclusion matches are processed. It can
be a bitset combination of the enumerated values burnatoms, burncarbon, burnterminals,
burnringsystems and burnaroringsystems. The default burn mode is burnatoms. In any case, the
exclusion processing only applies node-locally - every node is independent. Exclusion marking does
not apply to the matching of other exclusion fragments in the node in case more than one fragment
is tested, so these may overlap in their matched structure parts.

The effects are:

• burnatoms:
All structure atoms matches by the exclusion fragments can no longer be matched by the
main match.

• burncarbon:
All structure carbon atoms matches by the exclusion fragments can no longer be matched by
the main match. Hydrogen or hetero atoms matched by exclusion fragments are still
matchable.

• burnterminals:
All terminal structure atoms (those with less than two bonds) matched by the exclusion
fragments are excluded from future matching.

• burnringsystems:
All structure atoms which are in a ring and are matched by the exclusion fragments are
marked. In addition, any other atom in structure ringsystems where one or more of the ring
atoms has been matched are also marked. The excluded atom set is thus usually larger than
the test fragment.

• burnaroringsystems:
All structure atoms which are in a aromatic ring and are matched by the exclusion fragments
are marked. In addition, any other atom in aromatic structure ringsystems where one or more
of the ring atoms has been matched are also marked. The excluded atom set is thus usually
larger than the test fragment. In case a ring system consists of both aromatic and aliphatic
rings, only the atoms of the aromatic rings are marked.

Example:
set q {structure >= [c][OH] {} {} {} {{[n]}} burnaroringsystems}
echo [dataset scan {c1ccccc1O c1cccnc1O} $q reclist]

Above query for a phenolic substructure only matches the phenol (first) molecule. The
hydroxypyridine (second) molecule is excluded because the exclusion fragment (aromatic nitrogen)
not just blocks the nitrogen with the nonstandard burn mode, but the whole aromatic ring it is part
of so the aromatic carbon in the main test structure can no longer match. If a test structure had both
non-annealed phenol and hydroxypyridine moieties, the match would again succeed because only
the aromatic carbons of the hydroxypyridine would have been excluded.

If exclusion fragments are used, the test structures must be fully expanded, i.e. a direct accelerated
match on Minimols is not possible.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 463

CACTVS Tcl and Python Scripting Language Reference
If the file format supports it, bitvector screening is automatically be applied to reduce the number
of records for which structures need to be loaded and sent to graph-based atom-by-atom substructure
matching. The default structure match screening property is E_SCREEN. The standard versions of
E_SCREEN implement three predefined fragment sets. The higher sets are identical to the lower ones
in the leading bits. Sets zero to two, which yield bit vectors of increasing length and selectivity, but
also storage requirements can be requested by setting
prop setparam E_SCREEN extended 0/1/2

The bit set read from the query file must correspond to the parameter setting for E_SCREEN in the
current TCL interpreter, if the screen bits are automatically computed on the query structure. The CBS
and BDB file formats, which are optimized for structure query operations, contain screen bit version
information in the file header and automatically configure the property parameter setting when the
file is opened. For other file formats with screen bits this needs to be done explicitly in the
application script. It is also possible to change the structure bit-screen property associated with a file
by setting the appropriate molfile handle attribute, so it is easily possible to use custom screen bit
sets instead of the default property.

Starting with version 3.358 of the toolkit, property query expressions where the data type of the
property is structure are automatically parsed as structure expressions.

smartsearch expressions

This query expression takes the same arguments as a structure expression. It is internally expanded
into four alternative queries, linked by a pass-dependent switch control node. The four alternative
queries are a full-structure query (equivalent to operator = in a structure query), a substructure query
(operator >=), and two Tanimoto similarity queries with thresholds of 95% and 90% (operator ~>=).

When such a query expression is a component of query expression tree, the query is first run with
the full-structure query. If that query yields less results than the pass match limit (by default one, i.e.
the query does not match anything, this can be configured via the molfile passlimit attribute), the
input data source is repositioned to the original start record and then the substructure query is run,
and if that run also does not yield sufficient hits, the two similarity queries are tried one after another.

Running the second and later alternatives is only possible of the data source can be repositioned to
the original start position of the first pass. If that fails, the query is silently terminated early. The pass
match limit comparison triggering the possible re-execution of the query is with the global hit count
of the query, not the number of hits returned by the smartquery branch. If other parts of a complex
query produce sufficient hits, the query is not re-run even if a smartquery branch did not return any
hits.

Hits returned in different passes can be distinguished by including the pass pseudo-property in the
retrieval data.

By convention, smartsearch expressions are written with an = operator. The actual operator in a
smartsearch expression is ignored, but modifiers are not. So specifying options like the use of
stereochemistry or isotopes is supported and useful.

It is possible to have multiple smart search expressions in a query. The query pass index for these
is incremented in parallel, not independently.

The smart search feature was inspired by a similar functionality in the Accelrys Isentris system.
464 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Examples:
“smartsearch = c1ncccc1”
“smartsearch {= stereo} \“L-lysine\””

formula expressions

Formula expressions are used to match file structures by element composition. Conceptionally, this
is a special syntax for a complex property match on file structure properties E_ELEMENT_COUNT and
M_ELEMENT_COUNT. A formula search expression is always a list of three elements. The first element
is always formula, the second element the comparison operator, and the third word the formula
specification. The following operators are supported:

• =
Match the formula specification. There cannot be any elements present in the structure
which are not mentioned in the formula.

• >=
Match the formula specification. Elements which are not mentioned in the formula may be
present in the tested structure.

• >
Match the formula specification. At least one element which is not mentioned in the formula
must be present in the tested structure.

For formula queries, there are no modifier words for the operator.

The syntax of the formula is built on the lowest level by element or pseudo-element symbols, which
may be grouped into sum or difference expressions and may possess a prefixed count multiplier. The
symbol or symbol group can then be suffixed by a simple count, or an open or closed count range.
If no count range is specified, the default count is one. In case an element is entered more than once,
all counts for that element are added. Finally, the expression may be grouped by period characters
into sub-expressions to be applied to different molecular fragments in the tested structures.

Besides normal elements, the following pseudo-elements, which are compatible to the set of the CSD
ConQuest software, are recognized:

• ?
An atom in the tested structure which is not a simple element.

• [Any]
Any atom which is a simple element (SLN syntax)

• [Hev]
Any atom which is a simple element and not hydrogen (SLN syntax)

• [Het]
Any atom which is a simple element and neither carbon nor hydrogen (SLN syntax)

• [1A]
Elements from the first PSE main group, excluding hydrogen (Li, Na, ..).

• [2A]
elements from the second PSE main group (Be, Mg, ..)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 465

CACTVS Tcl and Python Scripting Language Reference
• [3A]
Elements from the third PSE main group (B, Al, ..)

• [4A]
Elements from the fourth PSE main group (C, Si, ..)

• [5A]
Elements from the fifth PSE main group (N, P, ..)

• [6A]

• Elements from the sixth PSE main group (O, S, ..)

• [7A] or [Hal]
Elements from the seventh PSE main group (F, Cl, ..)

• [8A]
Elements from the eighth PSE main group (He, Ne, ..)

• [1B]
Elements from the first PSE minor group (Cu, Ag, ..)

• [2B]
Elements from the second PSE minor group (Zn, Cd, ..)

• [3B]
Elements from the third PSE minor group (Sc, Y, ..)

• [4B]
Elements from the fourth PSE minor group (Ti, Zr, ..)

• [5B]
Elements from the firth PSE minor group (V, Nb, ..)

• [6B]
Elements from the sixth PSE minor group (Cr, Mo, ..)

• [7B]
Elements from the seventh PSE minor group (Mn, Tc, ..)

• [8B]
Elements from the full eighth PSE minor group (Fe, Co, Ni, Ru, Rh, ..)

• [8X]
Elements from the first column of the eighth PSE minor group (Fe, Ru, ..)

• [8Y]
Elements from the second column of the eighth PSE minor group (Co, Rh, ..)

• [8Z]
Elements from the third column of the eighth PSE minor group (Ni, Pd, ..)

• [1M]
Metals from the first and second main groups (Li, Na, Mg, K, Ca, ..)
466 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• [2M]
Metals from the third to sixth main groups (Al, Ga, Ge, Sb,..; but not Si, As, Se, Te)

• [3M]
All main group metals (union of [1M] and [2M])

• [TR]
ll transitions group metals, no main group elements or lanthanides/actinides

• [LN]
Lanthanides

• [AN]
Actinides (no, this is not [AC]!)

• [4M]
All metals in the PSE

• [NM]
All non-metallic elements

Element items can be grouped with round brackets into sums or differences. However, this is no full
arithmetic expression parser. Element symbols can only be used as stand-alone syntactic elements,
bracketed all-sum expressions, or bracketed all-difference expressions.

An element or an arithmetic group can have an appended count. This count can be:

• missing
The default count is one.

• a simple integer
The count must be matched exactly.

• a full integer range
The count must lie between the minimum and maximum values.

• an open range
Left-open ranges have an implicit minimum count of zero, right-open ranges an implicit
maximum count of infinity.

• an asterisk
This is the same as a right-open range starting with zero, i.e. zero to any number of
occurrences.

• a plus character
This is the same as a right-open range starting with one, i.e. one to any number of
occurrences.

• a standard numerical comparison operator, followed by a number
The value is compared according to the specification. This is a CSD compatibility feature.

Examples:
“formula = C6H6”
“formula = C5-6H6-”
“formula >= (Cl+Br)2”
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 467

CACTVS Tcl and Python Scripting Language Reference
“formula > \[4M\]>=3” or {formula > [4M]>=3}
“formula = (2C-H)-6”
“formula = CH3COOH”
“formula = \[Het\]>1“ or {formula = [Het]>1}
“formula = N1-{0.25C}“

The first expression is a simple test which matches any ensemble with a composition of six carbon
and six hydrogen atoms. The second looks for compounds with five to size carbon and six or more
hydrogens, but no other elements. The third example finds compounds where the sum of chlorine
and bromine atoms is two. Other elements may be present but are not required, so this expression
matches Cl2, Br2 and ClBr as well as dichlorobenzene. The fourth expression finds structures with
three or more metal atoms. The fifth expression finds compounds where twice the carbon atom count
minus the count of hydrogen atoms has a value up to six. Element sum and difference multiplier
factors may be floating point numbers, but the ultimate comparison step is performed with the
rounded sum or difference by integer comparison. The next line finds compounds with a formula of
C2H4O2. The counts for elements repeated in the formula string are summed up. The next example
matches any compound with one or more hetero atoms. The square brackets in the first writing style
are properly escaped to survive standard Tcl command parsing

The final example shows how to use computed comparison values, which are specified within curly
braces. This expression matches compounds which contain at least one nitrogen, but the number of
nitrogens cannot be more than a quarter of the carbon count. For computed comparison values, only
natural elements and the [Hev], [Het] and [Any] pseudo elements are currently recognized. At this
time, only a single element, optionally prefixed by a floating-point multiplier and adjusted by a
positive or negative floating-point offset, is supported in the specification of a computed comparison
value.

Vertical bars can be used to define separate formula match sections. These are applied to individual
molecules in the tested structures, not the full ensemble. If a single bar is specified at the beginning
or end of the expressions, it signifies a single expression section to be applied to a molecule. When
a test for formula sections is applied, all permutations of possible matches between the molecules
in an ensemble and the formula expression sections are tried. It is neither required that there is any
specific order of the molecules in the ensemble, nor a specific order in the formula expression
sections, not is there a need for a match between the molecule and formula section count. However,
every expression section in a formula needs to match a different molecule in the tested ensemble for
a final match.

Examples:
“formula = C6H6|C7H8”
“formula = |H2O”

The first expression looks for ensembles which contain one molecule with the formula C6H6, and
another with formula C7H8. The second expression matches ensembles with one or more water
molecules. In both cases, molecules/fragment with different composition may be present in the
record. In order to test for two or more formulae with the additional conditions that there are no other
molecules/fragments, use two formula expression nodes connected with an and branch node, as in
and “formula = C6H6|C7H8” “formula = C6H6C7H8”

Element symbols which stand for specific isotopes, such as D for deuterium, are currently not
processed. D and T are read as a simple alias for hydrogen, disregarding the isotope label.
468 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
It is possible to use an ensemble handle instead of a formula expression. In that case, the elemental
formula of that ensemble is used in the query, as computed by property E_FORMULA.

reaction expressions

Reaction expressions are the construct used for reaction substructure searches, for example when
looking for certain bond transformations in a database of reactions. Obviously, the scanned file
needs to contain reaction information for this to succeed.

An important aspect for reaction searches are atom mapping numbers, which link atoms in the
reagent ensemble to the product ensemble, and likewise in the transformation scheme which needs
to be matched. The central property for this is A_MAPPING. If this property is present, it is used to
restrict matches to those reactions which embody a certain transformation, and are not a simple pair
of ensembles which match substructures of the left and right part of the query transformation
somewhere in their connectivity. Nevertheless, it is still possible to query reaction without a
mapping scheme. That is identical to a pair of substructure searches. Also, individual parts of a
reaction (the reagent and product ensembles, but potentially also the catalyst or solvent entries) can
be used as targets for single-ensemble sub/super/full-structure searches via structure query
expressions (see above).

A reaction expression is a list of three to six elements. The first element is always reaction, the
second element the operator, and the third element the reaction source. The following operators can
be used:

• =
Reaction identity, i.e. full-structure reaction search. This is internally re-written to an
equivalent hash code search as a property node.

• !=
Reaction inequality, i.e. a negated full-structure reaction search. This is internally re-written
to an equivalent hash code search as a property node.

• >=
Reaction substructure search.

• >
Reaction substructure search, excluding identity.

• <=
Reaction superstructure search.

• <
Reaction superstructure search, excluding identity.

• ~> or ~>=
Reaction Tanimoto similarity search with a reporting threshold.

• %> or %>=

• Reaction Tversky similarity search with a reporting threshold.

Similar to structure query expressions, the operator can be modified by adding flag words as
additional list elements to the operator list element. The following flags are recognized:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 469

CACTVS Tcl and Python Scripting Language Reference
• absolutestereo
Perform absolute stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties A_QUERY
and B_QUERY. An alternative syntax is to directly attach an update S character to the operator.

• allowmissingstereo
If set, absent stereochemistry descriptors in file structures can be matched by explicit stereo
centers in the query structure. However, stereo center mismatches still lead to a match
failure.

• anyfragment
Report a match for full-structure search if any molecule of the file structure is identical to
the query structure. For substructure/superstructure queries, this flag has no effect, since
their default operation mode already covers the effects of the flag.

• anyoverlap
If the substructure contains multiple fragments, they may match overlapping parts of the
structure ensembles. By default, matched substructure fragments cannot overlap. This flag
cannot be combined with atomoverlap.

• atomoverlap
If the substructure contains multiple fragments, they may match overlapping atoms, but not
bonds. By default, matched substructure fragments cannot overlap. This flag cannot be
combined with anyoverlap.

• bidirectional
If the query reaction does not match, try to match it also in the reverse reaction direction.

• charge
Match formal charges of query atoms. By default, charges are not compared, except if set
up explicitly as atom-specific query attribute in property A_QUERY.

• emptyssismismatch
By default, a substructure without any atoms matches anything. If this flag is set, it matches
nothing instead.

• exactaro
Match aromatic bonds exactly. By default, simple single or double query structure bonds
match structure file record aromatic bonds.

• exactringsystem
Rings in substructure fragments must match complete ring systems only. For example, with
this flag a benzene substructure no longer matches naphthalene, anthracene, etc. Non-ring
parts of the substructure can still, if other query attributes do not prevent this, match both
ring and chain parts of file structures. For full-structure queries, this flag has no effect.

• extended
Use extended versions of the match procedures. For similarity queries, this enables the
PubChem extended scoring mechanism. If the query structure is identical to a file structure
both in stereochemistry and isotope labels, an artificial score of 104 is computed, 103 if
470 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
isotopes or stereochemistry match, but only one of these, 102 for basic equivalence of
connectivity without isotopes or stereochemistry, and 101 for a tautomer. Compounds
which are not structurally identical to the query structures using one of these criteria are
scored normally.

• framework
Substructure carbon atoms cannot have any unmatched, directly bonded carbon or hetero
atom neighbors in the structure. Unmatched bonded hydrogen is allowed. This flag has an
effect only for sub- and superstructure match modes.

• implicitsinglearo
If this flag is set, bonds which were created with an implicit bond order when the query
structure was decoded are matched as if they were explicit single/aro query bonds. This is
a useful mode for emulating Daylight software.

• isotope
Perform isotope matching. By default, isotope labels are not used in the queries, except if
set up explicitly as atom-specific query attribute in property A_QUERY. An alternative syntax
is to directly attach an i character to the operator.

• matchallheavyatoms
Require that all heavy atoms in the file structures are matched. This feature generates
matches of file structures similar to full-structure matches while allowing the use of
substructures with variable match conditions, such as atom lists.

• nobondorder
Do not compare bond orders. This flag has an effect only for sub- and superstructure match
modes.

• nochainonaro
Do not match chain parts of the query substructure on aromatic bonds in the file structures.
This flag has an effect only for sub- and superstructure match modes.

• nochainonring
Do not match chain parts of the query substructure on ring bonds in the file structures. This
flag has an effect only for sub- and superstructure match modes.

• nodoubleonaro
Do not match otherwise unmarked double bonds in the substructure onto aromatic bonds of
the structures.

• noquerytree
Deactivate extended matches requiring full checks of the query tree fields in the A_QUERY
and B_QUERY properties in the query structures. Certain query inputs need these trees for
precise matching, because the query cannot be expressed as a flat set of query attributes.
Examples for queries requiring tree matching for proper execution are complex SMARTS
expressions beyond those using only simple explicit or implicit and in atomic or bond
expressions, and Recursive SMARTS. Disabling the flag may lead to a small speed-up for
simple substructure queries.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 471

CACTVS Tcl and Python Scripting Language Reference
• noreactionflags
Do not match reaction transform flags in the substructure. If reaction flags are checked,
which is the default for reaction queries but not for structure queries, both query and file
structures need to have property B_REACTION_CENTER set for this to work. The supported set
of comparisons is compatible with MDL’S ISIS database. For standard reaction queries which
check for specific bond changes, this flag should not be set.

• nosingleonaro
Do not match otherwise unmarked single bonds in the substructure onto aromatic bonds of
the structures.

• nosubstructureh
For substructure match, ignore any hydrogens present in the query structure. This is a
convenient shortcut to allow the use of hydrogen-complete structures as simple
substructures. A similar scheme is automatically invoked for superstructure search, where
hydrogens in the file structures are ignored in matching.

• relativestereo
Perform relative stereo matching. By default, stereochemistry is not used in the query,
except if set up explicitly as atom- or bond-specific query attribute in properties A_QUERY
and B_QUERY. An alternative syntax is to directly attach a lowercase s character to the
operator.

• sethighlight
In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles with the highlight flags in properties B_FLAGS and
A_FLAGS. In case multiple matches occur, the highlight set is an union of all processed
matching substructure mapping. This flag is also automatically set if the data retrieval set
in the molfile scan command includes related pseudo properties, such as matchatoms or
matchbonds.

• setmatchproperty
In case structure ensembles are retrieved from the file (molfile scan modes ens, enslist,
reaction or reactionlist), the bonds and atoms matched by a substructure are marked in the
returned structure-side ensembles by attached properties A_SSMATCH and B_SSMATCH. These
are set to the labels of the matching substructure atoms or bonds. Unmatched structure
ensemble parts have match property values of zero. In contrast to the sethighlight flag, this
option attaches a new match property instance for every successful and processed match.
Returned ensembles may therefore possess series of properties like A_SSMATCH,
A_SSMATCH/2... and so on.

• unique
Hint for the query processor that the query reaction is expected to be matched only once in
the file, if at all. This is useful for query optimization. If a hit has been found, additional
records need not to be checked.

The third mandatory parameter is the query reaction source. It can be any of

• A reaction handle
The handle is decoded directly.
472 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• A dataset handle
A dataset containing at least one reaction. All dataset objects are checked, and internally for
every reaction a separate expression node is created. The nodes are then linked via an or or
orcontinue (in case a scoring operator is used) branch node. Dataset objects which are not
reactions are silently ignored. The hydrogen status of the dataset reactions is not changed.
In case there is only a single reaction in the dataset, this command is indistinguishable from
using the reaction handle directly. In case the dataset does not contain any reactions, an error
is raised.

• reaction line notation string
A string representation of a reaction, in any format that can be decoded by the reaction
create statement, for example a Reaction SMILES, SMIRKS, RINCHI or a CACTVS serialized
reaction object string. This query reaction is only temporarily instantiated and automatically
deleted when the command finishes.

Reading one or more query reactions from a file handle directly in the query statement, as it is
possible for structure queries, is currently not supported. Also, the tautomer match mode is not
available for reaction matching because it interferes with atom map processing.

The optional query list items four to six are identical to those for structure query expressions. They
represent a reporting threshold value and the c1 and c2 comparison algorithm parameters. Please
refer to the paragraph on structure match expressions for more details.

The general approach to reaction sub- and superstructure matching is as follows:

• Perform bit vector screening for acceleration, if supported by the file format. The default
reaction screen property is X_SCREEN. The name of the reaction screen bit property can be
changed by setting the appropriate molfile handle attribute, so it is easily possible to use a
custom reaction screen.

• Match the reagent side from the file record onto the reagent side of the query reaction, just
like a structure query expression. If possible, structure screening (see paragraph on structure
match expressions) is used as an acceleration filter in addition to the reaction screen.

• If atom mapping information is available, use it to set up a match constraint table for the
product side, i.e. allow the product side substructure atoms with an atom mapping label
which has a counterpart in a reagent substructure atom mapping value to match only the atom
in the file product structure which has the same mapping label as the reagent side atom which
was matched by the reagent substructure. For this to work, there need to be two matching
pairs of mapping values on the reaction substructure and file reaction, though they of course
can be different in both reactions. In case a 1:1 relationship cannot be established for an
atom, the matching of this atom is not restricted.

• Match the product side, using mapping constraints where possible, and also using structure
screens if available.

• If any of the previous steps fail, abort the sequence early, but if bidirectional matching is
allowed, try again with the roles of the reaction substructure reagent and product ensembles
swapped.

Besides the ensemble-level query attribute properties A_QUERY and B_QUERY, reaction matches also
make use of B_REACTION_CENTER (for constraints on the type of transformation a bond undergoes)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 473

CACTVS Tcl and Python Scripting Language Reference
and E_REACTION_ROLE (for the identification of reagent and product ensembles in the reaction
object).

Reaction similarity queries use the reaction screen set (by default, property X_SCREEN) instead of the
structure screen that is used for structure similarity. This operation returns a single score. There is
no scoring of the reagent or product ensembles.

Full-structure reaction matches are performed via hash code checks both the reagent and product
sides. Atom mapping information is not used for this query operation. The suitable hash code is
automatically selected depending on the operator modifiers (stereo, isotopes).

Starting with version 3.358 of the toolkit, property query expressions where the data type of the
property is reaction are automatically parsed as reaction expressions.

Scan modes

The return value of the molfile scan command depends on the query mode. The default mode is
enslist for the molfile scan command, but may be different when scanning other objects, such as
datasets, networks or tables. The following modes are supported for file queries via the molfile
scan command. Scan modes for other objects may include specific additional modes, while
disallowing others.

• array (or alias tclarray, dict, pythondict)
The mode parameter is a list consisting of the mode selector array and a nested list of
properties and pseudo-properties. Each property item can be a list of one to three elements.
The first element is a property or pseudo-property, the second element a name, and the third
element again a property or pseudo property. The the second property item list element is
omitted, the name is the same as the first element. If the third element is missing, it is
assumed to be the pseudo-property record.

In this mode, the molfile scan command returns a list of the names of the created arrays.
For each name, a global TCL array variable or PYTHON dictionary is created, and for each
match, a TCL array element with an element name equal to the value of the first item
specification index and an element value equal to the value of the third item specification
is created (or a dictionary entry with key and value for PYTHON). For example, the scan mode
specification
{array {E_NAME name2rec} {record rec2name E_NAME}}

results in the creation of two global TCL arrays or PYTHON dictionaries in the current
interpreter, called name2rec and rec2name. The first has array elements (for PYTHON,
dictionary keys) where the element name is the name of the matching structure (property
E_NAME), and the value the file record number (because it is the default). The second array
has elements where the record number is the array element name, and the corresponding
value the structure name. The return value of the scan statement is the list (tuple for PYTHON)
“name2rec rec2name”, containing the names of the two variables created.
474 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If array or dictionary elements for a specific key already exist, the new value is appended
as a list or tuple object. The result registration procedure does not overwrite the existing
content. So, for example in above case, if there are multiple records with the same structure
name, the array element indexed by name would contain a list or records, not just a single
record. Since the global arrays or dictionaries are persistent, data is also appended over
multiple scan statements. If this is not desired, a statement like unset -nocomplain
$arrayname should be executed before the scan is started. It is legal to use the same array
or dictionary name for the registration of multiple properties. In this case, each match
appends a new list element for every reported property, though these lists will not be nested.

• bitvector
Return a bit vector (series of 0s and 1s in compact format) indicating the match status of
every visited record. Internally, these bit are stored efficiently in 32-bit words. To the
scripting interface they appear as a sequence of 0 and 1 without a space separator.

• boolean
Return a boolean value indicating whether the next record matches or not.

• booleanvector
Return a boolean vector (series of 0s and 1s as vector elements) indicating the match status
of every visited record. The difference to the bitvector mode is that in the scripting interface
the vector elements are already isolated elements, for example they appear space-separated
in the string form.

• count
Just count the number of hits, but do not report details. The result value is an integer.

• delete
Delete hits from the file, if this is possible. This operation is performed after the scan has
completed, not during the scan, so that file record numbers etc. do not change within a query.

• ens
Return the handle or reference of the first matching ensemble. The query is stopped at that
point. If no hits are found, an empty string is returned.

• enslist
Return the handles or references of all matching ensembles. If no hits are found, an empty
list is the result.

• exists
Return a boolean flag indicating whether any hit exists. This is very similar to the count
mode, except that query processing is stopped after the first match.

• index
The file position index of the first matching object. This is the same as the record mode,
except that each hit value is one less, since indices start at zero. The query is stopped after
the first hit.

• indexlist
A variant of the recordlist mode. The returned values are one less than the records, since
indices start at zero.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 475

CACTVS Tcl and Python Scripting Language Reference
• molfile
The mode parameter list consists of the mode selector molfile and a structure file handle or
reference, which must have been opened for writing, appending, or updating. The first
matching structure is written to the file.After this, the query stops. The output file attributes
determine format, selection of data written, structure encoding conventions such as
hydrogen status, etc. If no matching structure is found, nothing is written. In this mode, the
return value of the command is the matching record number of the input file, just as in the
record mode.

• molfilelist
The mode parameter is a list consisting of the mode selector molfilelist and a structure file
handle or reference, which must have been opened for writing, appending, or updating.
Matching structures are written to that file. The output file attributes determine format,
selection of data written, structure encoding conventions such as hydrogen status, etc. If no
matching structures are found, nothing is written. This mode is also implicitly selected if a
structure file handle is directly provided as mode argument. In this mode, the return value
of the command is a list of the matching record numbers of the input file, just as in the
recordlist mode

• property
The mode parameter is a list consisting of the mode selector property and a sequence of
names (or references, for PYTHON) of properties and pseudo-properties. The selected
properties for the first match are returned as a list. If there are no hits, an empty string is
returned. The query stops after the first match.

• propertylist
The mode parameter is a list consisting of the mode selector propertylist and a sequence of
names (or references, for PYTHON) of properties and pseudo-properties. The selected
properties for all matches are returned as a nested list. If there are no hits, an empty string
is returned. This mode is also selected if the mode argument is simply a list of property and
pseudo property names without an identifiable mode keyword as first list element.

• reaction
Return the handle or reference of the first matching reaction. The query is stopped at that
points. If no hits are found, an empty string is returned.

• reactionlist
Return the handles or references of all matching reactions. If no hits are found, an empty list
is the result.

• record
The record number of the first file record which matches. In case a single physical file is
searched, this is the same as vrecord, but if the scanned file is a virtual file consisting of
multiple physical component files, this is the record number in the matching physical file.
The scan is stopped when the first match has been found. If there are no matches, an empty
string is returned.
476 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• recordlist
The same as the record mode, except that more than one match is potentially reported. In
case a virtual file is searched, it is possible that duplicate values are returned, because the
same record number from different physical files may be a hit. For unique record numbers,
use the vrecordlist variant.

• table
The mode parameter is a list consisting of the mode selector table and a sequence of
properties and pseudo-properties. This scan mode returns a table handle or reference. The
table is automatically configured with properly typed columns corresponding to the
requested properties. For each hit, one row is added. If there are no hits, a table handle or
reference is still returned, but the table does not have any rows. This retrieval mode is only
available if the toolkit has been compiled with table support.

The individual properties may also each be specified as a list consisting of the property
name, and an arbitrary string. In that case, the string is used as the column name. By default,
the column names are the same as the name of the property they store. Example:
{table {E_NAME name} {E_CAS casno} record}

sets up a table with three columns called name, casno and record. The first two columns
contain property data from the matching file records, the last one the record in the file which
matched.

Instead of the keyword table, an existing table handle or reference may also be used. In that
case, any existing matching table columns are automatically re-used to store result data.
Additionally specified properties are added as new columns to the right of the previously
existing columns. New table rows generated by matches are appended to the bottom of the
table.

The row names of added table rows are set to Record%u, with the file record number as
variable part.

• tablecollection
This mode is mostly identical with the table mode, and takes the same column specification
parameters.The important difference is that this scan mode always retrieves the full objects
associated with the filled table rows (ensembles or reactions). They are preserved and their
relationship with the table marked. This can be useful if at a later stage in handling the table
additional data needs to be computed or retrieved from an object. On the other hand this
mode can be memory-intensive if many objects are created. Referral to associated objects
may happen indirectly, for example with image columns where the exact image property is
unknown until output time when the storage format is selected.

The scan command mode returns the table handle or reference as result. The associated row
objects are stored in the general namespace, and are not be a member of any dataset. They
are visible like any other object of their type, for example via ens list or reaction list
commands. Commands table ens and table reaction are useful to get the object subset
associated with this table. Note that these table-associated objects are not automatically
deleted when the table is destroyed - only their association is severed. If they are no longer
needed, they should be destroyed explicitly.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 477

CACTVS Tcl and Python Scripting Language Reference
• vrecord
If the scan is executed on a single file, this is the same as record. In case a virtual file which
consists of multiple physical files is searched, this is the virtual file record number, i.e. the
overall record number in the concatenated component files.

• vrecordlist
If the scan is executed on a single file, this is the same as recordlist. In case a virtual file
which consists of multiple physical files is searched, this is a list of the virtual file record
numbers, i.e. the overall record numbers in the concatenated component files.

If requested property data is not present on the object representing a hit, an attempt is made to
compute it. If this fails, the retrieval modes table and tablecollection generate NULL cells, and
property retrieval as list data produces empty list elements, but no errors. For minor object
properties, the property list retrieval modes produces lists of all object property values instead of a
single value. In table-based mode, only the data for the first minor object associated with the major
object is retrieved, which makes this mode less suitable for direct minor object property retrieval.

Pseudo properties for retrieval

The following pseudo properties can be retrieved in property/properylist scan modes or as table
values, in addition to standard property data:

• avgscore
The average value of all computed scores, such as Tanimoto or Tversky similarity scores,
in the matching query for this result.

• conformerindex
The index of the matching conformer in case of 3D queries with multiple conformations, -1
if no matching conformer index was determined.

• conformer
A list of the atomic coordinates of the matching conformer, if a 3D query was performed.
If this is not the case, an empty vector is the result. The data type of this vector is coorvec
(x,y,z-triples as vector elements).

• filename
The name of the physical file the match occurred in. For normal, single-file scans, this is not
interesting. However, for virtual files, only the combination of the pseudo properties
filename and record is a complete reference.

• image
A structure GIF image (property E_GIF) with highlighted matching substructure atoms and
bonds. A normal E_GIF retrieval property would just show the structure, but without
highlighting. The data type of this property is the same as that of E_GIF (depending on the
configuration, a diskfile reference or an in-memory blob).

• index
This is the same as record, except that the value is one less, since indices start with zero.
478 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• matchatoms
An integer vector holding the labels of all atoms matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlighatoms is an alias for this pseudo property.

• matchbondatoms
The same as matchbonds, except that each element is a pair of the labels of the matching
atoms in the bonds, not the bond label as a single number.

• matchbonds
An integer vector holding the labels of all bonds matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlightbonds is an alias for this pseudo property.

• matchcount
The first element of the matchcounts array, as described below. If the query does not contain
any substructure match nodes, the result is empty.

• matchcounts
An integer vector holding the number of distinct substructure matches for substructure
query nodes in the query tree. For normal substructure expressions, this value can only be
zero or one because the standard substructure match mode only checks for the presence of
any match (match mode first). Additionally, this value can be minus one if the node was
never evaluated, for example because it is part of an or expression. Only if the count
modifier is used together with the substructure query operator, or the substructure operator
is the range operator, the possibility of multiple matches is evaluated and larger values can
be obtained. For these operations the match mode is currently always distinctinneratoms
(see match ss command).

• matchmask
A bitvector indicating which children of the root query node have matched. The length of
the bitvector is the same as the number of children of the root node. A typical application
of this retrieval item is in combination with a range node as root node.

• maxscore
The maximum value of all computed scores, such as Tanimoto or Tversky similarity scores,
in the matching query for this result.

• merit
For queries which use a merit/demerit rating scheme (for example, Bruns/Watson queries)
this retrieves the accumulated merit/demerit sum of the top-level query node. The query
needs to match for this retrieval to work, so in case none of the demerit rules match, you get
an empty result, not a default zero merit/demerit value. Internally, there is no distinction
between merit and demerit scores. The keyword demerit is an alias for this pseudo-property.

• minscore
The minimum value of all computed scores, such as Tanimoto or Tversky similarity scores,
in the matching query for this result.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 479

CACTVS Tcl and Python Scripting Language Reference
• pass
The pass number of the query execution. Normal queries, i.e. those without smartquery
nodes and without hand-crafted passswitch nodes are executed only once, and the pass is
always zero.

• parent
The parent structure of the matching structure as a packed, base64-encoded serialized object
string. If the structure file does not contain a precomputed parent structure, or the main file
structure contains it as property, it is computed from the main file structure as property
E_PARENT_STRUCTURE.

• productmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• productmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the right side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• productmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• reagentmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• reagentmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the left side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• reagentmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• record
The physical record number of the current physical file. For normal, single-file scans this
is the same as the virtual record. For virtual files, this property needs to be combined with
the filename pseudo property to obtain a complete reference.

• rgatoms(rg)
A list of the atom labels in a matching structure which were mapped to an expanded R-group
atom in the query. The property index is the name of the R-group of interest defined in the
substructure, usually something like R1. If there was no expanded R-group of that name, the
result list is empty.

• rgattachments(rg)
A nested list of the atom label pairs of the bonds in a matching structure which connect
between the structure framework and the atoms expanded as the named R-group rg. If there
was no expanded R-group of that name, the result list is empty.
480 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• score
The first element of the scores array, as described below. If the query does not contain any
scoring expressions, the result is empty.

• scores
An integer vector of the results of all query expression branches, in depth-first left-to-right
order, which computed a score, such as structure similarity queries with Tanimoto or
Tversky bitvector comparisons, or the number of child branch hits of a range node. In case
a branch was not executed when the match was determined, a zero value is reported.

• structure
The dataset structure as a packed, base64-encoded serialized object string.

• vrecord
The virtual record number. For single-file scans this is the same as the physical record
number.

Record visitation order

The optional visitation order parameter, one of the optional query parameters listed in the next
section, is primarily intended to be used for convenient execution of queries on a subset of records
which were selected by a previous query on the same file. It can either be a numerical record list,
with the first file record indicated as record one, or one of the keywords sortup or sortdown,
followed by a property name. If this parameter is not set, or set to an empty string, or the magic string
all, records are visited from the current input position in simple sequential order. If the query
parameter dictionary additionally contains a startposition value, this start position refers to the index
(plus one) of the first element of the specified record set, not to the original underlying file.

In the record list variant of this argument, the specified (virtual) records in the file are visited in the
list order, and all other file records are ignored. For optimum performance, the records should be
sorted in ascending order, but this is not necessary, and, since it does affect the order of the returned
results, record visitation sets with record sequences in custom order sorted to some criterion can
have uses. A suitable format for a record list is a saved result of molfile scan in the recordlist or
vrecordlist scan modes. It is possible to use a sorted record list with a non-rewindable input file, but
an unsorted list will fail in that case if the file input pointer needs to be positioned backwards.

The sort property option variant implies a visit of all file records, but in the order of the values of a
property in that file, not the native record sequence in the file. Using this access method is not too
much overhead for indexed file formats such as CBS or BDB with an index on the sort property, but
a serious performance hit for standard text files. This method cannot be used with files which cannot
be rewound and do not have the sort property data in some direct access field, since it requires a full
pass through the file to gather the sort property data values before the actual query is processed.

Examples:
molfile scan $fh “structure >= C1NCCC1” vrecordlist \

[dict create “order” [list 3 6 29 157]]
molfile scan $fh “structure ~>= $ehcmp 90” {table E_SMILES score} \

[dict create “order” {sortup E_WEIGHT}}

Query parameters

The final optional parameter is a keyword/value list of various additional attributes for fine-tuning
the execution of the query. The following keywords are recognized:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 481

CACTVS Tcl and Python Scripting Language Reference
• branchmaxhits number
Set a maximum number of hits for every branch below the root node of the query. This is a
per-branch version of the more commonly used maxhits option, which sets a global hit limit.
By default the limit recursively applies to all nodes below the root, but this option is often
combined with the branchnodetype option. If the latter is set, the limit only applies to those
nodes which are of the specified type. Any nodes which have accumulated the specified
maximum number of hits during the execution of a scan command no longer match
regardless of the contents of additional records they are tested against. The hit count is
increased whenever the branch returns a positive result, even if an overall positive match is
not found because conditions in other branches are not met. The option can also be applied
to logical nodes, such as and or or. In case of or nodes and in circumstances with similar
optimization opportunities, the use of this option does not force the execution of lower
branches if the match result of the node can already be determined by a partial testing of its
branches, so the count may be less than expected.

• branchnodetype nodeclass
This option is useful only in combination with a branchmaxhits option. If it is set to the name
of a query node class, such as structure, reaction, formula or property, the limit only applies
to those nodes below the root node which are of the specified type.

• cellobjectcolumn colname
This parameter can only be used if the output of the scan is to a table object. It is the name
of a column which contains decodable structure or reaction data and should be parsed if a
cell or row object is to be automatically generated for a scan result row.

• fullblockscan auto/no/yes
Ths parameter can be set to the values auto (or -1), no (or 0) and yes (or 1). The default value
is auto. If this flag is true, scanning does not immediately stop after the maxhits or maxscan
limits have been reached. Instead, each query thread completes its currently allocated file
section, but not pick up more work afterwards. This guarantees that a subsequent query on
the file can resume after the last visited record, without omitting to test records in file
sections where the threads did not complete their task. However, in the full block scan mode
the maxhits and maxscan parameters are then only a guideline, since the threads will scan
more records, and possibily generate more hits, until they have finished their block. In auto
mode, the full block scan mode is active if more than one thread is actually spawned, and
inactive when there is only a single thread processing the query.

• keeptablecolumns 0/1
This parameter has only an effect if the output is written to a table object. By default,
existing table columns are deleted from the result table before the retrieval fields are parsed.
If the flag is set, they are retained.

• keeptablerows 0/1
This parameter has only an effect if the output is written to a table object. By default,
existing table rows are deleted from the result table before the scan commences. If the flag
is set, they are retained.

• matchcallback procname
The name of a TCL procedure or PYTHON function name or reference in the current interpreter
which is called upon each match after processing all standard query conditions, as well as
once each for initialization and finalization. In some scan modes, the function is also be
482 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
called to report a mismatch. The parameters passed to the function are the callback mode as
a string (one of init, match, mismatch or final), the current number of hits, and a reference
for the match results accumulation object. The format of the latter depends on the scan mode
- for example, in scan mode bitvector it is the evolving string representation of the result
vector, while in scan mode propertylist is is a nested list of property values extracted so far.
The structure of the result accumulator is usually the same as the final result of the scan
operation. Setting the procedure name to an empty string is the same as omitting this
attribute - no TCL procedure is called.

• maxhits number
The maximum number of hits to report. If this number has been reached, the scan stops. If
it is set to a negative value, which is the default, an unlimited number of hits could be
reported.

• maxrecord number
The maximum record number to visit during the scan. If the file is shorter, this is no error.
The scan can be resumed at the stop position.

• maxscan number
The maximum number of records to scan in all query threads combined. If this number has
been reached, the scan is stopped (but see fullblockscan parameter). If set to a negative
value, which is the default, an infinite number of records could be scanned.

• maxthreads number
The maximum number of threads to use for scanning. By default, only a single thread is
used. The use of multiple threads can significantly accelerate the processing of large input
files, but for input data sets with less than 5K text records, or 50K binary and indexed
records the overhead is likely to outweigh the gains. If multiple threads are used, a rule of
thumb is that maximum acceleration on a sufficiently large file, with plenty of memory and
no competing processor load, is observed with two query threads per processor core. If set
to a negative value, the internally used maximum number of threads is adjusted to the
number of visible processor cores and number of threads already internally spawned for
other purposes. Because of the need to have multiple concurrent read positions for
multi-threaded searching, files which cannot be rewound are always the processed by a
single thread. If the query file has less records than the maximum number of threads
multiplied by the thread block size, the actual number of threads used can be smaller then
specified..

• order recordorder
Specify a scan order. By default, the data records are visited in increasing sequence from the
current start position. The format of the value part of this dictionary entry has been described
in the previous section. For more information, please refer to the paragraph on the record
order list.

• passlimit number
The number of accumulated hits which will prevent the execution of another query pass,
typically with relaxed match conditions, in smartquery expressions and similar constructs.
The default value is one, i.e. no additional passes will be executed if there is at least one
match.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 483

CACTVS Tcl and Python Scripting Language Reference
• progresscallback procname
The name of a TCL function or PYTHON function name or reference which is called regulary
during the file scan. That function could, for example, update a progress bar. The arguments
to that function are, in this order, the operation code (init, scan, final), the handle of the
scanned object (a molfile handle for the molfile scan command), the current number of
record scans performed so far, the hit count and finally the size of the scanned object (file
record count, dataset element count) as record or element count. If the object size is not
known, minus one is passed. If a progress callback argument has been specified, it is passed
as an additional and final parameter.

The init and final function calls are made only once each, and before respectively after any
scan calls for the execution of this statement. The short form callback is an alias for this
keyword. Setting the option to an empty string disables all progress callback function calls.

• progresscallbackarg string
An arbitrary value which is passed as an additional, last parameter to the progress callback
function.

• progresscallbackfrequency number
The frequency of callback function invocations, measured as the number of records scanned
between calls. If set to a negative value, the default is used (currently one call per 100K
records scanned). If set to zero, the callback function is not called during the scan, but still
for initialization and finalization. The short form callbackfrequency is an alias for this
keyword.

• sscheckcallback procname
The name of a TCL procedure or PYTHON function name or reference which is called after all
preliminary checks of a substructure or superstructure match operation have succeeded.
Records which are skipped by screening mechanisms or where standard sub/superstructure
query attributes already exclude a match do not trigger a function call. This function can be
used to add additional criteria to the query which cannot be expressed by standard means.

The arguments passed to this function are, in this order, the substructure object handle, the
structure object handle, a nested list with label pairs of all matched substructure and
structure atoms, and a nested list with label pairs of all matched substructure and structure
bonds. In case of superstructure searches, the roles of substructure and structure are
reversed, i.e. the substructure handle and the listed atoms and bonds refer to the current
structure read from the scanned data source. The check function should either return 1 for
a successful final check, or 0, which leads to a rejection of the match. It is also possible to
raise an error, which terminates the query with an error, or exit with a break, which
terminates the query without an error.

While the callback routine is free to perform any additional match analysis, it must neither
delete the structure or substructure, nor change its connectivity (remove or add atoms and
bonds), nor discard or invalidate any property data used in the matching process. The
computation or setting of any additional property data on the substructure or structure
ensembles is allowed.
484 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• startposition number
A specific record to begin the scan at. By default the scan begins at the current read position
of the file, except when it is at EOF. In that case, the file is automatically rewound. If a record
visitation order list is used, the start position parameter indicates the record list index plus
one to use as first file record to visit, not the file record proper.

• target datasethandle/remotedataset/#new
The value of this argument is a local or remote dataset handle or reference. If the result of
the scan are ensembles (query modes ens or enslist), reactions (query modes reaction or
reactionlist) or a table object (mode table or tablecollection), the object is moved to the
specified dataset. In case the dataset is local, the move happens during the query, so that a
different script thread could already begin further processing. Data transfer to remote
datasets is performed in a single batch just before the query command finishes. For query
modes which do not generate chemical objects, such as the recordlist, property or count
modes, this parameter is ignored. The special target name #new creates a new dataset. In that
case, the command output is the handle or reference of the new dataset, overriding other
output modes.

• threadblocksize number
If multiple threads are used, each thread processes a section of the file. If it completes the
section, it will then request the allocation of a new section after the last section already
allocated to any worker thread. If this parameter is set to a negative value, which is the
default, a suitable thread block size is automatically determined from the file characteristics.
It will then be typically a value between 10K and 100K records.

More typical examples

Examples:
molfile scan $fh {structure = c1ccccc1} recordlist
molfile scan $fh {E_WEIGHT < 100} {propertylist E_SMILES E_NAME E_WEIGHT}
molfile scan $fh {notnull E_CAS} {table E_SMILES E_CAS}
molfile scan $fh {structure ~>= c1nnccc1 90} {score record}
molfile scan $fh “and {structure >= $ehss} {formula >= N3}}” ens

Distributed queries

Molfile object handles can be configured to listen on specific ports for remote scan requests. The
syntax of a remote scan request is the same as for a normal file. The only exception is the handle
argument. The command is executed asynchronously. Since because of this no direct results are
returned, the remote scans are typically of a type which yields network-transferable objects (modes
ens, enslist, reaction, reactionlist, table) and specify a target dataset object on the local system.

On the local system, a typical set-up looks like this:
set dh [dataset create]
dataset set $dh port 10001
molfile scan $remotehost:10002 {structure >= c1ncccc1} \

{table record E_NAME E_CAS} {} {target $localhost:10001 startposition 1}
while {![dataset tables $dh {} count]} {

sleep 1
}

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 485

CACTVS Tcl and Python Scripting Language Reference
In above code, we first create a recipient dataset object, and configure it to listen on port 10001 for
incoming CACTVS objects - we are expecting a table object as result later. We then issue the query
for execution on the remote host, and wait until the table object containing the results has arrived.

On the remote server, the set-up could look like this:
molfile open $dbfile r port 10002
vwait

Here the database file is opened, and a port for incoming requests opened. The vwait TCL statement
does nothing, but keeps the interpreter running, while waiting for and processing events such as
incoming scan commands. In this sample set-up, the remote server needs to be started first, because
otherwise the connection to the remote file fails on the client.

Since execution of remote queries is asynchronous, the client could issue multiple query requests to
different remote handles and then wait until results from all these requests have been collected, or
a timeout or other error condition has been reached. The results could arrive in any order. The scan
commands for a group of servers could, for example, specify different start positions and maximum
scan values for distributed searching of a big file, or could gather results from different small files.
Additionally, the use of multiple scan threads could be requested on the server by passing
appropriate parameters in the control section of the command. Nevertheless, only a singled remote
scan command per TCL script thread is executed on the server at any time. If multiple scans need to
be executed in parallel on a single server, a collection of script threads need to be created via the
Thread package, and then every thread told to open its own port listener.

The mechanism for the reception of messages for remote scans on molfile handles which listen on
ports is subtly different from the processing of commands sent to listening dataset objects. The
execution of scans requires active collaboration of a TCL interpreter. Commands are only read and
processed when the interpreter is idle, for example while sitting in a vwait or sleep statement. In
contrast, dataset object listeners do not rely on TCL interpreters, and are implemented as independent
threads. Remote dataset commands, such as ens move or dataset pop with a remote dataset handle,
are therefore executed at any time when a mutex lock on the database object and other accessed
objects can be secured.

molfile set
molfile set filehandle ?property/attribute value?...
molfile set filehandle attribute_dictionary
f.set(property,value,...)
f.set({property:value,...})
f.property = value
f[property] = value

A standard data manipulation command. It is explained in more detail in the section on setting
property data. The alternative short form with the single dictionary argument is functionally
equivalent to using the expanded dictionary as separate property and value arguments.

Examples:
molfile set $fhandle F_GAUSSIAN_JOB_PARAMS(link0) [list \

“%chk=144__303_2EVE_PDB_Opt8.chk” “%mem=128MB” “%nprocshared=2”]

The command can also be used to set a broad range of object attributes. The list of attributes is
documented in the section on the molfile get command.
486 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If an attribute is set for a multi-file virtual file, in most cases the attributes are set for all the files in
the set. Some attributes, such as the record, apply to the virtual handle only and their modification
indirectly addresses only one physical file. An important example for this is the record attribute,
which positions the record I/O pointer into the physical file which contains the record in the virtually
concatenated file.

Example:
molfile set $fhandle record 2

Above command repositions the file read/write pointer to the second record.

This command supports a special attribute value syntax for manipulating bitset-type attributes (only
attributes, not property values). If the first character of the argument is a minus character (-), the
named bits in the set identified by the remainder of the argument are unset. If it is a plus (+), they
are additionally set. With an equal sign (=), or no special lead character, the flag set replaces the old
value. A leading caret character (^) toggles the selected bits.

Example:
molfile set $fhandle readflags +pedantic

molfile setparam
molfile setparam filehandle property ?key value?...
molfile setparam filehandle property dictionary
f.setparam(property,?key,value?...)
f.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

The return value is the updated property computation parameter dictionary.

molfile show
molfile show filehandle propertylist ?filterset? ?parameterdict?
f.show(property=,?filters=?,?parameters=?)
Molfile.Show(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The difference between molfile get and molfile
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, molfile get and molfile show are equivalent.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile skip
molfile skip filehandle ?recordcount?
f.skip(?records=?)

Skip records in a file opened for input. If the file pointer is at the beginning of a new record, this next
record is the first skipped. If the file pointer is stuck in the middle of a record, for example because
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 487

CACTVS Tcl and Python Scripting Language Reference
a molfile read command failed due to a file syntax error, the first record counted is the remainder
of the current record. An attempt is made to re-synchronize to the beginning of the next record.

By default a single record is skipped. If the record count parameter is specified, more than one record
can be skipped. Because of the partially read record re-synchronization feature, negative record
counts are not allowed in this command. The molfile backspace and molfile set record
commands can be used to go back in a file.

The command returns the number of the next record to be read. In case an attempt was made to
position behind the end of a file, or a record re-synchronization failed, an error is reported.

molfile sort
molfile sort fhandle {{property ?direction ?cmpflags ?cmpvalue???}...}

?outfile/handle?
f.sort(sortby=,?output=?)

Sort the records in the file according to the values of one or more properties or property fields
contained in the file records, or computable on the objects read from the file. The output are
byte-for-byte identical images of the input records, not records reconstructed from read data objects.

The property sort set consists of o sequence of zero or more sort specification elements. Every
specification element is parsed as a sublist, but only the first element therein is mandatory. This
element is either a property name, a property field name, or one of the magic names #record or
record (for the file record) or #random or random or rnd (for a random number assigned to that
record). The optional sort direction element may be up/ascending or down/descending. The default
sort direction is upwards. The third optional comparison flags parameter can be set to a combination
of any of the values allowed with the prop compare command. The default is an empty flag set.

If a comparison value is supplied as fourth argument, the sort utilizes the comparison results of read
file object property values against this value for ranking, not the direct comparison result between
the read file object property values. This is for example useful when sorting according to a bitvector
similarity value to an external structure.

The first property or magic name in the sort list has the highest priority. In addition to the specified
properties, the original record number is implicitly added as tie breaker to yield a stable sort. This
automatic value is always sorted upwards. If an empty property list is specified, the result is thus a
simple file copy without record rearrangement. In order to randomize the record order in a file, use
a single #random sort property.

The sort properties do not need to be already present in the file. If necessary, an attempt is made to
compute these on the objects read from the file in the first pass. It is possible to sort on properties
which are not of the object class read from the file, for example atom properties when ensembles
are read, or ensemble properties when reactions are read. In that case, the record is output at the
position determined by the lowest sort rank of the property of that object, for example the minimum
or maximum value of all values of an atom property in an ensemble. Additional data instances of
the property associated with a given record are ignored, so no record duplicates are output.

The optional output parameter can either be the handle or reference of an opened TCL or PYTHON
channel, including standard output and standard error or the name of a (preferably new) file, or a
pipe construct. Output is appended to this output channel. If the parameter is omitted, the output is
first written to a temporary file, the original file deleted and the temporary file renamed to the
original file. In that case, the original file handle is automatically re-opened for reading on the new
488 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
file. The input file handle must be positionable, because file records are accessed twice, once for
reading the sort data and once for copying the records out. Sorting from standard input, pipes or
other non-rewindable sources is therefore not supported, and neither is the sorting of files which are
not simple record sequences. Sorting such files is currently only possible by using explicitly scripted
record data buffering mechanisms.

On Windows, output to an open TCL file handle or PYTHON file reference s not supported, except for
the standard output and error channels.

The return value of the command is the number of records written. The position of the sort file
handle is set to the same location as before the command.

Examples:
molfile sort $fh {{E_NAME up {dictionary nocase}}} dict.sdf
molfile sort myfile.sdf {{record down}}
set fhtcl [open “randomized.sdf” w]; molfile sort $fh {{random}} $fhtcl
molfile sort $fh {{A_ELEMENT down} {E_WEIGHT up}} “|gzip >heavy.sdf.gz”

The first example creates a new file dict.sdf which contains the remaining records in the file
associated with the file handle sorted by the value of property E_NAME in case-insensitive dictionary
order. The second example reverses the order of the records in the file, replacing the original file in
the process. The third example randomizes the record sequence in the original file, outputting the
records in a new file which was opened for writing as a normal TCL text file. The final example
outputs a compressed SD file, with structures sorted by the heaviest element in the ensembles, and
using the molecular weight as tie breaker.

molfile sqldget
molfile sqldget filehandle propertylist ?filterset? ?parameterdict?
f.sqldget(property=,?filters=?,?parameters=?)
Molfile.Sqldget(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The differences between molfile get and molfile
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile sqlget
molfile sqlget filehandle propertylist ?filterset? ?parameterdict?
f.sqlget(property=,?filters=?,?parameters=?)
Molfile.Sqlget(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The difference between molfile get and molfile
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or
PYTHON script processing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 489

CACTVS Tcl and Python Scripting Language Reference
The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile sqlnew
molfile sqlnew filehandle propertylist ?filterset? ?parameterdict?
f.sqlnew(property=,?filters=?,?parameters=?)
Molfile.Sqlnew(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The differences between molfile get and molfile
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile sqlshow
molfile sqlshow filehandle propertylist ?filterset? ?parameterdict?
f.sqlshow(property=,?filters=?,?parameters=?)
Molfile.Sqlshow(filename,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the molfile get command. The differences between molfile get and molfile
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile string
molfile string enshandle/reactionhandle/datasethandle ?attribute value?...
molfile string enshandle/reactionhadle/datasethandle? ?attribute_dict?
Molfile.String(eref/xref/dref,?attribute,value?,...)
Molfile.String(eref/xref/dref,attribute_dict)

This command creates a byte vector representation of a structure file. The third argument in the TCL
variant (first for PYTHON) is an ensemble, reaction or dataset handle or reference, not a file handle or
reference as for other molfile commands.

If the selected output format module supports direct output into a string, the record image is created
without intermediary forms. Otherwise, a anonymous temporary file is opened, the ensemble or
reaction(s) written to that file, and the file content returned as string with all newlines etc.. The file
is then removed.

Writing to binary formats is possible. The return value of the command is a byte vector, not a simple
text string, so it may contain NUL bytes. By default, in the absence of an explicit format specification,
a MDL Molfile is written.
490 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The remaining parameters are interpreted as in the molfile set command. There are two
equivalent command variants, either using attribute and value argument pairs or a dictionary as a
single argument. The parameters in the extra arguments or dictionary are typically used to set a
hydrogen status, select the output format, etc.

molfile blob is an alias to this command.

Example:
set jmestring [string trim [molfile string [ens create C1CC1] format jme]]

The example creates an input string for the popular JME Java structure editor by P. Ertl/Novartis.
The string trim statement deletes the trailing newline. The necessary JME output module is
automatically loaded if it is not already loaded or compiled-in when the format parameter is
decoded.

String record representations generated by this command can be opened for input as string data with
the s mode of the molfile open command:
set fh [molfile open [molfile string $eh] s]

molfile subcommands
molfile subcommands
dir(Molfile)

Lists all subcommands of the molfile command. Note that this command does not require a handle.

molfile sync
molfile sync filehandle
f.sync()

This command synchronizes the file contents with the file system. The I/O modules for most file
formats automatically performs a simple file buffer flushing upon finishing the output of a record,
so this command is needed only under special circumstances where complete file system
synchronization is required, the file was written without immediate commits, the I/O module for the
file format provides a special synchronization function, or the output was done via asynchronous
I/O. In any case, every file is fully synchronized when it is closed, so calling this function for normal
output operations is not required.

The command returns the original file handle or reference.

molfile toggle
molfile toggle filehandle
f.toggle()

Switch a file from input to output, or vice versa. If the file was in write, append or update mode when
the command is executed, the file is rewound and the read pointer is now pointing to the first record,
or the original end point for append files. If the file was configured for input, the file output mode
is changed to append if the file is a normal file. If the file is a scratch file, the file is truncated to an
empty file and the write position set to the first record.

Not all file types can be toggled. Special file types except FTP streams cannot, and it is not possible
to toggle a simple disk file which was originally opened in read only mode (see molfile open
command).
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 491

CACTVS Tcl and Python Scripting Language Reference
The command returns the original file handle or reference.

molfile transfer
molfile transfer filehandle propertylist ?targetpropertylist?
f.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one molfile object to another molfile object or other major object, without
going through an intermediate scripting language object representation, or dissociate property data
from the molfile object. If a property in the argument property list is not already valid on the source
file object, an attempt is made to compute it.

If a target object is specified, the return value is the handle or reference of the target object. The
source and target object cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple molfile get, i.e. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only
unlinked from the source object, but not destroyed. This means that the object handles returned by
the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

molfile truncate
molfile truncate filehandle ?record?
f.truncate(?record=?)
Molfile.Truncate(filename=,?record=?)

Truncate a file. If no explicit record is given, the file is truncated after the current record. In case the
current record count of the file is less than the specified record, the command raises an error.

Only files which are rewindable can be truncated. In addition, the program must have write
permission to the file, although it is not required that the file handle is opened for writing. The I/O
modules for files formats which are not a simple record sequence must provide a truncation function
or the operation will fail.

The command returns the original file handle or reference.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile unlock
molfile unlock filehandle propertylist/molfile/all
f.unlock(property=)
492 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Unlock property data for the file object, meaning that they are again under the control of the standard
data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names or references
Valid property instances on the file object are unlocked. Non-existent data is silently
ignored. It is not possible to unlock individual property fields.

• all
All valid file object properties are unlocked.

• molfile
This is an object class identifier. All property data which is controlled by the molfile major
object and attached to the specified object class is unlocked. Since files do not incorporate
minor objects, this identifier is equivalent to all.

Property data locks are obtained by the molfile lock command.

This command is a generic property data manipulation command which is implemented for all
major objects in the same fashion and is not related to disk file locking. Disk file locks can be set
or reset by modifying the molfile object attribute lock. This is explained in more detail in the
paragraph on the molfile get command.

The return value is the original molfile handle or reference.

molfile upgrade
molfile upgrade filehandle
f.upgrade()
Molfile.Upgrade(filename)

If the I/O module provides a function to upgrade the format of an older file to the latest version of
the format, for example after a support library upgrade, that function may be used. The only format
which currently supports this feature is BDB.

The command returns the original molfile handle or reference.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

molfile valid
molfile valid filehandle propertylist
f.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the structure file. No attempt at computation is made.

Example:
if [molfile valid $fhandle F_COMMENT] {...}

molfile has is an alias to this command.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 493

CACTVS Tcl and Python Scripting Language Reference
molfile vappend
molfile vappend filehandle objectlist
f.vappend(objectref/objectrefsequence)

Virtually append records to an open file handle. The underlying file is not modified, but all future
input operations on this file behave as if the extra records were present.

Because no actual output is generated, this command can only be applied on files opened for
reading, not output files. In addition, the file handle needs to refer to a normal disk file and to support
going backwards in the file, i.e. this command cannot be used on structure files opened via URLs,
standard I/O channels, socket connections or composite virtual files with multiple physical files or
the contents of a directory. The file format must support multiple records and the records must be
encoded as a simple concatenated byte sequence. Examples for formats which work are SMILES or
SD files for structures, or RXN or RD files for reactions.

The object list may contain ensemble, reaction or dataset handles. The data is split into virtual
records according to the storage capabilities of the file. The format of the data written to the virtual
records can be controlled by setting the writelist, droplist and hydrogens status attributes on the file
handle.

When executed for the first time on a file handle for which the record count is yet unknown, the
existing file records must be tallied and all current physical record positions be registered. For very
large files, this can take some time. However, this is not equivalent to reading the complete file, so
it does not consume much memory and the command can in principle work on arbitrarily large files.

Virtual records are held as string images in memory. A couple of thousand such records should not
be a problem for typical workstations, but for systematic editing of large files where every record
is touched an explicit scripted input/output loop is preferable.

The return value is the new record count of the file.

Changes to the file can be committed to disk by means of the molfile vrewrite command.

Example:
molfile vappend $fhandle [ens create c1ccccc1]

molfile vdelete
molfile vdelete filehandle recordlist
f.vdelete(record/recordsequence)

Virtually delete records from an open file handle. The underlying file is not modified, but all future
input operations on this file behave as if the specified records had been deleted.

Because no actual output is generated, this command can only be applied on files opened for
reading, not output files. In addition, the file handle needs to refer to a normal disk file and to support
going backwards in the file, i.e. this command cannot be used on structure files opened via URLs,
standard I/O channels, socket connections or composite virtual files with multiple physical files or
the contents of a directory. The file format must support multiple records and the records must be
encoded as a simple concatenated byte sequence. Examples for formats which work are SMILES or
SD files for structures, or RXN or RD files for reactions.

When executed for the first time on a file handle for which the record count is yet unknown, the
existing file records must be tallied and all current physical record positions be registered. For very
494 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
large files, this can take some time. However, this is not equivalent to reading the complete file, so
it does not consume much memory and the command can in principle work on arbitrarily large files.

The record list is a list of integer values, with one as the first file record. The list does not need to
be sorted, and duplicate record numbers or record numbers out of range are ignored. It is possible
to virtually delete file records which are themselves virtual, i.e. were added by the vappend, vreplace
or vinsert subcommands and are not physically present in the file.

Virtually deleted records have negligible memory demands, but will slightly slow down input
operations on edited files.

The return value is the new record count of the file.

Changes to the file can be committed to disk by means of the molfile vrewrite command.

Example:
molfile vdelete $fhandle [list 3 9 6]

molfile verify
molfile verify filehandle property
f.verify(property)

Verify the values of the specified property on the molfile object. The property data must be valid,
and a molfile property. If the data can be found, it is checked against all constraints defined for the
property, and, if such a function has been defined, is tested with the value verification function of
the property.
If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.

molfile vinsert
molfile vinsert filehandle objectlist
m.vinsert(objectref/objectrefsequence)

Insert virtual records for the specified objects into the file. The insertion position is before the
current read position.

Except for the difference in the location where the virtual records are inserted, the command is
equivalent to the molfile vappend command and has the same features and limitations. Please refer
to that command for details.

The return value is the new record count of the file.

Changes to the file can be committed to disk by means of the molfile vrewrite command.

molfile vreplace
molfile vreplace filehandle objectlist
m.vreplace(objectref/objectrefsequence)

Insert virtual records for the specified objects into the file. The current input record is virtually
overwritten.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 495

CACTVS Tcl and Python Scripting Language Reference
Except for the difference in the location where the virtual records are inserted, and the fact that an
existing record is replaced, the command is equivalent to the molfile vappend command and has
the same features and limitations. Please refer to that command for details.

It is possible to replace a record which is itself virtual, i.e. was introduced by a vappend, vinsert or
vreplace subcommand. If more than one output object is passed, or the object is written as multiple
file records, additional virtual records are created and the record count of the file increased
accordingly.

The return value is the new record count of the file.

Changes to the file can be committed to disk by means of the molfile vrewrite command.

Example:
set eh [molfile read $fh]
ens expand $eh
molfile backspace $fh
molfile vreplace $fh $eh
ens delete $eh

This command sequence virtually replaces a record with a version where superatoms are expanded.

molfile vrewrite
molfile vrewrite filehandle ?filename?
m.vrewrite(?filename=?)

Commit all virtual record additions, deletions or replacements to a physical file. If no file name is
given, the current file name is used. After writing, the file handle remains valid. It is open for
reading, and positioned before the first record. At this moment, the file no longer contains any
virtual modifications, but the file handle may again be subjected to virtual edit operations. In case
a file name is specified, and is not the same as the name of the current file, the file handle refers to
the new file when the command has finished.

All valid records are copied verbatim to the new file, without going through decoding and
re-encoding or records (see molfile copy command). A temporary file in the same directory as the
current file is created, and sufficient disk space needs to be present to hold both the original file and
the edited version at the same time. In case a problem occurs, the temporary file is deleted and the
current file remains active. Only if all write operations succeed the old file is deleted and the
temporary file renamed if necessary. In case a file name is specified, and it is not the same as that
of the current file, the original file remains untouched, but is no longer linked to the molfile handle.
For large files, this operation can take some time because massive amounts of data may need to be
moved.

If the file referenced by the file handle has not been edited with virtual record operations (vappend,
vdelete, vinsert, vreplace), the command does nothing and is equivalent to a molfile rewind.

The command returns the number of records written.

Example:
set fh [molfile open „myfile.sdf“]
molfile vinsert $fh 1 [ens create c1ncccc1]
molfile vrewrite $fh „myfile_with_pyrdine_inserted_in_rec_1.sdf“
496 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
molfile write
molfile write filehandle ?objecthandle/objecthandlelist?...
f.write(objectsequence/objectref,...)
Molfile.Write(filename,objectsequence/objectref,...)

This commands writes structure and reaction data to a file. Object handles may be ensemble handles,
reaction handles, dataset handles, or molfile handles.

If an object is an input molfile handle, objects are read from the file until EOF is encountered if the
output file supports multiple records. If the output file type is single-record, only the next record is
read. The types of objects which are collected from the input molfile handle are dependent on its read
scope. These objects are then treated as if they were used as parameter objects directly. Objects
obtained via a molfile handle are automatically deleted after they have been written. If the input file
is already at EOF when the command is executed, no objects are read, and no error is generated.
However, this does not trigger the NULL record output handling described below, because the file
object was specified as an argument.

The type of data which is actually written to the file depends on its format. A file opened for
ensemble output can be fed with any type of handle. If reactions or datasets are passed, these are
taken apart and written as individual records. If the output file is a reaction file, and an ensemble is
passed, the reaction it is a member of is looked up and used as output object. If the ensemble is not
a reaction ensemble, an attempt is made to store it as a plain ensemble outside any reaction. If the
output routine rejects this, an error is raised. In case of datasets passed as objects for reaction output,
the individual dataset objects (ensembles or reactions) are written, in combination with reaction
reference substitution in case ensembles instead of reactions are found. For full-dataset output, it is
legal to pass non-dataset objects. No dataset-level information is written and the objects stored as
an anonymous dataset.

It is legal to supply no object handles at all. Normally, this means that simply no output is performed.
However, I/O modules for specific file formats may support the output of special NULL records. In
that case, the output function is called once without any objects. An example are GAUSSIAN job files,
which allow you to write records in multi-link files, where the computation instructions are taken
from the file property F_GAUSSIAN_JOB_PARAMS, without supplying a structure record.

As part of the output process, new information may be computed on the objects. In case the active
settings on the output molfile handle demand a structural change of an object, for example the
addition or removal of hydrogen atoms, or the re-coding of ionic versus pentavalent nitro groups and
similar functionality, the write objects are temporarily duplicated and these duplicates undergo the
structure changes. The original output objects are never indirectly edited in their connectivity by this
command.

The writelist attribute of molfiles may be set to a list of properties which should be included in the
output. This has an effect only for file formats which support the storage of custom data values and
which can cope with the data types of the listed properties. By default, no attempt is made to actively
compute these properties for output. If they are not present in the input data, their output is silently
omitted, or NULL values are written, depending on how the output format encodes these things.
However, if the computeprops flag is set on the output molfile, an attempt for computation is made,
and after output, the objects retain this additional data if the computation succeeds.

If the hydrogen set mode of the output molfile calls for a change in hydrogen status, the stage when
these computations are performed depends on the hydrogen addition mode. If the output mode calls
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 497

CACTVS Tcl and Python Scripting Language Reference
for potential hydrogen additions, the computations are executed after the addition - and this means,
on the temporary duplicate, so the original object does not see the new property data. If the hydrogen
mode does not change the hydrogen set, or potentially removes hydrogens, computations are
performed on the original objects and then the object is potentially duplicated, with all its data, for
hydrogen removal and output. In the latter case, the additional property data is visible on the original
input objects.

The command returns a list of the object handles or references which were actually written to file.
In cases like a reaction being split into ensembles, or a dataset taken apart, this is not necessarily the
same object handle collection as the input object list. For output from an input molfile argument, the
total number of objects written is returned instead, because the read objects are not retained.

The PYTHON class method is a one-shot command. The transient molfile created from the
initialization items is automatically closed when the command finishes.

Examples:
molfile write “myfile.sdf” $eh1 $eh2
set fhandle [molfile open z.cbin w hydrogens add format cbin]
molfile write $fhandle $dset1
molfile write $fhandle $dset2
molfile close $fhandle

The first sample line uses the single-shot file operation feature of the molfile command. Instead of
a molfile handle, a file name is passed, and that file is automatically opened, the output performed,
and then the file is closed. Two ensembles are written with a single statement to the output file
myfile.sdf. The desired file format is guessed from the file name suffix. No change in hydrogen
status, etc. is performed, and no extra data is written out.

The next four example lines show how two complete datasets can be written to a native CACTVS
toolkit binary file. Hydrogens are added to structures or reactions in the dataset - but the original
dataset elements are not changed, since the addition is performed on temporary object duplicates.
Also, the CACTVS binary format is requested explicitly by setting the format attribute. In this case,
this is not really required, since the file format could also be guessed from the file name suffix.
However, in case a non-standard file name suffix is used, formats must be specified explicitly, or the
default format (MDL SD-file) is used. If the CACTVS binary file is later opened for reading with a read
scope of dataset, all dataset elements plus the dataset-level property data can be recovered.
498 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The network Command

The network command is the major object command for network objects. These are a high-level
abstraction for any kind of data relationship which can be expressed as a network of vertices and
connections. Network objects do not have a direct relationship with ensemble or reaction objects,
but of course network nodes or connections can store ensemble or reaction data. However, these are
then stored as vertex or connection properties of the respective type and not as direct memberships,
like ensembles or reactions which are a member of a dataset object.

The syntax of this command follows the standard schema of command/subcommand/majorhandle.
Networks are major objects and thus do not need any minor object labels for identification.

There are currently no transient network objects.

Examples:
network get $nhandle N_CONNECTION_COUNT

This is the list of currently officially supported subcommands:

network append
network append nhandle ?property value?...
n.append({?property:value,?...})
n.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
network append $nhandle N_NAME “_new”

network assign
network assign nhandle srcproperty dstproperty
n.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same network. Both properties must be associated
with the network object class. This process is more efficient than going through a pair of network
get/network set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant network rename directly exchanges
the property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

If the properties are not associated with networks (prefix N_), the operation is performed on all
network nodes or vertices if appropriate.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 499

CACTVS Tcl and Python Scripting Language Reference
The command returns the object handle for TCL, or object reference for PYTHON.

Examples
network assign $nh V_IDENT V_NAME

network connections
network connections nhandle ?filterset? ?filtermode?
n.connections(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the connections the
network contains as minor objects. This is explained in more detail in the section about object
cross-references.

Examples:
network connections $nhandle
filter create isa_link property C_ONTOLOGY_LINK value is_a operator =
network connections $nhandle isa_link

The example simply returns a list of the labels of the connections the network contains as minor
objects. The second example restricts these to the subset where property C_ONTOLOGY_LINK has a
specific value.

network create
network create ?attribute value?...
network create ?dictionary?
Network(?attribute,value?,...)
Network(attributedict)
Network.Create(?attribute,value?,...)
Network.Create(attributedict)

Create a new network object. All networks are created empty. The optional attribute keyword/value
list or single-parameter dictionary is processed just as with a network set command.

The return value of the command is the new network object handle or reference.

network dataset
network dataset nhandle ?filterlist?
n.dataset(?filters=?)

Return the dataset handle or reference of the dataset the network is member of. It the network is not
member of a dataset, or does not pass all of the optional filters, an empty string (or None for PYTHON)
is returned.

Example:
network dataset $nhandle

network defined
network defined nhandle property
n.defined(property)

This command checks whether a property is defined for the network. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The network valid command is used for this purpose.
500 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
network delete
network delete ?nhandle/nhandlelist/all?...
n.delete()
Network.Delete(“all”)
Network.Delete(?nref/nrefsequence/nhandle?,...)

Delete network objects and all their associated vertices and connections. The special parameter all
may be used to delete all networks currently registered in the application. Alternatively, any number
of network handles may be specified for specific object deletions.

The command returns the number of deleted networks.

Example:
network delete all
network delete $nhandle

network dget
network dget nhandle propertylist ?filterset? ?parameterdict?
n.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The difference between network get and network
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, network get and network dget are equivalent.

network dup
network dup nhandle ?dataset? ?position?
n.dup(?target=?,?position=?)

Duplicate a network with all minor objects and all attached data on the network object proper and
its minor objects.

The duplicate network is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (or None for PYTHON) places the duplicate outside
any dataset, regardless of the dataset membership of the source network.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the network is
inserted at the given position, starting with 0. If the requested position is larger than the current size
of the dataset, the network is appended.

Example:
network dup $nhandle

The command returns a new network handle or reference.

network exists
network exists nhandle ?filterlist?
n.exists(?filters=?)
Network.Exists(nref,?filters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 501

CACTVS Tcl and Python Scripting Language Reference
Check whether a network handle is valid. The command returns boolean 0 or 1. Optionally, the
network may be filtered by a standard filter list, and if it does not pass the filter, it is reported as not
valid.

Example:
network exists $nhandle

network expr
network expr nhandle expression
n.expr(expression)

Compute a standard SQL-style property expression for the network. This is explained in detail in the
chapter on property expressions.

network filter
network filter nhandle filterlist
n.filter(filters=)

Check whether the network passes a filter list. The return value is boolean 1 for success and 0 for
failure.

network get
network get nhandle propertylist ?filterset? ?parameterdict?
network get nhandle attribute
n.get(property=,?filters=?,?parameters=?)
n.get(attribute)
n[property/attribute]
n.property/attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
network get $nhandle {N_VERTEX_COUNT N_NAME}

yields the vertex count and name of the network as a list. If the information is not available, an
attempt is made to compute it. If the computation fails, an error results.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the network get command are network new, network dget, network jget,
network jnew, network jshow, network nget, network show, network sqldget, network
sqlget, network sqlnew, and network sqlshow.

In addition to property data, the network object possesses a few attributes, which can be retrieved
with the get command (but not by its related sister subcommands like dget, sqlget, etc.). Some
of them are also modifiable via network set.These attributes are:

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.
502 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the network, as free-form string data.

• authorurl
A URL with information on the author, or an empty string if unset.

• category
A category string to be used if the network is stored in a repository.

• classuuid
The base class UUID of this network object, as related to its authorship attribute set.

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object on
its workbench, encoded as integer pair. This attribute can be changed.

• deletable
Flag indicating whether the object can be deleted with a standard network delete
command. This attribute is read-only. Networks which are, for example, property data
values or a part of a molfile loop command cannot be deleted by standard means.

• date
The date the network structure was defined.

• doi
A digital object identifier for the network object content, if defined.

• eolchars
The default EOL character(s) to use when writing the table to text files. The default is the
standard platform EOL character(s).
The magic strings windows, mac (both checked for the first three characters only) as well
as unix and linux are automatically translated to the standard platform line terminators and
not copied verbatim. Alternative names for these standard system encodings are crlf, cr and
lf. The special value default resets the attribute to the platform-dependent default.

• email
A contact email of the author.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 503

CACTVS Tcl and Python Scripting Language Reference
• failures
A list of properties for which computation failed on this object. This is a read-only attribute.
Depending on configuration settings, this information may be used to block pointless
attempts at re-computation of incomputable data.

• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

• invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

• infourl
A URL with information on the network object content, or an empty string if unset.

• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

• keywords
A list of keywords associated with the network object.

• license
The license class associated with this network object. Setting the license to a standard type
updates the associated URL with a standard location.

• licenseurl
A URL with details about the network object license.

• literature
A free-form literature reference.

• modcount
Object structure modification count. This attribute is read-only.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• name
A free-form network name as string.

• orcid
The ORCID code of the author (see www.orcid.org).
504 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• progress
A user-defined progress value intended to track the state of lengthy operations on the table.
It is an integer between zero and one hundred and is initially set to zero. When the argument
is set, it accepts a floating point value, but the stored value is automatically rounded to the
next integer and forced into the 0..100 range.

• pyobject
If the toolkit was compiled with PYTHON support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with PYTHON support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

• record
The current iterator record. The pseudo records follow the vertex list, the first vertex is
record one.

• refcount
If the TCL interpreter is using native CACTVS objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this network. This attribute is read-only.

• references
Cross references of the network. This is a nested list of class UUIDs and reference type tags.

• regid
For registered data networks, the registration ID. Zero if this is a private network object.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

• uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

• version
A version number of the network. This is a string in a 1.2.3 (or shortened) style.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 505

CACTVS Tcl and Python Scripting Language Reference
• versionuuid
The version UUID associated with this network object as per its authorship attributes.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object on its
workbench. This attribute can be changed.

• y
f the toolkit was compiled with factory support, this is the y coordinate of the object on its
workbench.This attribute can be changed.

network getparam
network getparam nhandle property ?key? ?default?
n.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

network hierarchy
network hierarchy nhandle ?filterlist? ?root?
n.hierarchy(?filters=?,?root=?)

Return the hierarchy handle or reference of the hierarchy the network is part of. If the network is not
member of a hierarchy, or does not pass all of the optional filters, an empty string or None for PYTHON
is returned. By default, the hierarchy object which directly contains the network is returned. If the
root flag is set, the root hierarchy object is reported instead, which is the same only if the hierarchy
has only a single level.

Example:

network hierarchy $nhandle

network index
network index nhandle
n.index()

Get the position of the network in the object list of its dataset. If the network is not member of a
dataset, -1 is returned.

network jget
network jget nhandle propertylist ?filterset? ?parameterdict?
n.jget(property=,?filters=?,?parameters=?)

This is a variant of network get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.
506 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
network jnew
network jnew nhandle propertylist ?filterset? ?parameterdict?
n.jnew(property=,?filters=?,?parameters=?)

This is a variant of network new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

network jshow
network jshow nhandle propertylist ?filterset? ?parameterdict?
n.jshow(property=,?filters=?,?parameters=?)

This is a variant of network show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

network list
network list ?filterlist?
Network.List(?filters=?)

Without a filter list argument, the command returns a list of the handles or references of all existing
network objects.

If a filter list is specified, only those networks which pass all filters are listed. Filters may refer to
the minor objects of networks (i.e. vertices and connections). In that case, a filter succeeds if any
vertex or connection passes the filter.

Examples:
network list

network lock
network lock nhandle propertylist/objclass/all ?compute?
n.lock(property=,?compute=?)

Lock property data of the network, meaning that it is no longer controlled by the standard data
consistency manager. The data consistency manager deletes specific property data if anything is
done to the network which would invalidate the information. Blocking the consistency manager can
be useful when building networks from components in a script. Property data remains locked until
is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the network or network minor objects are locked. If the boolean
compute flag is set, an attempt is made to compute the property if it is not yet present.
Otherwise, a request to lock non-existent data is silently ignored. It is not possible to lock
individual property fields.

• all
All valid network and network minor object properties are locked. The compute flag is
ignored.

• vertex, connection, network
These is are object class identifiers. All property data which is controlled by the network
major object and attached to the specified object class is locked.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 507

CACTVS Tcl and Python Scripting Language Reference
A lock can be released by a network unlock command.

network max
network max nhandle propertylist ?filterset?
n.max(property=,?filters=?)

Get the maximum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values.

While it is possible to work with network properties, this is pointless since there is only a single
instance of a network property per network. Usually, vertex or connection minor object properties
are tested. The objects whose property values are used for the determination of the maximum values
may optionally be filtered by a standard filter set. If no objects pass the filter, the result is an empty
list.

Example:
network max $nhandle V_LEVEL

computes the maximum value of the V_LEVEL property over all vertices.

network metadata
network metadata nhandle property ?field ?value??
n.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands network setparam and network
getparam can be used for convenient manipulation of specific keys in the computation parameter
field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

network min
network min nhandle propertylist ?filterset?
n.min(property=,?filters=?)

Get the minimum values of the properties named in the propertylist parameter. The return value of
the command is a list of the minimum property values.

While it is possible to work with network properties, this is pointless since there is only a single
instance of a network property per network. Usually, vertex or connection minor object properties
are retrieved. The objects whose property values are used for the determination of the minimum
values may optionally be filtered by a standard filter set. If no objects pass the filter, the result is an
empty list.

Example:
network min $nhandle V_LEVEL

computes the minimum value of property V_LEVEL over all vertices of the network.

network move
network move nhandle ?datasethandle|remotehandle? ?position?
n.move(?target=?,?position=?)
508 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Make a network a member of a dataset, or remove it from a dataset. If the dataset handle parameter
is omitted, or is an empty string (or None for PYTHON), the object is removed from its current dataset.
If it was not a dataset member, this command variant does nothing. The dataset handle may be the
name of a remote dataset for moving objects over a network connection.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of
dataset objects minus one, the object is appended as per the default. It is legal to use this command
for moving objects within the same dataset.

Another special position value is random. This value moves to the object to a random position in
the dataset. Using this mode with remote datasets is currently not supported.

By default, datasets do not accept networks as objects. This must be explicitly enabled by modifying
the acceptance bits, as for example in
dataset append $dhandle accepts network

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the network prior to the move operation. It is either
a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of a
dataset.

This command interacts with the insert control mechanism of size-constrained datasets. More
information is provided in the description of the sizecontrol dataset parameter.

Examples:
network move $nhandle $dhandle 0
network move $nhandle

In the first sample line, the network is inserted as the first element in a dataset. The second line
reverts this operation and removes the network from the dataset.

This command can be used with a remote dataset descriptor. In that case, the network is packed into
a serialized object representation, transmitted over the network and restored as member of the
remote dataset at the specified position. The local network is deleted if the transfer succeeds.

Example:
network move $nhandle blockbuster@server2:9998 end

This command moves the network to the dataset which was set up as listener on port 9998 and pass
phrase blockbuster on host server2. The local network is deleted, and its copy is inserted at the end
of the remote dataset.

network mutex
network mutex nhandle mode
n.mutex(mode)

Manipulate the object mutex.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 509

CACTVS Tcl and Python Scripting Language Reference
During the execution of a script command, the mutex of the major object(s) associated with the
command are automatically locked and unlocked, so that the operation of the command is
thread-safe. This applies to builds that support multi-threading, either by allowing multiple parallel
script interpreters in separate threads or by supporting helper threads for the acceleration of
command execution or background information processing.

This command locks major objects for a period of time that exceeds a single command. A lock on
the object can only be released from the same interpreter thread that set the lock. Any other threaded
interpreters, or auxiliary threads, block until a mutex release command has been executed when
accessing a locked command object. This command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

network need
network need nhandle propertylist ?mode? ?parameterdict?
n.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original network handle or reference.

Example:
network need $nhandle V_LEVEL recalc

network new
network new nhandle propertylist ?filterset? ?parameterdict?
n.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
510 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the network get command. The difference between network get and network
new is that the latter forces the re-computation of the property data, regardless whether it is present
and valid, or not.

network nget
network nget nhandle propertylist ?filterset? ?parameterdict?
n.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The difference between network get and network
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

network nnew
network nnew nhandle propertylist ?filterset? ?parameterdict?
n.nnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the network get command. The difference between network get and network
nnew is that the latter always returns numeric data, even if symbolic names for the values are
available, and that property data re-computation is enforced.

network pack
network pack nhandle ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?
n.pack(?maxsize=?,?requestprops=?,?suppressedprops=?,?compressionlib=?)

Pack the network object into a base64-encoded compressed serialized object string. This string does
not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. The network vertex and connection minor objects and their property data are part of the
dump.

The maximum size of the object string (default -1, meaning unlimited) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The two optional parameter lists allow to request a specific property set to be part of the package,
even if it normally would not be included, and to explicitly omit properties from the dump. No
property computation is performed, and suppressed properties are not purged from the source
ensemble.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The command returns the pack string.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 511

CACTVS Tcl and Python Scripting Language Reference
In PYTHON, networks support the standard pickle/unpickle protocol.

network properties
network properties nhandle ?pattern? ?noempty?
n.properties(?pattern=?,?noempty=?)

Get a list of valid properties of the network proper and its vertex and connection minor objects.

The list can be filtered by a string match pattern. If the noempty flag is set, only properties where at
least one data element controlled by the network (i.e. a value for an vertex of the network, etc.) is
not the property default value are output. By default, the filter pattern is an empty string, and the
noempty flag is not set.

Example:
network properties $nhandle N_*

network purge
network purge nhandle propertylist/network/vertex/connection ?emptyonly?
n.purge(?properties=?,?emptyonly=?)

Delete property data from the network. The properties may be network properties (prefix N_), or
properties of the network minor objects, i.e. vertices (prefix V_) and connection (prefix C_). If a
property marked for deletion is not found on the associated objects, it is silently ignored.

The optional boolean flag emptyonly allows to restrict the deletion to those properties where all the
values of a property associated with a network object (such as on all vertices in a network for vertex
properties, or just the single network property value for network properties) are set to the default
property value.

In addition to property names, the object class names network, vertex or connection may be
used. These delete all property data of that class from the network. They do not delete the objects
proper, e.g. all vertices are still present after a network purge $nh vertex, though without any data
that was not locked.

The return value is the original network handle or reference.

Examples:
network purge $nhandle N_NAME
network purge $nhandle V_ONTOLOGY_TERM 1
network purge $nhandke connection

network read
network read filename ?maxdefinitions?
Network.Read(filename=,?maxdefinitions=?)

Read network data from a file and create a new network object.

The filename argument can either be a disk file name, a pipe to an external generator program which
starts with a vertical bar and is followed by the pipe programs and their parameters, the magic file
name stdin, or, on Unix-class systems, an existing TCL or PYTHON file or socket handle.

Currently, there are seven network file formats which can be read. These are automatically identified
by peeking into their contents, not by their file name. The recognized formats are:
512 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• the native CACTVS network object dump file (standard suffix .nbin),

• OBO ontology definition files in version 1.2 (standard suffix .obo).

• GENEONTOLOGY ontology definition files (standard suffix .go)

• SIF network files (standard suffix .sif)

• GML network files (standard suffix .gml)

• XGMML network files (standard suffix .xgmml or .gr)

• KEGG metabolism networks (standard suffix .kgml or .kegg)

• KNIME network data files (standard suffix .knet). These can only be read from a disk file, not
a pipe or other data channel because they are internally a zipped collection of data files.

All of these formats can store only a single top-level network, so there are no record positioning
commands for network data input. Nested networks, for example in the GML or XGMML formats, are
currently not directly readable. Some additional network file formats can currently be written, but
not read (for example, GRAPHVIZ .gv and KNIME BEEF).

The optional definition count argument can be used to stop reading a file after the specified number
of vertex definitions have been read. This is basically a debug feature which allows program testing
with a smaller network. The option is not supported with native CACTVS network dump files.

The command returns the handle or reference of the new network object.

Example:
set nh [network read “chebi.obo”]

network ref
Network.Ref(identifier)

PYTHON only method to get a reaction reference from a handle or another identifier. For networks,
other recognized identifiers are network references, integers encoding the numeric part of the handle
string, the UUID of the network object, or its name.

network rename
network rename nhandle srcproperty dstproperty
n.rename(srcproperty=,dstproperty=)

This is a variant of the network assign command. Please refer the command description in that
paragraph.

network rewind
network rewind nhandle
n.rewind()

Reset the network iterator position. This is equivalent to setting the record network attribute to one.

network scan
network scan nhandle expression/queryhandle ?mode? ?parameterdict?
n.scan(query=,?mode=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 513

CACTVS Tcl and Python Scripting Language Reference
Perform a query on the network. The syntax of the query expression is the same as that of the
molfile scan command and explained in more detail in its section about query expressions. In
many aspects, this command behaves like an in-memory data file version of the molfile scan or
dataset scan commands. The main difference is that the primary objects that are scanned are the
vertices of the network, and their property data (or indirectly, the data of the network major object,
or the directly attached connection minor objects) is what is checked when determining a match or
mismatch.

The optional parameter dictionary is the same as for molfile scan, but not all parameters are
actually used. At this time, only the matchcallback, maxhits, maxscan, order, progresscallback,
progresscallbackfrequency, sscheckcallback, startposition and target parameters have an effect. In
case a progress callback function is used, the network handle is passed as argument in place of the
molfile handle in molfile scan.

The vertices of the network are visited in the order of their index value (see vertex index
command). This index value plus one is used also used as a replacement for the record number of
a vertex in the dataset.

The return value depends on the mode. The default mode is vertexlist. The following modes are
supported for dataset queries:

• array (or alias tclarray, dict, pythondict)
The mode parameter is a list consisting of the mode selector array and a nested list of
properties and pseudo-properties. Each property item can be a list of one to three elements.
The first element is a property or pseudo-property, the second element a name, and the third
element again a property or pseudo property. The the second property item list element is
omitted, the name is the same as the first element. If the third element is missing, it is
assumed to be the pseudo-property record.

In this mode, the command returns a list of the names of the created arrays. For each name,
a global TCL array variable or PYTHON dictionary is created, and for each match, a TCL array
element with an element name equal to the value of the first item specification index and an
element value equal to the value of the third item specification is created (or a dictionary
entry with key and value for PYTHON). For example, the scan mode specification
{array {V_LABEL id2rec} {record rec2id V_LABEL}}

results in the creation of two global TCL arrays or PYTHON dictionaries in the current
interpreter, called id2rec and rec2id. The first has array elements (for PYTHON, dictionary
keys) where the element name is the label of the matching vertex (property V_LABEL), and
the value the pseudo-record number (the default since the third list parameter is omitted).
The second array has elements where the record number is the array element name, and the
corresponding value the vertex label. The return value of the scan statement is the list (tuple
for PYTHON) “id2rec rec2id”, containing the names of the two variables created.

If array elements for a specific key already exist, the new value is appended as a list object.
The registration procedure does not overwrite existing content. Since global arrays are
persistent, data is appended over multiple scan statements. If this is not desired. a statement
like unset -nocomplain $arrayname should be executed before the scan is started. It is
legal to use the same array name to register multiple properties in the array. In that case, any
match appends a new list element for every property. The list is however not nested.
514 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• bitvector
Return a string-encoded bit vector (series of 0s and 1s) indicating the match status for every
visited vertex.

• boolean
Return a boolean value indicating whether the next vertex matches or not.

• booleanvector
Return a boolean vector (series of 0s and 1s as vector elements) indicating the match status
of every visited vertex. The difference to the bitvector mode is that in the scripting interface
the vector elements are already isolated elements, for example they appear space-separated
in the string form.

• count
Count the number of hits. The result value is an integer.

• delete
Delete hit vertices from the network. This is the only scan command which actually changes
the network.

• exists
A boolean check for the existence of a hit. The same as count, except that the scan stops after
the first match.

• file
The mode parameter is a list consisting of the mode selector file and a molfile handle, which
must have been opened for writing, appending, or updating. The first matching vertex is
written to the file. After that. the scan stops. File attributes determine format, selection of
data written, structure encoding conventions such as hydrogen status, etc. If no matching
vertex is found, nothing is written. This mode only works with structure files that can accept
a vertex or a network object as output target. There are no I/O modules in the standard toolkit
package which currently have this capability.

• filelist
The mode parameter is a list consisting of the mode selector file and a molfile handle, which
must have been opened for writing, appending, or updating. Matching vertices are written
to that file. File attributes determine format, selection of data written, structure encoding
conventions such as hydrogen status, etc. If no matching vertex is found, nothing is written.
This mode will only work with structure files that can accept a vertex or a network object
as output target. There are no I/O modules in the standard toolkit package which currently
have this capability

• index
This is the same as record, except that the returned value is one less, since indices start with
zero.

• indexlist
This is the same as recordlist, except that the returned value is one less, since indices start
with zero
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 515

CACTVS Tcl and Python Scripting Language Reference
• property
The mode parameter is a list consisting of the mode selector property and a sequence of
properties and pseudo-properties. The selected properties for the first match are returned as
a list. After the first match, the scan stops. If there are no hits, an empty string is returned.
Properties which can be used in network scans are either of the vertex class (prefix V, the
most common case for network queries), class network (prefix N, of limited value since
there is only a single network scanned, and the property values are thus the same for all
matches), or of the connection class (prefix C). Connection properties are reported as lists
which contain the data of all connections the matching vertex participates in.

• propertylist
The mode parameter is a list consisting of the mode selector propertylist and a sequence of
properties and pseudo-properties. The selected properties for all matches are returned as a
nested list. If there are no hits, an empty string is returned. This mode is also selected if the
mode argument is simply a list of property and pseudo property names without an
identifiable mode keyword as first list element.

• record
Return the sequence number of the first hit. Sequence numbers begin, for the sake of
comparability with structure file scan record numbers, with one and are equivalent to the
vertex index position plus one. The scan stops after the first match.

• recordlist
Return sequence numbers of all hits, or an empty list. Sequence numbers begin, for the sake
of comparability with structure file scan record numbers, with one and are equivalent to the
vertex index position plus one.

• table
The mode parameter is a list consisting of the mode selector table and a sequence of
properties and pseudo-properties. This scan mode returns a table handle. The table is
automatically configured with properly typed columns corresponding to the requested
properties. For each hit, a row is added. If there are no hits, a table handle is still returned,
but the table does not have any rows. This retrieval mode is only available if the toolkit has
been compiled with table support. The individual properties may also be specified each as
a list consisting of the property name, and an arbitrary string. In that case, the string is used
as the column name. By default, the column names are the same as the name of the property
they store. Example:
{table V_LABEL N_CONNECTION_COUNT C_LABEL C_ONTOLOGY_LINK}

sets up a table with four columns that store the matching vertex label, the network
connection count (the same value for all rows, since all matches are all on the same
network), and the labels and link types of the connections attached to the matched vertex.
The latter two columns are automatically stored as vector types, since there are potentially
multiple values associated with a single matching vertex.

Instead of the keyword table, an existing table handle may also be used. In that case, any
existing matching table columns are automatically re-used to store result data. Additionally
specified properties are added as new columns to the right of the previously existing
columns. New table rows generated by matches are appended to the bottom of the table.
516 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• tablecollection
Since all objects subject to scans with this command are already in memory, this mode is
identical to the table scan mode for network scans. No duplicate table reference objects are
created. The result table always refers the network objects directly.

• vrecord
For network scans, this is the same as record.

• vrecordlist
For network scans, this is the same as recordlist.

• vertex
Report the label of the first matching vertex. This is functionally equivalent to the mode
property V_LABEL, though internally optimized. The scan stops after the first match.

• vertexlist
Report a list of the labels of the matching vertices. This is functionally equivalent to the
mode propertylist V_LABEL, though internally optimized.

If requested property data is not present on vertices to be tested, an attempt is made to compute it.
If this fails, in retrieval mode table NULL cells are generated, and property retrieval as list data
produces empty list elements, but no errors.

The following pseudo properties can be retrieved in addition to normal properties:

• avgscore
The average value of all computed scores, such as Tanimoto, Cosine or Tversky similarity
scores, in the matching query for this result.

• conformerindex
The index of the matching conformer in case of 3D queries with multiple conformations, -1
if no matching conformer index was determined.

• conformer
A list of the atomic coordinates of the matching conformer, if a 3D query was performed.
If this is not the case, an empty vector is the result. The data type of this vector is coorvec
(x,y,z-triples as vector elements).

• filename
This pseudo-property is only provided for compatibility with molfile scan. It is always an
empty string.

• image
A structure GIF image (property E_GIF) with highlighted matching substructure atoms and
bonds. A normal E_GIF retrieval property would just show the structure, but without
highlighting. The data type of this property is the same as that of E_GIF (depending on the
configuration, a diskfile reference or an in-memory blob).

• index
This is the same as record, except that the retrieved value is one less, since indices start with
zero.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 517

CACTVS Tcl and Python Scripting Language Reference
• matchatoms
An integer vector holding the labels of all atoms matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlighatoms is an alias for this pseudo property.

• matchbondatoms
The same as matchbonds, except that each element is a pair of the labels of the matching
atoms in the bonds, not the bond label as a single number.

• matchbonds
An integer vector holding the labels of all bonds matching the substructures used in
evaluating the query expression. If no substructure was used for the match, this vector is
empty. highlightbonds is an alias for this pseudo property.

• matchcount
The first element of the matchcounts array, as described below. If the query does not contain
any substructure match nodes, the result is empty.

• matchcounts
An integer vector holding the number of distinct substructure matches for substructure
query nodes in the query tree. For normal substructure expressions, this value can only be
zero or one because the standard substructure match mode only checks for the presence of
any match (match mode first). Additionally, this value can be minus one if the node was
never evaluated, for example because it is part of an or expression. Only if the count
modifier is used together with the substructure query operator, or the substructure operator
is the range operator, the possibility of multiple matches is evaluated and larger values can
be obtained. For these operations the default match mode is distinctinneratoms (see match
ss command).

• matchmask
A bitvector indicating which children of the root query node have matched. The length of
the bitvector is the same as the number of children of the root node. A typical application
of this retrieval item is in combination with a range node as root node.

• maxscore
The maximum value of all computed scores, such as Cosine, Tanimoto or Tversky similarity
scores, in the matching query for this result.

• merit
For queries which use a merit/demerit rating scheme (for example, Bruns/Watson queries)
this retrieves the accumulated merit/demerit sum of the top-level query node. The query
needs to match for this retrieval to work, so in case none of the demerit rules match, you get
an empty result, not a default zero merit/demerit value. Internally, there is no distinction
between merit and demerit scores. The keyword demerit is an alias for this pseudo-property.

• minscore
The minimum value of all computed scores, such as Cosine, Tanimoto or Tversky similarity
scores, in the matching query for this result.
518 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• parent
The parent structure of the matching structure as a packed, base64-encoded serialized object
string. If the dataset ensemble does not already contain it, it is computed from the structure
as property E_PARENT_STRUCTURE.

• productmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• productmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the right side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• productmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the right side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• queryid
The ID of the search tree query item which was responsible for the principal match. Every
tree element of a query expression possesses an ID, starting with 1, and then assigned in
incremental sequence from left to right in depth-first manner. For simple property or
structure match expressions, the query ID is the ID of the matching branch, i.e. one for
single-node expressions. For logical expressions with an or, orcontinue or not node, the
overall reported query ID is that of the first matching leaf node. For expressions, where all
leaves need to be checked, the query ID is the ID of the and or eor node where all leaves
matched, not the ID of any individual leaf node.

• reagentmatchatoms
The same as the matchatoms pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• reagentmatchbondatoms
The same as the matchbondatoms pseudo property, but for the ensemble on the left side of
a matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• reagentmatchbonds
The same as the matchbonds pseudo property, but for the ensemble on the left side of a
matching reaction, not a simple structure. If no reaction was matched, this is an empty list.

• record
The record number. In the context of in-memory datasets, this is the dataset list index of the
matching object plus one. rc is an alias for this pseudo property.

• rgatoms(rg)
A list of the atom labels in a matching structure which were mapped to an expanded R-group
atom in the query. The property index is the name of the R-group of interest defined in the
substructure, usually something like R1. If there was no expanded R-group of that name, the
result list is empty.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 519

CACTVS Tcl and Python Scripting Language Reference
• rgattachments(rg)
A nested list of the atom label pairs of the bonds in a matching structure which connect
between the structure framework and the atoms expanded as the named R-group rg. If there
was no expanded R-group of that name, the result list is empty.

• score
The first element of the scores array, as described below. If the query does not contain any
scoring expressions, the result is empty.

• scores
An integer vector of the results of all query expression branches, in depth-first left-to-right
order, which computed a score, such as structure similarity queries with Cosine, Tanimoto
or Tversky bitvector comparisons. In case a branch was not executed when the match was
determined, a zero value is reported.

• structure
The matched structure as a packed, base64-encoded serialized object string.

• vrecord
For network object scans, this is always the same as record.

These pseudo properties are identical to those available for structure file queries. However, structure
file queries allow the use of a couple of additional pseudo properties which are not supported for
network queries.

network set
network set nhandle ?property value?...
network set nhandle ?dictionary?
n.set(property,value,...)
n.set({property:value,...})
n.property = value
n[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

network setparam
network setparam nhandle property ?key value?...
network setparam nhandle property dictionary
n.setparam(property,?key,value?...)
n.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

The return value is the updated property computation parameter dictionary.

network show
network show nhandle propertylist ?filterset? ?parameterdict?
n.show(property=,?filters=?,?parameters=?)
520 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The difference between network get and network
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, network get and network show are equivalent.

network sqldget
network sqldget nhandle propertylist ?filterset? ?parameterdict?
n.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The differences between network get and network
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

network sqlget
network sqlget nhandle propertylist ?filterset? ?parameterdict?
n.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The difference between network get and network
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON
script processing.

network sqlnew
network sqlnew nhandle propertylist ?filterset? ?parameterdict?
n.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The differences between network get and network
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

network sqlshow
network sqlshow nhandle propertylist ?filterset? ?parameterdict?
n.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the network get command. The differences between network get and
network sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TCL or PYTHON script processing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 521

CACTVS Tcl and Python Scripting Language Reference
network subcommands
network subcommands
dir(Network)

Lists all subcommands of the network command. Note that this command does not require a network
handle.

network transfer
network transfer nhandle propertylist ?targethandle? ?targetpropertylist?
n.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one network to another network or other major object, without going
through an intermediate scripting language object representation, or dissociate property data from
the network. If a property in the argument property list is not already valid on the source network,
an attempt is made to compute it.

If a target object is specified, the return value is the handle or reference of the target object. The
source and target object cannot be the same object. In case a property associated with network minor
objects (connections and vertices), the behavior is the same as described for ensemble minor objects
in the documentation of ens transfer.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple network get, i.e. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only
unlinked from the source object, but not destroyed. This means that the object handles returned by
the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

network unlock
network unlock nhandle propertylist/objclass/all
n.unlock(property=)

Unlock property data for the network, meaning that they are again under the control of the standard
data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names or references
Valid property instances on the network, or network minor objects are unlocked.
Non-existent data is silently ignored. It is not possible to unlock individual property fields.

• all
All valid network or network minor objects properties are unlocked.
522 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• vertex, connection, network
These are object class identifiers. All property data which is controlled by the network major
object and attached to the specified object class is unlocked.

Property data locks are obtained by the network lock command.

The command returns the original network handle or reference.

network unpack
network unpack packstring ?compressionlib?
Network.Unpack(data=,?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by a network pack command.
The return value of this function is the handle or reference of the newly created network object,
which is an exact duplicate of the packed original network.

Packed networks may also be unpacked by the network create command.

The default compression library is zlib. For more options, see network pack.

Example:
set packdata [network pack $nhandle]

set nhandle [network unpack $packdata]

network valid
network valid nhandle propertylist
n.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the network or its minor objects. No attempt at computation is made.

Example:
network valid $nhandle V_ONTOLOGY_TERM

will report whether the network has ontology term definitions attached to its vertices or not.

network has is an alias to this command.

network verify
network verify nhandle property
n.verify(property)

Verify the values of the specified property on the network. The property data must be valid, and a
network or network minor sub-object property. If the data can be found, it is checked against all
constraints defined for the property, and, if such a function has been defined, is tested with the value
verification function of the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.

network vertices
network vertices nhandle ?filterset? ?filtermode?
n.vertices(?filters=?,?mode=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 523

CACTVS Tcl and Python Scripting Language Reference
Standard cross-referencing command to obtain the labels or references of the vertices the network
contains as minor objects. This is explained in more detail in the section about object
cross-references.

Examples:
network vertices $nhandle
filter create rootnode property V_LEVEL value 0 operator =
network vertices $nhandle rootnode

The example simply returns a list of the labels of the vertices the network contains as minor objects.
The second example restricts these to the subset where property V_LEVEL has a specific value.

network write
network write nhandle filename ?format?
n.write(filename=,?format=?)

Write the contents of a network object to a file. The output file format is deduced from the suffix of
the file name. If it is not recognized, the native toolkit format (default suffix .nbin) is used. This
default mechanism can be overridden by giving an explicit format name in the optional argument.

The currently supported network output formats are CACTVS native (.nbin), SIF (.sif), GML (.gml),
XGMML (.xgmml, .gr), KNIME network data (.knet) , BEEF (.beef)., GRAPHVIZ (.gv), and KEGG
metabolic network (.kgml). OBO and GENEONTOLOGY ontology files can only be read, but not written.
Predefined format alias names include knime for KNET files, and bisonet for BEEF. Zipped BEEF files
cannot be written directly at this time, but can readily be obtained by first writing an unpacked BEEF
file and then running an external standard zip-compatible compressor on it.

The file name may be either a disk file name, one of the magic file names stdout or stderr, a pipe
construct, or, on Unix-class operating systems, an open TCL or Python file or socket handle.

The command returns the original network handle or reference.
524 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The pi Command

The pi command is the generic command used to manipulate  systems. The syntax of this command
follows the standard schema of command/subcommand/majorhandle/minorlabel.

Pseudo  system labels first, last and random are special values, which select the first  system in
the  system list, the last, or a random  system.

Examples:
pi get $ehandle 1 P_ATOMS

This is the list of officially supported subcommands:

pi append
pi append ehandle label ?property value?...
p.append({?property:value,?...})
p.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

Example:
pi append $ehandle 1 P_NAME “_uvactive”

pi atoms
pi atoms ehandle label ?filterset? ?filtermode?
p.atoms(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the atom in the  system.
This is explained in more detail in the section about object cross-references.

Example:
pi atoms $ehandle 1 carbon

returns the labels of the carbon atoms in the  system.

pi bonds
pi bonds ehandle label ?filterset? ?filtermode?
p.bonds(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bonds the  system
contains. This is explained in more detail in the section about object cross-references. Technically,
a  system contains atoms, not bonds. This command lists all bonds which exist between atoms in
the  system. Bonds involving only a single atom in a  system are excluded.

Examples:
pi bonds $ehandle 1
pi bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds  system 1 contains. The second example returns
the number of double or triple bonds in the  system.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 525

CACTVS Tcl and Python Scripting Language Reference
pi create
pi create ehandle ?atom/atomlist?...
Pi(eref,?aref/arefsequence/alabel?,...)
Pi(aref,...)
Pi.Create(eref,?aref/arefsequence/alabel?,...)
Pi.Create(aref,...)

Define a new  system from an atom set. A new  system is always created, even if one with the same
atoms already exists. No check on the presence of  electrons is performed. Before the command is
executed, the default  system set is automatically instantiated if it was not yet computed. Adding
a new  system invalidates properties which are sensitive to  system changes.

The command returns the label of the new  system.

pi defined
pi defined ehandle label property
p.defined(property)

This command checks whether a property is defined for the  system. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

pi delete
pi delete ehandle ?label?...
pi delete ehandle all
p.delete()
Pi.Delete(eref,?pref/plabel/prefsequence?,...)
Pi.Delete(pref,...)
Pi.Delete(eref,“all”)

This command removes  systems from the ensemble  system list and destroys them. A pi property
invalidation event is generated and thus the command may indirectly change the ensemble data.

This command is rarely used.  systems are usually generated and destroyed automatically.

The command returns the number of deleted items.

pi dget
pi dget ehandle label propertylist ?filterset? ?parameterdict?
p.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the pi get command. The difference between pi get and pi dget is that the
latter does not attempt computation of property data, but rather initializes the property values to the
default and returns that default if the data is not yet available. For data already present, pi get and
pi dget are equivalent.

pi ens
p.ens()

PYTHON-only method to get the ensemble reference from a  system reference.
526 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
pi exists
pi exists ehandle label ?filterlist?
p.exists(?filters=?)
Pi.Exists(eref,label,?filters=?)

Check whether this  system exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns boolean 0 if the  system does not exist, or fails the filter,
and 1 in case of successful testing.

Example:
pi exists $ehandle 99

pi expr
pi expr ehandle label expression
p.expr(expression)

Compute a standard SQL-style property expression for the  system. This is explained in detail in
the chapter on property expressions.

pi fill
pi fill ehandle label ?property value?...
p.fill({property:value,...})
p.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

pi filter
pi filter ehandle label filterlist
p.filter(filters)

Check whether a  system passes a filter list. The return value is boolean 1 for success and 0 for
failure.

Example:
pi filter $ehandle 1 [list carbon doublebond]

checks whether the  system contains one or more carbon atoms and one or more double bonds. The
double bond does not need to contain a carbon atom.

pi get
pi get ehandle label propertylist ?filterset? ?parameterdict?
p.get(property=,?filters=?,?parameters=?)
p[property]
p.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

pi groups
pi groups ehandle label ?filterset? ?filtermode?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 527

CACTVS Tcl and Python Scripting Language Reference
p.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the  system
overlaps with. This is explained in more detail in the section about object cross-references. An
overlap between a  system and a group is established when there are common atoms which are
contained in both objects.

Example:
pi groups $ehandle 1

pi index
pi index ehandle label
p.index()

Get the index of the  system. The index is the position in the  system list of the ensemble. The first
position is index 0.

Example:
pi index $ehandle 99

pi jget
pi jget ehandle label propertylist ?filterset? ?parameterdict?
p.jget(property=,?filters=?,?parameters=?)

This is a variant of pi get which returns the result data as a JSON formatted string instead of TCL

or PYTHON interpreter objects.

pi jnew
pi jnew ehandle label propertylist ?filterset? ?parameterdict?
p.jnew(property=,?filters=?,?parameters=?)

This is a variant of pi new which returns the result data as a JSON formatted string instead of TCL

or PYTHON interpreter objects.

pi jshow
pi jshow ehandle label propertylist ?filterset? ?parameterdict?
p.jshow(property=,?filters=?,?parameters=?)

This is a variant of pi show which returns the result data as a JSON formatted string instead of TCL

or PYTHON interpreter objects.

pi local
pi local ehandle label propertylist ?filterset? ?parameterdict?
p.local(property=,?filters=?,?parameters=?

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

pi match
pi match ehandle label ss_ehandle ?ss_label? ?matchflags? ?ignoreflags?

?atommatchvar? ?bondmatchvar? ?molmatchvar?
p.match(substructure=,?substructurepisystem=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)
528 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Check whether the selected  system matches a substructure. Only the first substructure  system,
or the  system selected by the substructure label parameter, is tested. The substructure may be part
of any structure ensemble, and even be in the same ensemble as the primary command  system.
Both the atoms in the  system and the bonds between them are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels. If no match can be found, the variable is set to an empty list, or NONE for PYTHON.
In case only a bond or molecule match variable is needed, an empty string can be used to skip the
unused match variable argument positions.

Examples:
pi match [ens create C=CCC=N] 1 C=C
pi match [ens create C=CCC=N] 1 N=C
pi match [ens create C=CCC=N] 2 C=C
pi match [ens create C=CCC=N] 2 N=C

The first and last commands match, the second and third do not.

pi mol
pi mol ehandle label ?filterset? ?filtermode?
p.mol(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the molecules the  system
is contained in. This is explained in more detail in the section about object cross-references.

pi new
pi new ehandle label propertylist ?filterset? ?parameterdict?
p.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

The difference between pi get and pi new is that the latter forces the re-computation of the property
data, regardless whether it is present and valid, or not.

pi nget
pi nget ehandle label propertylist ?filterset? ?parameterdict?
p.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the pi get command. The difference between pi get and pi nget is that the
latter returns numeric data, even if symbolic names for the values are available.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 529

CACTVS Tcl and Python Scripting Language Reference
pi pi
pi pi ehandle label
Pi.Ref(eref,identifier)

Standard cross-referencing command to obtain the label or reference of the  system as stored in
property P_LABEL. This is explained in more detail in the section about object cross-references.

Example:
pi pi $ehandle #0

returns the label of the first  system of the ensemble  system list.

pi ref
Pi.Ref(eref,identifier)

PYTHON only method to get a  system reference. See pi pi command.

pi rings
pi rings ehandle label ?filterset? ?filtermode?
p.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the  system is
associated with. This is explained in more detail in the section about object cross-references. Rings
which only partially overlap with the  system are included.

Examples:
pi rings $ehandle 1
pi rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels or references of all rings the  system overlaps with. If the 
system does not overlap with any ring, an empty list is returned. Only labels of rings in the SSSR
or ESSSR set are returned, even if the currently computed ring set is larger. The second example
filters the rings - only heteroaromatic rings are reported.

pi ringsystems
pi ringsystems ehandle label ?filterset? ?filtermode?
p.ringsystems(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring systems the 
system is associated with. This is explained in more detail in the section about object
cross-references. Ring systems which only partially overlap with the  system are included.

pi set
pi set ehandle label ?property value?...
p.set(?property,value?,...)
p.set({property:value,...})
p.property = value
p[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.
530 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
pi show
pi show ehandle label propertylist ?filterset? ?parameterdict?
p.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the pi get command. The difference between pi get and pi show is that the latter
does not attempt computation of property data, but raises an error if the data is not present and valid.
For data already present, pi get and pi show are equivalent.

pi sigmas
pi sigmas ehandle label ?filterset? ?filtermode?
p.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the  system
overlaps with. This is explained in more detail in the section about object cross-references.

Examples:
pi sigmas $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

pi sqldget
pi sqldget ehandle label propertylist ?filterset? ?parameterdict?
p.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the pi get command. The differences between pi get and pi sqldget are
that the latter does not attempt computation of property data, but initializes the property value to the
default and returns that default, if the data is not present and valid; and that the SQL command variant
formats the data as SQL values rather than for TCL or PYTHON script processing.

pi sqlget
pi sqlget ehandle label propertylist ?filterset? ?parameterdict?
p.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the pi get command. The difference between pi get and pi sqlget is that
the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

pi sqlnew
pi sqlnew ehandle label propertylist ?filterset? ?parameterdict?
p.sqlnew(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 531

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the pi get command. The differences between pi get and pi sqlnew are
that the latter forces re-computation of the property data, and that the SQL command variant formats
the data as SQL values rather than for TCL or PYTHON script processing.

pi sqlshow
pi sqlshow ehandle label propertylist ?filterset? ?parameterdict?
p.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the pi get command. The differences between pi get and pi sqlshow are
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

pi subcommands
pi subcommands
dir(Pi)

Lists all subcommands of the pi command. Note that this command does not require an ensemble
handle, or a label.

pi surfaces
pi surfaces ehandle label ?filterset? ?filtermode?
p.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of surface patches the 
system is associated with. This is explained in more detail in the section about object
cross-references.

Example:
pi surfaces $ehandle $label

Note that surface patches do not need to be associated with an atom, and if they are not, they are
implicitly not associated with any  system.

pi xbonds
pi xbonds ehandle label ?filterset? ?filtermode?

p.xbonds(?filters=?,?mode=?)

Get labels or references of crossing bonds which are not contained in the  system (defined as all
bonds between the registered atoms in the system), but have one atom in the  system.
532 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The query Command

The query command creates a reusable object from the query expression parameter of a scan
command (molfile scan, dataset scan, etc.). All commands where such a query expression can
be used as a string parameter alternatively accept the handle or reference of a query object in its
place.

Additionally, query objects offer method to translate the query from the native toolkit syntax into
other formats, such as SQL.

Examples:
set qh [query create “structure >= c1ncccc1”]
set n [molfile scan $fh $qh count]

This is the list of currently officially supported subcommands:

query create
query create ?querystring?
Query(?querystring)?
Query.Create(?querystring?)

Create a new query object from a query expression entered as a string. It is possible to omit the query
string or pass en empty string or Null. In that case, a query which always matches is created.

Example:
set qh [query create {and {E_NMOLECULES = 1} {structure >= c1ncccc1}}]

query delete
query delete all
query delete ?qhandlelist?...
q.delete()
Query.Delete(“all”)
Query.Delete(?qrefsequence/qref/qhandle?,...)

Delete query objects. The special parameter all may be used to delete all queries currently registered
in the application. Alternatively, any number of lists of query handles may be specified for specific
query deletions.

The command returns the number of deleted queries.

Example:
query delete $qhandle

query get
query get qhandle attribute
q.get(attribute)
q.attribute
q[attribute]

Get an attribute value of the query objects. Besides the settable attributes listed under query set,
the following attributes are read-only:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 533

CACTVS Tcl and Python Scripting Language Reference
• configuration
A dictionary of the currently configured values for query properties, fields and table names.

• sql_query
The query recoded as an SQL query on a simple table schema, with referenced table and
column names as defined in the query object configuration.

query list
query list ?pattern?
Query.List(?pattern=?)

Return a list of the handles of all currently existing query objects in the application. If desired, the
list can be filtered by a string pattern.

query print
query print qhandle
q.print()

Return the string representation of the query in native toolkit format.

query ref
Query.Ref(identifier)

PYTHON only method to get a query reference from a handle or another identifier.

query set
query set qhandle ?attribute value?...
query set qhandle attributedict
q.set(attributedict)
q.set(attribute,value,...)
q.att = value
q[att] = value

Configure the query object. The following attributes can be set and also read via query get:

• atomtable
Set the name of the atom table for translating the query into SQL.

• bondtable
Set the name of the bond table for translating the query into SQL.

• ens_elementcount_field
Set the name of the column with an array of element counts in the ensemble table for
translating the query into SQL.

• ens_elementcount_property
Set the property used to compute ensemble element counts for formula searching.

• ens_isotopehash_field
The name of the column with isotope-aware ensemble hashes in the ensemble table for
translating the query into SQL.
534 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• ens_isotopehash_property
The property used to compute isotope-aware ensemble hashes. This is by default inherited
from the control variable cactvs(default_structure_isotope_hash_property).

• ens_isotopestereohash_field
Set the name of the column with isotope- and stereo-aware ensemble hashes in the reaction
table for translating the query into SQL.

• ens_isotopestereohash_property
The property used to compute isotope- and stereo-aware ensemble hashes. This is by default
inherited from the control variable
cactvs(default_structure_isotope_stereo_hash_property).

• ens_similarityscreen_field
The name of the column with the similarity screen bitvector.

• ens_similarityscreen_property
The property used to compute the similarity screen bitvector. This is by default inherited
from the control variable cactvs(default_similarity_property).

• ens_simplehash_field
The name of the column with simple ensemble hashes in the ensemble table for translating
the query into SQL.

• ens_simplehash_property
Set the property used to compute simple ensemble hashes. This is by default inherited from
the control variable cactvs(default_structure_simple_hash_property).

• ens_simpletautohash_field
Set the name of the column with simple tautomer-tolerant ensemble hashes in the ensemble
table for translating the query into SQL.

• ens_simpletautohash_property
The property used to compute simple tautomer-tolerant ensemble hashes. This is by default
inherited from the control variable cactvs(default_structure_tauto_hash_property).

• ens_stereohash_field
The name of the column with stereo-aware ensemble hashes in the ensemble table for
translating the query into SQL.

• ens_stereohash_property
Set the property used to compute stereo-aware ensemble hashes. This is by default inherited
from the control variable cactvs(default_structure_stereo_hash_property).

• ens_substructurescreen_field
The name of the column with the substructure screen bitvector

• ens_substructurescreen_property
The property used to compute the substructure screen bitvector. This is by default inherited
from the control variable cactvs(default_substructure_screen_property).

• ens_superstructurescreen_field
The name of the column with the superstructure screen bitvector
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 535

CACTVS Tcl and Python Scripting Language Reference
• ens_superstructurescreen_property
The property used to compute the superstructure screen bitvector. This is by default
inherited from the control variable
cactvs(default_superstructure_screen_property).

• enstable
The name of the base ensemble-level table for translating the query into SQL.

• fileassociation
The handle or reference of an open structure or reaction data file. Some file formats contain
metadata on the internal configuration of the files, which are then automatically used to
configure the right properties and field names for standard structure and reaction queries on
this file. Providing a file reference is not required, it can just make the query configuration
set-up easier.

• flags
A bit-ored combination of various flags. The currently supported flags are ignorethresholds
and screeningonly.

• keycolumn
The name of tghe SQL column which links ensembles and atom/bond tables.

• querystring
The string form of the query. Setting this re-configures the query object to check a different
match condition.

• reaction_isotopehash_field
Set the name of the column with isotope-aware reaction hashes in the reaction table for
translating the query into SQL.

• reaction_isotopehash_property
Set the property used to compute isotope-aware reaction hashes. This is by default inherited
from the control variable cactvs(default_reaction_isotope_hash_property).

• reaction_isotopestereohash_field
Set the name of the column with isotope- and stereo-aware reaction hashes in the reaction
table for translating the query into SQL.

• reaction_isotopestereohash_property
Set the property used to compute isotope- and stereo-aware reaction hashes. This is by
default inherited from the control variable
cactvs(default_reaction_isotope_stereo_hash_property).

• reaction_screen_field
The name of the column with the reaction screen bitvector

• reaction_screen_property
The property used to compute the reaction screen bitvector. This is by default inherited from
the control variable cactvs(default_reaction_screen_property).

• reaction_simplehash_field
Set the name of the column with simple reaction hashes in the reaction table for translating
the query into SQL.
536 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• reaction_simplehash_property
The property used to compute simple reaction hashes. This is by default inherited from the
control variable cactvs(default_reaction_simple_hash_property).

• reaction_stereohash_field
Set the name of the column with stereo-aware reaction hashes in the reaction table for
translating the query into SQL.

• reaction_stereohash_property
The property used to compute stereo-aware reaction hashes. This is by default inherited
from the control variable cactvs(default_reaction_stereo_hash_property).

• reactiontable
The name of the base reaction-level table for translating the query into SQL.

• sql_dialect
The SQL dialect to use when translating the query to SQL. This is by default inherited from
the cactvs(sql_dialect) control variable.

query subcommands
query subcommands
dir(Query)

Lists all subcommands of the query command. Note that this command does not require a query
handle.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 537

CACTVS Tcl and Python Scripting Language Reference
The reaction Command

The reaction command is the generic command used to manipulate reactions. The syntax of this
command follows the standard schema of command/subcommand/majorhandle. Reactions are
major objects and thus do not need any minor object labels for identification.

Examples:
reaction get $xhandle X_IDENT

This is the list of currently officially supported subcommands:

reaction add
reaction add xhandle ?ReactionSMILES/SMIRKS/BASE64Blob ?decodermode??
reaction add xhandle ?ehandle?...
reaction add xhandle ?{ehandle role}?...
x.add(?ReactionSMILES/SMIRKS/BASE64Blob?,?decodermode?)
x.add(eref,...)
x.add((eref,role),...)

Add ensembles to a reaction. The syntax of the various variants to specify ensembles and their
reaction roles are the same as in the reaction create command.

Example:
reaction add [reaction create] $reagent_ehandle $product_ehandle

reaction append
reaction append xhandle ?property value?...
x.append({?property:value,?...})
x.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
reaction append $xhandle X_NAME “_new”

reaction assign
reaction assign xhandle srcproperty dstproperty
x.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same reaction. Both properties must be associated
with the reaction object class. This process is more efficient than going through a pair of reaction
get/reaction set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.
538 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The original property data remains valid. The command variant reaction rename directly
exchanges the property name without any data duplication or conversion, if that is possible. In any
case, the original property data is no longer present after the execution of this command variant.

If the properties are not associated with reactions (prefix X_), the operation is performed on all
reaction ensembles.

The command returns the original object handle for TCL, or object reference for PYTHON.

Examples:
reaction assign $xh A_XY A_XY%

This code snippet creates a backup atomic 2D layout coordinates on all reaction ensembles.
reaction rename $xh X_IDENT X_NAME

Reassign the data in property X_IDENT to property X_NAME. If possible, this is done without memory
reallocation and decoding/encoding procedures.

reaction cast
reaction cast xhandle dataset/ens/reaction/table ?propertylist?
x.cast(objectclass=,?properties=?)

Transform the reaction into a different object. Depending on the target object class, the result is as
follows:

• dataset
A new dataset which contains which contains the reaction as first object.

• ens
The reagent ensemble of the reaction, or the first other ensemble in the reaction is there is
no reagent, or a newly created empty ensemble as last resort. The rest of the reaction and
reaction ensembles are destroyed.

• reaction
Only supplied for the sake of completeness. This mode does nothing.

• table
A new table with one row and automatically generated columns for all properties of the
input reaction of the reaction (X_*) object class. The row is filled with the input reaction
data, and the reaction is moved to the internal dataset of the table.

If the optional property list is specified, an attempt is made to compute the listed properties before
the cast operation, so that they may become a part of the new object. No error is raised if a
computation fails.

The command returns the handle or reference of the new object, or the input object handle or
reference in case of mode reaction.

reaction clear
reaction clear xhandle ?role? ?deleteensembles?
x.clear(?role=?,?deleteensembles=?)

Remove and optionally delete ensembles of a reaction. By default, all reaction ensembles are moved
out of the reaction, but they are not deleted. If a reaction role is given (possible roles are taken from
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 539

CACTVS Tcl and Python Scripting Language Reference
the enumeration of property E_REACTION_ROLE, the default set is unknown, reagent, product,
solvent, catalyst, intermediate, impurity, byproduct, agent and waste), only those ensembles with the
specified role are removed. If the deleteensemble flag is set, targeted ensembles are not simply
removed from reaction membership, but destroyed.

The command returns the count of removed or deleted ensembles.

Examples:
reaction clear $xhandle
reaction clear $xhandle solvent 1

The first example removes all ensembles from the reaction, but keeps them in memory, and they can
still be accessed via their handles. The second example removes all solvent ensembles from the
reaction and destroys them.

reaction copy
reaction copy src_xhandle dst_xhandle
x.copy(xref_dst)

Create a copy of the input reaction in the framework of an existing reaction. The old data of the
destination reaction is destroyed, but its handle is reused for the copy. The destination handle can
be an empty string. In that case, the reaction is duplicated and a new handle assigned.

This command is useful when references to a reaction handle are potentially stored in unknown
locations, and the reaction needs to be updated.

The return value of the command is the handle or reference of destination reaction. It is allowed to
copy a reaction onto itself.

reaction create
reaction create

?RxnSMILES/SMIRKS/RInChI/BASE64Blob/KEGGID/patran/RxnMinimol/HexRxnMinimol?
?decodermode?

reaction create ?ehandle?...
reaction create ?{ehandle role}?...
Reaction(?RxnSMILES/SMIRKS/RInchI/BASE64Blob/KEGGID/patran/RxnMinimol/HexRxnMini
mol?,?decodermode?)
Reaction(eref,...)
Reaction((eref,role),...)
Reaction.Create(RxnSMILES/SMIRKS/RInchI/BASE64Blob/KEGGID/patran/RxnMinimol/HexR
xnMinimol,?decodermode?)
Reaction.Create(eref,...)
Reaction.Create((eref,role),...)

This command creates a new reaction. Without any parameters, an empty reaction without any
ensembles in it is made. The return value is the new reaction handle or reference.

Example:
set xhandle [reaction create]

The first command variant is intended for creating a reaction with data is the use of a
single-argument line notation. The supported line notations include Reaction SMILES or SMIRKS,
RINCHI strings, hex-encoded versions thereof, a KEGG reaction identifier in the form RPxxxxx, a
CACTVS base64-encoded serialized reaction object string (see reaction pack), a raw reaction
540 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
MINIMOL byte blob (computed as property X_MINIMOL), a hex-encoded form thereof, or a
base64-encoded compressed file content, such as an MDL RXN file record. For the last variant, the
compression algorithm may be raw zlib, gzip or zip and is automatically detected. Additionally, any
of those forms may be passed as a data URI. If a data URI is detected, its payload is extracted and used
as argument in a second pass. The data for the decoding of KEGG IDs is downloaded from the KEGG
site via an HTTP connection and requires that the interpreter is allowed port 80 Internet access.

Similar to the ens create command, it is also possible to prefix the structure encoding, if it is a
line notation or an encoding without line breaks, with smiles: smirks: rinchi: or kegg: in order to
explicitly name the encoding of these formats.

The only multi-line encoding recognized by this command are LHASA PATRAN reaction patterns. They
are automatically decoded in a form which makes them suitable for use in lhasa reaction processor
objects. Reactions stored in uncompressed files must be read by means of a molfile read
command.

Without setting a specific decoder mode in the following optional argument, the data string is
decoded in the format-specific default mode (i.e. as standard SMILES strings for the SMILES family)
and molecules with a complete hydrogen set are generated if the encoding supports such a
distinction.

For REACTION SMILES variants, the explicit decoder modes smarts (alias smirks), strictsmarts (alias
strictsmirks), hadd, nohadd, transform or pattern (alias patran) can be requested. In smarts or
strictsmarts mode, full SMARTS or SMIRKS encodings are recognized, which are useful for reaction
substructure searches or SMIRKS transforms. The difference between smarts and strictsmarts is that
the latter enforces aliphaticity checks (see ens create). No implicit hydrogen is added in that mode.
For special purposes, there is also a strictatomsmirks/strictatomsmarts mode, which enforces strict
rules only for atom matching, but not bond matching. The nohadd mode does not supports SMARTS
constructs, but neither are implicit hydrogens are instantiated.The hadd mode adds a standard
hydrogen set. In order to force a full hydrogen addition to the raw decoded reaction even if it would
not be done otherwise, use the mode forcehadd. The transform mode is similar to the smarts mode,
but additionally hydrogen atoms encoded explicitly are not instantiated but rather translated into a
hydrogen count query specification. This is useful for some classes of SMIRKS transforms. SMILES
atom mapping specifications are allowed in all modes. The explicit pattern or patran modes should
be used when decoding patran patterns - but then this is already the default for this type of data.

In case the argument is a REACTION SMILES variant or an RINCHI string, and an agent in Daylight
nomenclature is specified (the middle section between the >> characters), it is assigned the reaction
role agent, which is rather unspecific. It may subsequently be changed by setting the
E_REACTION_ROLE property of the agent ensemble.

If the argument of the command is a single ensemble handle or reference, and this ensemble
possesses valid A_CGR_CHANGE and B_CGR_CHANGE properties indicating that it is a condensed graph
representation of a reaction (property X_CGR), the CGR representation is expanded and the new
reaction consists of two newly created reagent and product ensembles. The original input structure
remains unchanged, and does not become a reaction member ensemble.

Ensembles which are decoded from the arguments have normal object handles or references and
may be addressed via these just like ensembles which are not part of a reaction.

Examples:
set xhandle [reaction create C=O>Cc1ccccc1>CO]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 541

CACTVS Tcl and Python Scripting Language Reference
ens set [reaction ens $xhandle agent] E_REACTION_ROLE solvent
set xhandle [reaction create {[C:1]=[O:2]>>[C:1][O:2]} smirks]
set xhandle [reaction create KEGG:RP09586]
set xhandle [reaction create [list C1CCCCC1 reagent] [list c1ccccc1 product]]

The second reaction create command variant uses a set of ensemble handles as arguments and
makes these ensembles members of the newly created reaction. The reaction role of the ensembles
is determined by default by their position in the argument list. The first ensemble is the reagent,
followed by product, solvent, catalyst, intermediate, impurity, byproduct, agent and waste in that
order. It is possible to skip a role by providing an empty string (or None in PYTHON) as argument
placeholder. If necessary, ensembles are removed from an existing reaction and transferred to the
new one, since an ensemble cannot be a member of more than one reaction at a time. In case the
default order-dependent reaction role assignment is not convenient, any argument may be specified
as a sequence of two components instead. In that notation, the first list element is the normal
ensemble handle or reference and the second the applicable role designator encoded as a string from
above set.

Examples:
set xhandle [reaction create $reagent_ehandle [ens create CO] {} {[Pt]}]

This example creates a reaction from an existing reagent ensemble and then adds a product
ensemble and platinum as catalyst. The solvent parameter position is skipped by entering an empty
string.

Finally, it is possible to explicitly specify the role by not just providing an ensemble handle as
parameter, but a list consisting of an ensemble handle and its reaction role.

Example:
set xhandle [reaction create [list $product_handle product] \

[list [ens create {[Pt]} catalyst]]

reaction dataset
reaction dataset xhandle ?filterlist?
x.dataset(?filters=?)

Return the dataset handle or reference of the dataset the reaction is a member of. It the reaction is
not member of a dataset, or does not pass all of the optional filters, an empty string or None for
PYTHON is returned.

Example:
reaction dataset $xhandle

reaction defined
reaction defined xhandle property
x.defined(property)

This command checks whether a property is defined for the reaction. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The reaction valid command is used for this purpose.

reaction delete
reaction delete all
542 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
reaction delete ?xhandlelist?...
x.delete()
Reaction.Delete(“all”)
Reaction.Delete(?xrefsequence/xref/xhandle?,...)

Delete reactions and the ensembles which are part of the deleted reactions. The special parameter
all may be used to delete all reactions currently registered in the application. Alternatively, any
number of lists of reaction handles may be specified for specific reaction deletions. If a reaction is
part of a linked reaction network, the reaction is removed from the network, but the network
continues to exist as long as there are other linked reactions in it.

The command returns the number of deleted reactions.

Example:
reaction delete $xhandle
reaction delete $xhandlelist1 $xhandlelist2

reaction dget
reaction dget xhandle propertylist ?filterset? ?parameterdict?
x.dget(property=,?filters=?,?parameters=?)
Reaction.Dget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the reaction get command. The difference between reaction get and
reaction dget is that the latter does not attempt computation of property data, but rather initializes
the property values to the default and return that default if the data is not yet available. For data
already present, reaction get and reaction dget are equivalent.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes. The data for the creation
of the temporary ensemble is equivalent to the first argument of the standard constructor. Additional
constructor parameters cannot be used.

reaction dup
reaction dup xhandle ?dataset? ?position?
x.dup(?target=?,?position=?)

Duplicate the specified reaction and its ensembles. The return value is the new reaction handle or
reference. The duplicated reaction ensembles are also assigned unique handles.

The duplicate ensemble is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (including None for PYTHON) places the duplicate
outside any dataset, regardless of the dataset membership of the source ensemble.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the reaction is
inserted at the given position, starting with 0. If the requested position is larger than the current size
of the dataset, the reaction is appended.

The reaction hdup command is a variant of this command. It automatically adds a hydrogen set
to the duplicate.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 543

CACTVS Tcl and Python Scripting Language Reference
If the reaction is part of a linked reaction network, the network is not duplicated. The new reaction
is not linked to any other reactions. You can use the xdup command variant for this purpose.

Example:
set xdup [reaction dup $xhandle]

reaction ens
reaction ens xhandle ?filterlist?
x.ens(?filters=?)

Return a list of the handles of the ensembles which are a part of the reaction. Optionally, these
ensembles may be filtered by a simple filter list.

Example:
reaction ens $xhandle metal

Find all ensembles in the reaction which contain one or more metal atoms.

reaction exists
reaction exists xhandle ?filterlist?
x.exists(?filters=?)
Reaction.Exists(xref=,?filters=?)

Check whether a reaction handle is valid. The command returns boolean 0 or 1. Optionally, the
reaction may be filtered by a standard filter list, and if it does not pass the filter, it is reported as not
valid. If filters in the filter list operate on ensembles, it is sufficient if a single ensemble of the
reaction passes the filter.

Example:
reaction exists $xhandle solvent

Check whether the reaction with the handle in variable $xhandle exists and, if it exists, whether it
contains a solvent ensemble.

reaction expand
reaction expand xhandle ?allowambigous? ?noimplicith?
x.expand(?allowambiguous=?,?noimplicith=?)

This command expands all superatoms in the ensembles of the reaction. The mechanisms for the
expansion of superatoms are described in detail for the atom expand command. This command is
functionally equivalent, working on all atoms in all of the reaction ensembles instead a single atom.

Example:
reaction expand $xhandle

The command returns the total number of successfully expanded atoms in all reaction ensembles.

reaction expr
reaction expr xhandle expression
x.expr(expression)

Compute a standard SQL-style property expression for the reaction. This is explained in detail in the
chapter on property expressions.
544 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
reaction filter
reaction filter xhandle filterlist
x.filter(filters)

Check whether the reaction passes a filter list. The return value is 1 for success and 0 for failure.

Example:
reaction filter [reaction create {C=C>[Pt]>CC}] platinum

checks whether the reaction involves a platinum atom in any role.2 If the filter operates on
ensembles or minor objects, it is sufficient to have a single ensemble or ensemble minor object pass
the filter condition.

reaction forget
reaction forget xhandle ?objclass?
x.forget(?objectclass=?)

This command is essentially the same as the ens forget command. It is applied to all ensembles
in the reaction.

The command returns the original ensemble handle or reference.

reaction get
reaction get xhandle propertylist ?filterset? ?parameterdict?
reaction get xhandle attribute
x.get(property=,?filters=?,?parameters=?)
x.get(attribute)
x[property/attribute]
x.property/attribute
Reaction.Get(data,property=,?filters=?,?parameters=?)
Reaction.Get(data,attribute)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
reaction get $xhandle {X_IDENT X_NAME}

yields the ID and name of the reaction as a list. If the information is not available, an attempt is made
to compute it. If the computation fails, an error results.
reaction get $xhandle {E_FORMULA E_WEIGHT}

reports the formula and molecular weight of all reaction ensembles. The result is delivered as a
nested list. The first list contains the atomic formulae, the second list contains the weights.

Currently, it is not possible to use filters with this command (and the other retrieval command
variants) which are not operating directly on the reaction object, but on objects lower in the
hierarchy such as ensembles or atoms.

2. A filter testing for the presence of any element is automatically created when an element name is used as
a filter name. Element filters except for the most common ones (carbon, etc.) do not show up in the filter list
before they are instantiated.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 545

CACTVS Tcl and Python Scripting Language Reference
For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Instead of using a property name or a reaction attribute, it is also possible to use any valid value of
property E_REACTION_ROLE to directly access specific ensembles of the reaction. The allowed values
are dynamically read from the property definition and thus customizable.

Example:
set ehp [reaction get $xh product]
set ehp [reaction ens $xh product]

These commands yield the same results, but the first directly tests the values of E_REACTION_ROLE
of the reaction ensembles, while the second one uses the predefined product filter.

Variants of the reaction get command are reaction new, reaction dget, reaction jget,
reaction jnew, reaction jshow, reaction nget, reaction show, reaction sqldget,
reaction sqlget, reaction sqlnew, and reaction sqlshow.

In addition to property data and reaction role selectors, a reaction object possesses a few attributes,
which can be retrieved with the get command (but not by its related sister subcommands like dget,
sqlget, etc.). Some of them are also modifiable via reaction set.These attributes are:

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

• deletable
Flag indicating whether the object can be deleted with a standard reaction delete
command. This attribute is read-only. Objects which are, for example, property data values
or a part of a molfile loop command cannot be deleted by standard means.

• failures
If the property computation failure cache is active, return a list of all properties which have
failed computation for this object after the last structural change. This attribute is read-only.

• footer
If the toolkit was compiled with factory support, this is the footer of the object icon on a
workbench. This attribute can be changed.

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• header
If the toolkit was compiled with factory support, this is the header of the object icon on a
workbench. This attribute can be changed.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

• incomplete
Boolean status flag indicating an aborted input operation during the read of the object from
file, which returned the structure intact but without the complete set of associated data. An
aborted input may be either be the result of an explicitly set input control flag, or by
encountering property data which could not be decoded. This attribute is read-only.
546 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• invisible
Flag indicating whether the object is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering pointer references. This attribute
is read-only.

• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.

• loopitem
A read-only attribute returning the handle of the currently active iterator item.

• modcount
Object data modification count. This attribute is read-only.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

• record
The current iterator record (starting with 1) of the reaction. It is possible to set the value and
thus skip or revisit reaction ensembles in the iterator.

• refcount
If the TCL interpreter is using native CACTVS objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this ensemble. This attribute is read-only.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope) is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.

• uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 547

CACTVS Tcl and Python Scripting Language Reference
• y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

reaction getparam
reaction getparam xhandle property ?key? ?default?
x.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

Example:
reaction getparam $xhandle X_GIF format

returns the actual format of the image, which could be GIF, PNG, or various bitmap formats.

reaction hadd
reaction hadd xhandle ?filterset? ?flags? ?changeset?
x.hadd(?filters=?,?flags=?,?changeset=?)

Add a standard set of hydrogens to the ensembles of the reaction. If the filterset parameter is
specified, only those atoms which pass the filter set are processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is
empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

• keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

• no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
reaction ensemble does no already possess valid 2D coordinates.

• no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
reaction ensemble does no already possess valid 3D coordinates.

• noanions
Do not add hydrogen to atoms with a negative formal charge.

• noatoms
Do not add hydrogen to atoms without any bonds.
548 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• nocations
Do not add hydrogen to atoms with a positive formal charge.

• noelements
Do not add hydrogen if the reaction ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

• noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

• nofixatomtext
Do not adjust property A_TEXTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOEt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

• nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

• nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

• nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

• nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B_TYPE not normal).

• protonate
Add a single proton to the first suitable atom. The charge of the atom is increased and only
a single hydrogen is added regardless of the standard number of missing hydrogens, and this
command does issue the standard property invalidation event for atom and bond changes.
In the reaction command variant, this option is rarely useful. It is supported for compatibility
with the atom hadd command.

• resetmemory
Reset the origin flag described above for all atoms in the reaction ensembles. All current
atoms appear to be part of the original atom set.

Adding hydrogens with this command is less destructive to the property data set of the reaction
ensembles than adding them with individual atom create/bond create commands, except in case
the protonate flag is set, because many properties are designed to be indifferent to explicit hydrogen
status changes, but are invalidated if the structure is changed in other ways.

If the effects of the hydrogen addition step to the validity of the property data set should not be
handled according to this standard procedure, it is possible to explicitly generate additional property
invalidation events by specifying an event list as the optional last parameter, for example a list of
atom and bond to trigger both the atom change and bond change events.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 549

CACTVS Tcl and Python Scripting Language Reference
The command returns the number of hydrogens which were added to all reaction ensembles.

Example:
set xhandle [reaction create {[C]=[C]>>[C]-[C]}]
reaction hadd $xhandle

adds a total of ten hydrogens to the two reaction ensembles, transforming them into
hydrogen-complete ethene and ethane.

reaction hdup
reaction hdup xhandle ?dataset? ?position?
x.hdup(?target=?,?position=?)

This command performs the same operation as the reaction dup command, but additionally adds
a standard set of hydrogens to all ensembles of the duplicated reaction.

reaction hierarchy
reaction hierarchy xhandle ?filterlist? ?root?
x.hierarchy(?filters=?,?root=?)

Return the hierarchy handle or reference of the hierarchy the reaction is part of. If the reaction is not
member of a hierarchy, or does not pass all of the optional filters, an empty string or None for PYTHON
is returned. By default, the hierarchy object which directly contains the reaction is returned. If the
root flag is set, the root hierarchy object is reported instead, which is the same only if the hierarchy
has only a single level.

Example:

reaction hierarchy $xhandle

reaction hstrip
reaction hstrip xhandle ?flags? ?changeset?
x.hstrip(?flags=?,?changeset=?)

This command removes hydrogens from all ensembles in the reactions. By default, all hydrogen
atoms on the ensemble are removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

• deprotonate
If this flag is set, a single proton is removed from the first suitable atom. This command
variant triggers a standard atom and bond change property invalidation event, and it always
ends processing after removing the first proton. Proton removal decreases the charge of the
atom by one. In the reaction command variant, this flag is rarely useful - it is supported for
compatibility with the atom hstrip command

• keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

• keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).
550 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• keeporiginal
Hydrogen atoms which were not automatically added via a hadd command are retained.
Note that hydrogen addition commands can be run in a mode which does not leave
information about automatic addition - hydrogens added this way will also survive.

• keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

• keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

• keepwedge
keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

• normalize
Normalize the wedge pattern for standard cases, removing wedges from hydrogens if the
result is still stereochemically defined. Hydrogens which lose their wedge in this process are
no longer protected by the keepwedge flag.

• wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

If the changeset parameter is used, all property change events listed in the parameter are triggered.

Hydrogen stripping is not as disruptive to the data content of the reaction ensembles as normal atom
deletion, except in case the deprotonate flag is set. The system assumes that this operation is done
as part of some file output or visualization preparation. However, if any new data is computed after
stripping, the computation functions see the stripped structure, and proceed to work on that reduced
structure without knowledge that there are implicit hydrogens.

The command returns the total number of hydrogens stripped from all reaction ensembles.

Example:
reaction hstrip $xhandle [list keeporiginal wedgetransfer]

reaction hydrogenate
reaction hydrogenate xhandle ?filterset? ?changeset?
x.hydrogenate(?filters=?,?changeset=?)

Reduce all bonds in the reaction to single bonds, except those excluded by the filter set.

If a change set is supplied, its interpretation is the same as in reaction hadd.

The command returns the number of added hydrogens.

reaction index
reaction index xhandle
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 551

CACTVS Tcl and Python Scripting Language Reference
x.index()

Get the position of the reaction in the object list of its dataset. If the reaction is not member of a
dataset, -1 is returned.

reaction jget
reaction jget xhandle propertylist ?filterset? ?parameterdict?
x.jget(property=,?filters=?,?parameters=?)
Reaction.Jget(data,property=,?filters=?,?parameters=?)

This is a variant of reaction get which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

reaction jnew
reaction jnew xhandle propertylist ?filterset? ?parameterdict?
x.jnew(property=,?filters=?,?parameters=?)
Reaction.Jnew(data,property=,?filters=?,?parameters=?)

This is a variant of reaction new which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

reaction jshow
reaction jshow xhandle propertylist ?filterset? ?parameterdict?
x.jshow(property=,?filters=?,?parameters=?)
Reaction.Jshow(data,property=,?filters=?,?parameters=?)

This is a variant of reaction show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

reaction ldup
reaction ldup ?xhandlelist?...
Reaction.Ldup(?exref/xrefsequence?,...)

Duplicate all reactions in the argument list(s) in default mode.

The return value is a single list (even if multiple source lists are used) of the duplicated reaction
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TCL) or None (for
PYTHON) at its position, without raising an error.

reaction lhdup
reaction lhdup ?xhandlelist?...
Reaction.Lhdup(?xref/xrefsequence?,...)

Duplicate all reaction in the argument list(s) in default mode, and add hydrogens.

The return value is a single list (even if multiple source lists are used) of the duplicated reaction
handles or references. If an argument list element is an empty string (or None for PYTHON), it indicates
a missing object, and the output list also receives an empty string element (for TCL) or None (for
PYTHON) at its position, without raising an error.
552 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
reaction link
reaction link xhandle ?xhandle?...
x.link(?xhandle/xref?,...)

Link the reaction to any number of additional reactions, creating a reaction network in the process.
Duplicate links, or links to reactions which already exist are ignored. A reaction cannot link to itself.

The command returns the number of newly created reaction links.

reaction links
reaction links xhandle ?filterlist? ?recursive?
x.links(?filters=?,?recursive=?)

Return the set of reactions this reaction is linked to as a list of reaction handles or reaction references.
The set may optionally be filtered by standard reaction-level filter conditions. If the recursive
boolean flag is set linked reactions beyond the first neighbor sphere are also included, with
duplicates of reactions in closer spheres removed.

reaction list
reaction list ?filterlist?
Reaction.List(?filters=?)

This command returns a list of the reaction handles currently registered in the application. This list
may optionally be filtered by a standard filter list. If the filter operates on the reaction ensembles and
not on the reaction object, it is sufficient if a single reaction ensemble passes the filter.

Example:
reaction list solvent

lists the handles of all reactions in the application which contain a solvent ensemble.

reaction lock
reaction lock xhandle propertylist/reaction/all ?compute?
x.lock(property=,?compute=?)

Lock property data of the reaction, meaning that it is no longer subject to the standard data
consistency manager control. The data consistency manager deletes specific property data if
anything is done to the reaction which would invalidate the information. Blocking the consistency
manager can be useful when building reactions from components in a script. Property data remains
locked until is it explicitly unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the reaction, reaction ensembles, or ensemble minor objects are
locked. If the boolean compute flag is set, an attempt is made to compute the property if it
is not yet present. Otherwise, a request to lock non-existent data is silently ignored. It is not
possible to lock individual property fields.

• all
All valid reaction properties are locked. Ensemble properties and ensemble minor object
properties are not affected. The compute flag is ignored.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 553

CACTVS Tcl and Python Scripting Language Reference
• reaction
This is an object class identifier. All property data which is controlled by the reaction major
object and attached to the specified object class is locked. Since reactions do not contain
minor objects, this identifier is equivalent to all.

The lock can be released by a reaction unlock command.

The return value is the original reaction handle or reference.

Example:
set xhandle [reaction create {C=C>[Pt]>CC}]
reaction lock $xhandle X_GIF 1
reaction clear $xhandle agent
reaction unlock $xhandle X_GIF

In this example, first a reaction depiction in property data X_GIF is generated and locked. After that,
the reaction and reaction ensembles can be manipulated without losing the image data. The agent is
removed in the next step - but the X_GIF image which shows the catalyst and which normally would
have been deleted when the agent is removed is kept. Finally, the image property data is put back
under the standard control of the data consistency manager.

reaction loop
reaction loop xhandle objvar ?maxrec? ?offset? body
x.loop(function=,?maxloop=?,?offset=?,?variable=?)
for e in x:

Loop over the ensembles in a reaction. This command is similar to molfile loop. On each
iteration, the variable is set to the handle of the current member object, and then the body code is
executed. The loop object is an original ensemble, not a duplicate.

Ensembles should not be removed from the reaction during the loop.

If a maximum record count is set, the loop terminates after the specified number of iterations. If the
maximum record argument is set to an empty string, a negative value, or all, the loop covers all
reaction elements. This is also the default. The return value is the number of calls to the body code
block.

For TCL scripts, within the loop, the standard TCL break and continue commands work as expected.
If the body script generates an error, the loop is exited.

If no offset is specified, the loop starts at the first element. Within the loop body, the reaction
attribute record is continuously updated to indicate the current loop position. Its value starts with
one, like file records in the molfile loop command.

The PYTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TCL construct),
or a function reference. Functions are called with the reference of the current loop ensemble as single
argument, and have their own context frame, so that the specification of a reference variable is not
generally useful in that call style, though is is allowed. For string function blocks the code is
executed in the local call frame, and the variable with the current object reference is visible locally.
Script code blocks must be written with an initial indentation level of zero. Within the PYTHON
functions, the normal break and continue loop control commands cannot be used to to scope
554 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can be raised. These are
automatically caught and processed in the loop body handler code.

In PYTHON, there is also an object iterator so that simple loops over reaction ensemble can be written
with a for statement. The reaction object iterator is of the self style (i.e. there is one per reaction,
these are not independent objects), so nesting them is not possible on the same reaction.

PYTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PYTHON scripting.

Example:
reaction loop $xh eh {

puts „[ens get $eh E_REACTION_ROLE] at position[reaction get $xh record]“
}

reaction max
reaction max xhandle propertylist ?filterset?
x.max(property=,?filters=?)

Get the maximum values of the properties named in the propertylist parameter. The return value of
the command is a list of the maximum property values. While it is possible to work with reaction
properties, this is pointless since there is only a single instance of a reaction property per reaction.
Usually, ensemble or ensemble minor object properties are retrieved. The objects whose property
values are used for the determination of the maximum values may optionally be filtered by a
standard filter set.

Example:
reaction max $xhandle E_WEIGHT {1 reagent product}

computes the maximum molecular weight from the reagent and product ensembles, ignoring other
reaction ensembles such as solvents or catalysts.

reaction merge
reaction merge xhandle ?xhandle?...
x.merge(?xhandle?,...)

Merge individual reactions into a multi-step reaction with intermediates. The current product
ensemble of the target reaction object (first reaction handle in Tcl) gets reassigned as intermediate
in E_REACTION_ROLE. Next, for every merged reaction, its intermediates and then the product are
duplicated and appended to the target reaction. The merged source reactions remain unchanged. No
check is performed that the original target reaction product ensemble and the reagent ensemble of
a merged reaction are compatible.

If the merge reactions are specified, the command does nothing. It is not possible to merge a reaction
with itself.

The command result is the target ensemble handle or reference.

Example:
set xh1 [reaction create CCO>>C=C]
set xh2 [reaction create C=C.ClCl>>ClCCCl]
reaction merge $xh1 $xh2
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 555

CACTVS Tcl and Python Scripting Language Reference
The result is a reaction with ethanol as reagent, ethene as intermediate, and dichloroethane as
product. The explicit chlorine reagent of the second reaction is not represented in the result.

reaction metadata
reaction metadata xhandle property ?field ?value??
x.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands reaction setparam and
reaction getparam can be used for convenient manipulation of specific keys in the computation
parameter field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

Examples:
array set gifparams [reaction metadata $xhandle X_GIF parameters]
reaction metadata $xhandle X_CONDITIONS comment “Check with legal dept whether
dehydration in molten Pu metal requires special regulatory approval”

The first line retrieves the computation parameters of the property X_GIF as keyword/value pairs.
These are read into the array variable gifparams, and may subsequently be accessed as
$gifparams(format), $gifparams(height), etc. The second example shows how to attach a
comment to a property value.

reaction min
reaction min xhandle propertylist ?filterset?
x.min(propery=,?filters=?)

Get the minimum values of the properties named in the propertylist parameter. The return value of
the command is a list of the minimum property values. While it is possible to work with reaction
properties, this is pointless since there is only a single instance of a reaction property per reaction.
Usually, ensemble or ensemble minor object properties are retrieved. The objects whose property
values are used for the determination of the minimum values may optionally be filtered by a standard
filter set.

Example:
reaction min $xhandle E_WEIGHT {1 reagent product}

computes the minimum molecular weight from the reagent and product ensembles, ignoring other
reaction ensembles such as solvents or catalysts.

reaction move
reaction move xhandle ?datasethandle|remotehandle? ?position?
x.move(?target=?,?position=?)

Make the reaction a member of a dataset, or remove it from a dataset. If the dataset handle or
reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed from
its current dataset. The dataset handle or reference may be the name of a remote dataset for moving
objects over a network connection.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
556 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of
dataset objects minus one, the object is appended as per the default. It is legal to use this command
for moving objects within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset. Using this mode with remote datasets is currently not supported.

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of a
dataset.

Examples:
reaction move $xhandle $dhandle 0
reaction move $xhandle

In the first sample line, the reaction is inserted as the first element in a dataset. The second line
reverts this operation and removes the reaction from the dataset.

This command interacts with the insert control mechanism of size-constrained datasets. More
information is provided in the description of the sizecontrol dataset parameter.

This command can be used with a remote dataset descriptor. In that case, the reaction is packed into
a serialized object representation, transmitted over the network and restored as member of the
remote dataset at the specified position. The local reaction is deleted if the transfer succeeds.

Example:
reaction move $xhandle blockbuster@server2:9998 end

This command moves the reaction to the dataset which was set up as listener on port 9998 and pass
phrase blockbuster on host server2. The local reaction is deleted, and its copy is inserted at the end
of the remote dataset.

reaction mutex
reaction mutex xhandle mode
x.mutex(mode)

Manipulate the object mutex. During the execution of a script command, the mutex of the major
object(s) associated with the command are automatically locked and unlocked, so that the operation
of the command is thread-safe. This applies to builds that support multi-threading, either by
allowing multiple parallel script interpreters in separate threads or by supporting helper threads for
the acceleration of command execution or background information processing.

This command locks major objects for a period of time that exceeds a single command. A lock on
the object can only be released from the same interpreter thread that set the lock. Any other threaded
interpreters, or auxiliary threads, block until a mutex release command has been executed when
accessing a locked command object. This command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 557

CACTVS Tcl and Python Scripting Language Reference
• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

reaction need
reaction need xhandle propertylist ?mode? ?parameterdict?
x.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original reaction handle or reference.

Example:
reaction need $xhandle E_WEIGHT recalc

reaction new
reaction new xhandle propertylist ?filterset? ?parameterdict?
x.new(property=,?mode=?,?parameters=?)
Reaction.New(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the reaction get command. The difference between reaction get and
reaction new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

reaction nget
reaction nget xhandle propertylist ?filterset? ?parameterdict?
x.nget(property=,?mode=?,?parameters=?)
Reaction.Nget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the reaction get command. The difference between reaction get and
reaction nget is that the latter always returns numeric data, even if symbolic names for the values
are available.
558 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
reaction nnew
reaction nnew xhandle propertylist ?filterset? ?parameterdict?
x.nnew(property=,?filters=?,?parameters=?)
Reaction.Nnew(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the reaction get command. The difference between reaction get and
reaction nnew is that the latter always returns numeric data, even if symbolic names for the values
are available, and that property data re-computation is enforced.

reaction nitrostyle
reaction nitrostyle xhandle style
x.nitrostyle(style=)

Change the internal encoding of nitro groups and similar functional groups in the ensembles of the
reaction. Possible values for the style parameter are:

• asis No change

• ionic Change to encoding to a positive charge on the center atom, and a negative on one
of the oxygens

• xionic As above, but also change the encoding of azides, etc.

• neutral Change the encoding to the neutral form with extended valence. pentavalent is an
alias.

• xneutral As above, but also change the encoding of azides, etc.

The command returns the original reaction handle or reference.

reaction pack
reaction pack xhandle ?maxsize? ?requestprops? ?suppressedprops? ?compressionlib?
x.pack(?maxsize=?,?requestprops=?,?suppressedprops=?,?compressionlib=?)

Pack the reaction object into a base64-encoded compressed serialized object string. This string does
not contain any non-printable characters and is a full dump of the internal state of the object,
omitting only property data that was declared to be so easily re-computed that a dump is not
worthwhile. The reaction ensembles and their property data are part of the dump. Further object
relationships, such as datasets the reaction or reaction ensembles might be a member in, or tables
the reaction or its ensembles are associated with are not saved.

The maximum size of the object string (default -1, meaning unlimited size) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

The other optional property parameter lists allow to request a specific property set to be part of the
package, even if it normally would not be included, and to explicitly omit properties from the dump.
No property computation is performed, and suppressed properties are not purged from the reaction.

Reactions can be restored from a packed object string by the reaction unpack or reaction
create commands.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 559

CACTVS Tcl and Python Scripting Language Reference
The reaction object and its ensembles remain in existence after using this command.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The return value of this command is the packed string.

In PYTHON, reactions support the standard pickle/unpickle protocol.

Example:
set dbstring [reaction pack [reaction create CC=O>>CCO]]

reaction properties
reaction properties xhandle ?pattern? ?intersectionmode?
x.properties(?pattern=?,?intersectionmode=?)

Get a list of valid properties of the reaction proper and the reaction ensembles. By default, reaction
properties (prefix X_), dataset properties (prefix D_), as well as the properties of the ensembles in the
reaction (prefix E_) and the properties of their minor objects (atoms, bonds, etc.) are listed.

Property subsets may be selected by a non-empty filter pattern. In case of reaction ensemble or
minor ensemble object properties which are not present in all reaction ensembles, the default
intersect mode is union, meaning that all properties are reported for which at least one instance
exists. The alternative mode intersect only lists those ensemble properties which are present in all
reaction ensembles.

This command may also be invoked as reaction props or x.props().

Example:
reaction properties $xhandle X_*
reaction props $xhandle E_* intersect

The first example returns a list of the currently valid reaction properties. The second example lists
all reaction properties which are present in all reaction ensembles.

reaction purge
reaction purge xhandle propertylist/reaction/specialname ?emptyonly?
x.purge(properties=,?emptyonly?)

Delete property data from the reaction. The properties may be reaction properties (prefix X_), dataset
properties (prefix D_) or properties of the reaction ensembles, such as ensemble or atom properties.
If a property marked for deletion is not present on an object, it is silently ignored. If the reaction is
not a dataset member, a request for the deletion of dataset properties is also ignored.

If the object class name reaction is used instead of a specific property name, all reaction property
data (X_ prefix) is deleted from the reaction.

If another object class name, such as ens or atom, is used instead of a property name, all properties
of that class set on the reaction ensembles are deleted, if they are not locked, or filtered out by the
optional empty-only flag.
560 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Besides normal property and class names, a few convenient special names for common property
deletion tasks on the ensembles of the reaction are defined and can be used as a replacement for the
property list. These include:

• atomquery
Delete all atom query information from the reaction ensembles (A_QUERY and other query
properties).

• atomstereochemistry
Delete all atomic atom stereo descriptors from the reaction ensembles, but keep those for
bonds.

• bondquery
Delete all bond query information from the reaction ensembles (B_QUERY and other query
properties).

• bondstereochemistry
Delete all bond stereo descriptors from the reaction ensembles, but keep those for atoms.

• isotopes
Delete isotope information in A_ISOTOPE and other isotope properties which may be defined
in future software versions.

• query
Delete all query information from the reaction ensembles (A_QUERY, B_QUERY and other
query properties).

• radicals
Delete atomic radical information in A_RADICAL and other radical-related properties which
may be defined in future software versions.

• stereochemistry
Delete all stereochemistry descriptors, including 2D wedges, but not 3D coordinates. The
implicit property list includes A_LABEL _STEREO, B_LABEL_STEREO, A_CIP_STEREO,
B_CIP_STEREO, A_DL_STEREO, B_CISTRANS_STEREO, A_HASH_STEREO, B_HASH_STEREO,
A_MAP_STEREO, B_MAP_STEREO, A_STEREOINFO, B_STEREOINFO, A_STEREO_GROUP,
M_STEREO_COUNT, E_STEREO_COUNT and B_FLAGS (only selected bits, the property remains
valid if present).

• wedges
Delete wedge bond flags in property B_FLAGS. If B_FLAGS is not present, the command is
ignored and no computation attempt is made.

The optional boolean flag emptyonly can be used to restrict the deletion to those properties where
all the values for a property associated with a major object (such as on all atoms in an ensemble for
atom properties, or just the single ensemble property value for ensemble properties) are set to the
default property value.

The return value is the original reaction handle or reference.

Examples:
reaction purge $xhandle X_IDENT
reaction purge $xhandle E_IDENT 1
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 561

CACTVS Tcl and Python Scripting Language Reference
The first example deletes the property data X_IDENT for the selected reaction if it is present. The
second example deletes property E_IDENT from all ensembles in the reaction if the property value
on that ensemble is equal to the default value for E_IDENT.

reaction ref
Reaction.Ref(identifier)

PYTHON only method to get a reaction reference from a handle or another identifier. For reactions,
other recognized identifiers are reaction references, or integers encoding the numeric part of the
handle string.

reaction remove
reaction remove xhandle ?enslist?...
x.remove(?erefsequence/eref?,...)

Remove the ensembles in the ensemble lists from the reaction. If an ensemble from the list is not
part of the reaction, it is ignored. Removed ensembles are not destroyed and remain accessible via
their handles.

The command returns the number of removed ensembles.

Examples:
reaction remove $xhandle $ehandle
reaction remove $xhandle [reaction ens $xhandle]

The first example removes the ensemble from the reaction if it is part of the reaction. The second
example removes all ensembles from the reaction - this is essentially the same as reaction clear.

reaction rename
reaction rename xhandle srcproperty dstproperty
x.rename(srcproperty=,dstproperty=)

This is a variant of the reaction assign command. Please refer the command description in that
paragraph.

reaction reorder
reaction reorder xhandle
x.reorder()

Sort the ensembles in the reaction into standard sequence (reagent/product/solvent/catalyst/
intermediate/impurity/byproduct/agent/waste) as defined in property E_REACTION_ROLE. In
addition, empty reagent and product (but not solvent, etc.) ensembles are automatically created for
the reaction in case they are not present.

The command returns the original ensemble handle. or reference.

reaction reverse
reaction reverse xhandle
x.reverse()

Reverse the direction of the reaction. Only the roles of ensembles with reagent and product roles are
changed.
562 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The command returns the original reaction handle.

reaction scan
reaction scan xhandle expression/queryhandle ?mode? ?parameters?
x.scan(query=,?mode=?,?parameters=?)

Perform a query on the reaction object. The syntax of the query expression and the optional selection
list is the same as that of the dataset scan command with a transient dataset consisting of the
current reaction only. For more details, please refer to the paragraphs on dataset scan, ens scan
and molfile scan.

The return value depends on the mode. The default query mode, different from the default in
dataset scan, is exists.

In case the query contains ensemble structure match conditions which are not part of a reaction
query, or there are ensemble data retrieval specifications, these are tested on and applied to the
reagent ensemble of the reaction. Reactions which do not possess a reagent ensemble (half
reactions, etc.) are ignored for these types of test.

reaction set
reaction set xhandle ?property value?...
x.set(property,value,...)
x.set({property:value,...})
x.property = value
x[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Examples:
reaction set $xhandle X_NAME “New multi-component reaction”
reaction set $xhandle E_IDENT “X-124”

The first line is a simple set operation for a reaction property. The second line shows how to set
properties of multiple ensembles in one step. The same property value is assigned to all ensembles.

reaction setparam
reaction setparam xhandle property ?key value?...
reaction setparam xhandle property dictionary
x.setparam(property,?key,value?...)
x.setparam(property,dict)

Set or update a property computation parameter in the metadata parameter list of a valid property.
This command is described in the section about retrieving property data. The current settings of the
computation parameters in the property definition are not changed.

The return value is the updated property computation parameter dictionary.

Example:
reaction setparam $xhandle X_GIF comment “Top Secret”
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 563

CACTVS Tcl and Python Scripting Language Reference
reaction show
reaction show xhandle propertylist ?filterset? ?parameterdict?
x.show(property=,?filters=?,?parameters=?)
Reaction.Show(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the reaction get command. The difference between reaction get and
reaction show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, reaction get and reaction show
are equivalent.

The PYTHON class method is a one-shot command. The transient ensemble created from the
initialization items is automatically deleted when the command finishes. The data for the creation
of the temporary ensemble is equivalent to the first argument of the standard constructor. Additional
constructor parameters cannot be used.

reaction sort
reaction sort xhandle ?sort_property? ?relabel? ?duplicate? ?datasethandle?

?position?
x.sort(?property=?,?relabel=?,?duplicate=?,?target=?,?position=?)

This command applies the ens sort command to all reaction ensembles. Please refer to the
descriptors of the ens sort command for an explanation of the parameters.

The command returns the original reaction handle or reference.

reaction split
reaction split xhandle ?minsize? ?splitproperty?
x.split(?minsize=?,?splitproperty=?)

Split the molecules of the ensembles in the reaction into individual ensembles. The return value is
a list of all ensemble handles or references in the reaction after the operation, similar to the output
of a reaction ens command. The initial reaction ensembles are modified, and their old handles
may be reused as one of the new single-molecule ensemble handles. If an input ensemble contains
only a single molecule, and that molecule passes the optional size filter, the command is a no-op for
that ensemble. All result ensembles remain members of the reaction in their old reaction role.

The optional minsize parameter is a minimum for the number of heavy atoms (property
M_HEAVY_ATOM_COUNT) in any of the molecules. If this is not an empty string, molecules which have
less atoms than the minimum are not duplicated. If all molecules in a reaction ensemble are smaller
than the required size, the ensemble is destroyed.

The optional split property argument can be used to split an ensemble on values of a molecule
property, which needs to be either already set or computable, instead of simply separating fragments
on connectivity. All molecules in an input ensemble which have a common value of this property
are put into a joint result ensemble, and each distinct property value starts a new result ensemble.
Molecules with a common property value do not need to be present in the input ensemble in a
consecutive sequence, nor are there any special requirements for the data type or value range of the
split property, as long as the data type has a comparison function. If the values of the split property
564 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
are distinct over all molecules in an input ensemble, the outcome of command is indistinguishable
from running it without any split property.

Comparison of property values is performed separately within every reaction ensemble, not across
the complete ensemble set in the reaction.

reaction sqldget
reaction sqldget xhandle propertylist ?filterset? ?parameterdict?
x.sqldget(property=,?mode=?,?parameters=?)
Reaction.Sqldget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the reaction get command. The differences between reaction get and
reaction sqldget are that the latter does not attempt computation of property data, but initializes
the property value to the default and returns that default, if the data is not present and valid; and that
the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

reaction sqlget
reaction sqlget xhandle propertylist ?filterset? ?parameterdict?
x.sqldget(property=,?mode=?,?parameters=?)
Reaction.Sqlget(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the reaction get command. The difference between reaction get and
reaction sqlget is that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

reaction sqlnew
reaction sqlnew xhandle propertylist ?filterset? ?parameterdict?
x.sqlnew(property=,?mode=?,?parameters=?)
Reaction.Sqlnew(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the reaction get command. The differences between reaction get and
reaction sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

reaction sqlshow
reaction sqlshow xhandle propertylist ?filterset? ?parameterdict?
x.sqlshow(property=,?mode=?,?parameters=?)
Reaction.Sqlshow(data,property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 565

CACTVS Tcl and Python Scripting Language Reference
For examples, see the reaction get command. The differences between reaction get and
reaction sqlshow are that the latter does not attempt computation of property data, but raises an
error if the data is not present and valid, and that the SQL command variant formats the data as SQL
values rather than for TCL or PYTHON script processing.

reaction subcommands
reaction subcommands
dir(Reaction)

Lists all subcommands of the reaction command. Note that this command does not require a
reaction handle.

reaction swapin
reaction swapin xhandle
x.swapin()

Swap a reaction from the disk store fully back to memory, and disable further automatic loading and
shelving. If the reaction was not swapped out, the command does nothing.

The command returns the original reaction handle or reference.

reaction swapout
reaction swapout xhandle
x.swapout()

Release most of the reaction data from memory and store it in a temporary disk store. The reaction
handle remains valid. As soon as it is used in a command again after this command has been
executed, the swapped reaction data is automatically reloaded from file, and then stored again when
the object lock is released. To disable the automatic swapping of a reaction, use the reaction
swapin command.

This command is intended to be used in cases where a large number of reactions must be kept in
memory. Its use is not generally encouraged - it is only useful in case the programmer knows about
access patterns. In other cases, the standard virtual memory mechanism of the operating system
might yield better performance results.

The reactions are stored as binary blobs in a key/value store in a process-specific swap directory
cactvs%d, (%d is replaced by the process ID) which is created automatically in the standard
temporary directory. When a reaction is deleted, its swap record is also removed, if one was created
during the lifetime of the reaction. When a CACTVS application program exits, the swap store as well
as the swap directory are automatically deleted, even without explicit deletion of the last set of
reactions in memory. In case of program crashes, the swap directory and its contents may however
survive. If reaction swapping is used with unstable applications, the temporary directory should be
checked from time to time.

The command returns the original reaction handle or reference.

Example:
rection swapout $xhandle
566 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
reaction tables
reaction tables xhandle ?filterlist?
x.tables(?filters=?)

Return a list of the handles or references of all table objects the reaction is associated with.
Optionally, the table set may be filtered by a simple filter list. If the reaction is not related to any
table, or none of these tables passes the filter list, an empty string is returned.

This command is only available if the toolkit was compiled with table support.
Example:
reaction tables $xhandle

reaction taint
reaction taint xhandle propertylist/changeset ?purge?
x.taint(property=,?purge=?)

Trigger a property data tainting event which acts on the reaction data, and the data of all ensembles
in the reaction. If the reaction is a member of a dataset, or its ensembles are, the dataset and its
objects are not tainted.

The command arguments are the same as for the ens taint command and explained there.

The command returns the original reaction handle or reference.

reaction transfer
reaction transfer xhandle propertylist ?targethandle? ?targetpropertylist?
x.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one reaction to another reaction or other major object, without going
through an intermediate scripting language object representation, or dissociate property data from
the reaction. If a property in the argument property list is not already valid on the source reaction,
an attempt is made to compute it.

If a target object is specified, and a property is not a reaction property, the operation is implicitly
performed on pairs of reaction ensembles with the same reaction role (property E_REACTION_ROLE)
as if a ens transfer command were issued. In this command mode, the return value is the handle
of the target reaction. The source and target reactions cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple reaction get, i.e. the result is the property data value or
value list. The property data is then deleted from the source object. In case the data type of the
deleted property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only
unlinked from the source object, but not destroyed. This means that the object handles returned by
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 567

CACTVS Tcl and Python Scripting Language Reference
the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

Examples:
reaction transfer $xh X_IDENT $xh2
reaction transfer $xh A_MAPPING $xh2

The first example is a simple data copy. The second example transfers atom property A_MAPPING
between the reagent and product ensembles of the reaction, and any other reaction ensemble where
the property is valid, and a pair of ensembles with the same reaction role can be found. The order
of the atoms in an ensemble pair is not required to be identical - property A_LABEL is used to identify
corresponding atoms.

reaction trim
reaction trim xhandle ?propertylist?
x.trim(?properties=?)

Reduce the information content of a reaction to a standard minimum set and discard any additional
information. This process minimizes the storage requirements of the reaction. The properties of the
minimum set are computed if required. The retained property set is designed to support a faithful
representation of the connectivity of the reaction ensembles including bond and atom labels and
types as well as formal charges, stereochemistry, isotopes and atom mapping information, but not
of any 2D or 3D coordinates or auxiliary additional attributes of atoms, bonds or other chemical
objects or the reaction object proper.

The optional fourth argument is a list of properties which should be retained in addition to the
standard set. If any of these are not present on the reaction (or its ensembles) that is to be trimmed,
they are silently ignored and no attempt is made to compute them. Specifying properties of the
standard retention set in this list is allowed but has no additional effect.

The return value of the command is a list of the remaining properties of the reaction and the reaction
ensembles. The properties of the latter are reported as the union of the properties of the individual
reaction ensembles (see reaction props command).

Example:
reaction trim $xhandle {X_SMILES E_NAME X_NAME}

reaction unlink
reaction unlink xhandle ?xhandle/all?
x.unlink(“all”)
x.unlink(?xhandle/xref?,...)

Remove links of the reaction to other reactions. The special string argument all removes all links of
the reaction. If an argument is a reaction the first reaction is not linked to, it is ignored.

The command returns the number of severed reaction links.

reaction unlock
reaction unlock xhandle propertylist/reaction/all
x.unlock(property=)
568 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Unlock property data for the reaction, meaning that they are again under the control of the standard
data consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names or references
Valid property instances on the reaction, reaction ensembles, or ensemble minor objects are
unlocked. Non-existent data is silently ignored. It is not possible to unlock individual
property fields.

• all
All valid reaction properties are unlocked. Ensemble properties and ensemble minor object
properties are not affected.

• reaction
This is an object class identifier. All property data which is controlled by the reaction major
object and attached to the specified object class is unlocked. Since reactions do not contain
minor objects, this identifier is equivalent to all.

Property data locks are obtained by the reaction lock command.

The return value is the original reaction handle or reference.

Example:
set xhandle [reaction create {C=C>[Pt]>CC}]
reaction lock $xhandle X_GIF 1
reaction clear $xhandle agent
reaction unlock $xhandle X_GIF

In this example, first a reaction depiction in property data X_GIF is generated and locked. After that,
the reaction and reaction ensembles can be manipulated without losing the image data. The agent is
removed in the next step - but the X_GIF image which shows the catalyst and which normally would
have been deleted when the agent is removed is kept. Finally, the image property data is put back
under the standard control of the data consistency manager.

reaction unpack
reaction unpack packstring ?compressionlib?
Reaction.Unpack(data=,?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by a reaction pack
command. The return value of this function is the handle or reference of the newly created reaction
object, which is an exact duplicate of the packed original reaction.

Reactions may also be unpacked by a reaction create command.

The default compression library is zlib. For more options, see reaction pack.

Example:
set packdata [reaction pack [reaction create C=O>>CO]]

set xhandle [reaction unpack $packdata]

reaction valid
reaction valid xhandle propertylist
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 569

CACTVS Tcl and Python Scripting Language Reference
x.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the reaction. No attempt at computation is made. For PYTHON, where single-item lists are
syntactically not the same as a single value, the return value is a single boolean if the argument was
a string or a property reference, and only a single property was decoded.

Example:
reaction valid $xhandle X_IDENT

reports whether the reaction has a standard ID (has a valid X_IDENT property) or not.

reaction has is an alias to this command.

reaction verify
reaction verify xhandle property
x.verify(property)

Verify the values of the specified property on the reaction. The property data must be valid, and a
reaction property. If the data can be found, it is checked against all constraints defined for the
property, and, if such a function has been defined, is tested with the value verification function of
the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.

reaction weed
reaction weed xhandle keywords
x.weed(keywordsequence)
x.weed(?keyword?,...)

This command performs standard clean-up operations on all ensembles in the reaction. The
supported operations are described in more detail in the section on the equivalent ens weed
command.

The return value of this command is the original reaction handle or reference.

reaction xdelete
reaction xdelete ?xhandle?...
reaction xdelete all
x.xdelete()
Reaction.Xdelete(“all”)
Reaction.XDelete(?xrefsequence/xref/xhandle?,...)

Delete reactions and the ensembles which are part of the deleted reactions. The special parameter
all may be used to delete all reactions currently registered in the application. Alternatively, any
number of lists of reaction handles may be specified for specific reaction deletions. If a reaction is
part of a linked reaction network, all reactions in the network are also deleted. This is the difference
to the normal delete command or method.

The command returns the number of deleted reactions.
570 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
reaction xdup
reaction xdup xhandle ?dataset? ?position?
x.xdup(?target=?,?position=?)

Duplicate the specified reaction and its ensembles, together with any additional reactions it may be
linked to (see reaction link/unlink). The latter behavior is the difference to the standard
reaction dup command. The return value is the new reaction handle or reference. If additional
reactions were duplicated as part of a linked networks, these can be queried via reaction links.
The duplicated reaction ensembles are also assigned unique handles.

The duplicate ensemble is placed into the same dataset as the source, if it is a member of a dataset.
Specifying an explicitly empty dataset argument (including None for PYTHON) places the duplicate
outside any dataset, regardless of the dataset membership of the source ensemble.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the reaction is
inserted at the given position, starting with 0. If the requested position is larger than the current size
of the dataset, the reaction is appended.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 571

CACTVS Tcl and Python Scripting Language Reference
The ring Command

The ring command is the generic command used to manipulate rings. The syntax of this command
follows the standard schema of command/subcommand/majorhandle/minorlabel.

Pseudo ring labels first, last and random are special values, which select the first ring in the ring list,
the last, or a random ring.

Examples:
ring get $ehandle 1 R_SIZE

This is the list of officially supported subcommands:

ring append
ring append ehandle label ?property value?...
r.append({?property:value,?...})
r.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
ring append $ehandle 1 R_NAME “_centroid”

ring atoms
ring atoms ehandle label ?filterset? ?filtermode?
r.atoms(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the atom in the ring. This
is explained in more detail in the section about object cross-references.

Example:
ring atoms $ehandle 1 carbon

returns the labels of the carbon atoms in the ring.

ring bonds
ring bonds ehandle label ?filterset? ?filtermode?
r.bonds(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bonds the ring
contains. This is explained in more detail in the section about object cross-references. Technically,
a ring contains atoms, not bonds. This command lists all bonds which exist between consecutive
atoms in the ring and which are of a type which matches the current ring bond mask.

Examples:
ring bonds $ehandle 1
ring bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds ring 1 contains. The second example returns the
number of double or triple bonds in the ring.
572 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ring defined
ring defined ehandle label property
r.defined(property)

This command checks whether a property is defined for the ring. This is explained in more detail in
the section about property validity checking. Note that this is not a check for the presence of property
data! The ens valid command is used for this purpose.

Example:
ring defined $ehandle 1 R_AROMATIC

checks whether ring 1 is of a type for which property R_AROMATIC is defined.

ring delete
ring delete ehandle ?label?...
ring delete ehandle all
r.delete()
Ring.Delete(eref,”all”)
Ring.Delete(rref,...)
Ring.Delete(eref,?rlabel/rref/rrefsequence?,...)

This command removes rings from the ensemble ring list and destroys them. A ring property
invalidation event is generated and thus the command may indirectly change the ensemble data.

This command is rarely used. Rings are usually generated and destroyed automatically.

The command returns the number of deleted items.

ring dget
ring dget ehandle label propertylist ?filterset? ?parameterdict?
r.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ring get command. The difference between ring get and ring dget is
that the latter does not attempt computation of property data, but rather initializes the property values
to the default and return that default if the data is not yet available. For data already present, ring
get and ring dget are equivalent.

ring ens
r.ens()

PYTHON-only method to get the ensemble reference from a ring reference.

ring exists
ring exists ehandle label ?filterlist?
r.exists(?filters=?)
Ring.Exists(eref,label,?filters=?)

Check whether this ring exists. Optionally, a filter list can be supplied to check for the presence of
specific features. The command returns boolean 0 if the ring does not exist, or fails the filter, and 1
in case of successful testing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 573

CACTVS Tcl and Python Scripting Language Reference
Example:
ring exists $ehandle 99

ring expr
ring expr ehandle label expression
r.expr(expression)

Compute a standard SQL-style property expression for the ring. This is explained in detail in the
chapter on property expressions.

ring fill
ring fill ehandle label ?property value?...
r.fill({property:value,...})
r.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.

Example:
ring fill $ehandle 1 B_COLOR red

sets the color of the first bond ring 1 contains to red.

ring filter
ring filter ehandle label filterlist
r.filter(filters)

Check whether a ring passes a filter list. The return value is boolean 1 for success and 0 for failure.

Example:
ring filter $ehandle 1 [list carbon doublebond]

checks whether the ring contains one or more carbon atoms and one or more double bonds. The
double bond does not need to contain a carbon atom.

ring formulamatch
ring formulamatch ehandle label formula_expression ?other_elements?
r.formulamatch(query=,?other_elements=?)

Match the ring against a formula expression. Its syntax is the same as in formula queries in molfile
scan and other scan commands.

There are several methods to specify whether any elements not mentioned in the formula expression
may or must be present. If the other_elements flag is used, it has the highest priority. If may be set
to 0 (no other elements allowed), 1 (allowed) or 2 (required), and if it is set, any prefix in the formula
expression is ignored. If it is not used, a prefix in the formula expression may be used to control the
matching. Supported prefixes are = (no other elements), >= (other elements allowed) and >
(required). If no prefix is used, the default mode is an exact match without other elements.

The return value is the boolean match result.
574 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
ring formulamatch $eh 1 >C6

Tests whether the ring contains six carbon atoms. At least one atom which is not carbon must be
present.
ring formulamatch $eh 1 C5-6(Cl+Br+I)2- 1

Tests whether the ring has five or six carbon atoms, two ore more heavy halogens, and potentially
any other elements.

ring get
ring get ehandle label propertylist ?filterset? ?parameterdict?
r.get(property=,?filters=?,?parameters=?)
r[property]
r.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
ring get $ehandle 1 {R_SIZE A_ELEMENT}

yields a list with two elements, consisting of the ring size as the first element and the element
numbers of all atoms in the ring as a nested list as the second result list element. If the information
is not yet available, an attempt is made to compute it. If the computation fails, an error results.
ring get $ehandle 1 B_ORDER cxbond

reports the bond orders of all bonds of the ring which are carbon-heteroatom bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the ring get command are ring dget, ring new, ring nget, ring show, ring
sqldget, ring sqlget, ring sqlnew, and ring sqlshow.

Further examples:
ring get $ehandle 1 E_NAME
ring get $ehandle 1 A_FLAGS(boxed)

ring groups
ring groups ehandle label ?filterset? ?filtermode?
r.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the ring
overlaps with. This is explained in more detail in the section about object cross-references. An
overlap between a ring and a group is established when there are common atoms which are
contained in both objects.

Example:
ring groups $ehandle 1

ring hydrogenate
ring hydrogenate ehandle label ?filterset? ?changeset?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 575

CACTVS Tcl and Python Scripting Language Reference
r.hydrogenate(?filters=?,?changeset=?)

Reduce all bonds in the ring to single bonds except those excluded by the filter set.

If a change set is supplied, its interpretation is the same as in mol hadd.

The command returns the number of added hydrogens.

Example:
ring hydrogenate $eh 1 {!arobond !ccbond}

This reduces all non-aromatic hetero bonds in ring 1 to single bonds.

ring index
ring index ehandle label
r.index()

Get the index of the ring. The index is the position in the ring list of the ensemble. The first position
is index 0.

Example:
ring index $ehandle 99

ring jget
ring jget ehandle label propertylist ?filterset? ?parameterdict?
r.jget(property=,?filters=?,?parameters=?)

This is a variant of ring get which returns the result data as a JSON formatted string instead of TCL
interpreter objects.

ring jnew
ring jnew ehandle label propertylist ?filterset? ?parameterdict?
g.jnew(property=,?filters=?,?parameters=?)

This is a variant of ring new which returns the result data as a JSON formatted string instead of TCL
interpreter objects.

ring jshow
ring jshow ehandle label propertylist ?filterset? ?parameterdict?
g.jshow(property=,?filters=?,?parameters=?)

This is a variant of ring show which returns the result data as a JSON formatted string instead of
TCL interpreter objects.

ring ligands
ring ligands ehandle label ?filterset? ?filtermode? ?sphere?
r.ligands(?filters=?,?mode=?,?sphere=?)

Get the labels of atoms that are ligands to the current ring, i.e. they are not member of the ring, but
bonded to it. The filterset and filtermode parameters work as with other object cross-reference
commands.

This command supports a special filtermode parameter in addition to the standard set (exists, count,
exclude, include). The bonds parameter, followed by a bit set combination from the allowed values
576 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ring, sidechain or bridge can be used for topological filtering of the traversable bonds. By default,
no topological bond filtering is applied.

The default sphere number is one, meaning only the direct ring substituents are reported. A higher
positive number extracts more distant atoms, but still excludes the ring atoms. A negative sphere
number works the same way, but the result set includes atoms seen in inner spheres. Duplicate atoms
encountered in different spheres are not reported by default.

If the filter set contains a bond filter, it is applied to the bond linking the first sphere atom to the ring
or leading from an inner to the outer sphere atom. This means it is not sufficient for an atom to
possess any bond which passes the filter, but it must be the bond to the ring or sphere expansion
atom.

Example:
set nonringsubcnt [rings ligands $eh $rlabel {!hydrogen !ringatom} count]

ring local
ring local ehandle label propertylist ?filterset? ?parameterdict?
r.local(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
ring local $ehandle 1 A_LABEL_STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

ring match
ring match ehandle label ss_ehandle ?ss_label? ?matchflags? ?ignoreflags? ?

atommatchvar? ?bondmatchvar? ?molmatchvar?
r.match(substructure=,?substructurering=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)

Check whether the selected ring matches a substructure. Only the first substructure ring, or the ring
selected by the substructure label parameter, is tested. The substructure may be part of any structure
ensemble, and even be in the same ensemble as the primary command ring. Both the atoms in the
ring and the bonds between them are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
map variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels. If no match can be found, the variable is set to an empty list. In case only a bond
or molecule map variable is needed, an empty string can be used to skip the unused map variable
argument positions.

Example:
set ss [ens create {c1ccccc1} smarts]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 577

CACTVS Tcl and Python Scripting Language Reference
set r_is_phenyl [ring match $ehandle $label $ss]

ring mols
ring mols ehandle label ?filterset? ?filtermode?
r.mols(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the molecules the ring is
contained in. This is explained in more detail in the section about object cross-references. Under
specific circumstances, it is possible to have rings which span more than one molecule.

Examples:
ring mols $ehandle 1
ring mols $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all molecules the ring is a part of. The second example filters
the molecules - only molecules which contain heteroaromatic rings are reported. The ring filter is
applied to the molecule because this is the return object, not the ring, so this filter does not require
the ring the command was issued for to be in that class.

ring new
ring new ehandle label propertylist ?filterset? ?parameterdict?
r.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ring get command. The difference between ring get and ring new is
that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

ring nget
ring nget ehandle label propertylist ?filterset? ?parameterdict?
r.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ring get command. The difference between ring get and ring nget is
that the latter always returns numeric data, even if symbolic names for the values are available.

ring pis
ring pis ehandle label ?filterset? ?filtermode?
r.pis(?filter=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the ring
overlaps with. This is explained in more detail in the section about object cross-references.

Examples:
ring pis $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one  system and one  system in this representation.
578 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ring ref
Ring.Ref(eref,identifier)

PYTHON only method to get a ring reference. See ring ring command.

ring ring
ring ring ehandle label
Ring.Ref(eref,identifier)

Standard cross-referencing command to obtain the label of the ring as stored in property R_LABEL.
This is explained in more detail in the section about object cross-references.

Example:
ring ring $ehandle #0

returns the label of the first ring of the ensemble ring list.

ring ringsystem
ring ringsystem ehandle label ?filterset? ?filtermode?
r.ringsystem(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring system the ring
is a member of. This is explained in more detail in the section about object cross-references.

Examples:
ring ringsystem $ehandle 1
ring ringsystem $ehandle 1 [list heterocycle aroring]

The first example returns the label of the ring system the ring is a member of. The second example
filters the ring system - a ring system label is obtained only if that ring system contains one or more
hetero aromats. These filters are applied to the ring system, meaning that they are implicitly applied
to all rings in the ring system, not just the ring used for the query command.

Since a ring can only be a member of a single ring system, the command spells the target in singular.

ring set
ring set ehandle label ?property value?...
r.set(?property,value?,...)
r.set({property:value,...})
r.property = value
r[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
ring set $ehandle 1 R_NAME “The central pharmacophore”

ring show
ring show ehandle label propertylist ?filterset? ?parameterdict?
r.show(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 579

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ring get command. The difference between ring get and ring show is
that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, ring get and ring show are equivalent.

ring sigmas
ring sigmas ehandle label ?filterset? ?filtermode?
r.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the ring
overlaps with. This is explained in more detail in the section about object cross-references.

Examples:
ring sigmas $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

ring sqldget
ring sqldget ehandle label propertylist ?filterset? ?parameterdict?
r.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ring get command. The differences between ring get and ring sqldget
are that the latter does not attempt computation of property data, but initializes the property value
to the default and returns that default, if the data is not present and valid; and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

ring sqlget
ring sqlget ehandle label propertylist ?filterset? ?parameterdict?
r.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ring get command. The difference between ring get and ring sqlget
is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

ring sqlnew
ring sqlnew ehandle label propertylist ?filterset? ?parameterdict?
r.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
580 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the ring get command. The differences between ring get and ring sqlnew
are that the latter forces re-computation of the property data, and that the SQL command variant
formats the data as SQL values rather than for TCL or PYTHON script processing.

ring sqlshow
ring sqlshow ehandle label propertylist ?filterset? ?parameterdict?
r.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ring get command. The differences between ring get and ring sqlshow
are that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid, and that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

ring subcommands
ring subcommands
dir(Ring)

Lists all subcommands of the ring command. Note that this command does not require an ensemble
handle, or a label.

ring surfaces
ring surfaces ehandle label ?filterset? ?filtermode?
r.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of surface patches the ring
is associated with. This is explained in more detail in the section about object cross-references.

Example:
ring surfaces $ehandle $label

Note that surface patches do not need to be associated with an atom, and if they are not, they are
implicitly not associated with any ring.

ring xbonds
ring xbonds ehandle label ?filterset? ?filtermode?

r.xbonds(?filters=?,?mode=?)

Get labels or references of crossing bonds which are not contained in the ring (defined as all bonds
between any two consecutive registered atoms in the system), but have one atom in the ring. Bonds
between atoms in the ring which are not part of the ring bond set are reported. For example, when
looking at the six-membered outer envelope ring of bicyclobutane, the bridge between the two
four-membered SSSR bonds is included in the result set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 581

CACTVS Tcl and Python Scripting Language Reference
The ringsystem Command

The ringsystem command is the generic command used to manipulate ring systems. The syntax of
this command follows the standard schema of command/subcommand/majorhandle/minorlabel.

Pseudo ring system labels first, last and random are special values, which select the first ring system
in the ring system list, the last, or a random ring system.

Examples:
ring get $ehandle 1 Y_NATOMS

The command can also be invoked as shortened alias ringsys.

The default property name prefix for ringsystem-level properties is Y_. The R_ prefix is used for
more commonly encountered ring properties.

This is the list of officially supported subcommands:

ringsystem append
ringsystem append ehandle label ?property value?...
y.append({?property:value,?...})
y.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
ringsystem append $ehandle 1 Y_NAME “_centroid”

ringsystem atoms
ringsystem atoms ehandle label ?filterset? ?filtermode?
y.atoms(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the atom in the ring
system. This is explained in more detail in the section about object cross-references.

Example:
ringsystem atoms $ehandle carbon

returns the labels of the carbon atoms in the ring system.

ringsystem bonds
ringsystem bonds ehandle label ?filterset? ?filtermode?
y.bonds(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bonds the ring system
contains. This is explained in more detail in the section about object cross-references.

Technically, a ring system contains atoms, not bonds. This command lists all bonds which exist
between atoms in the ring system and which are of a type which matches the current ring bond mask
and which are ring bonds.
582 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Examples:
rinsysg bonds $ehandle 1
ringsystem bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds ring system 1 contains. The second example returns
the number of double or triple bonds in the ring system.

ringsystem create
ringsystem create ehandle ?atom/atomlist?...
Ringsystem(eref,?aref/arefsequence/alabel?,...)
Ringsystem(aref,...)
Ringsystem.Create(eref,?aref/arefsequence/alabel?,...)
Ringsystem.Create(aref,...)

This command can be used to manually create a ring system or pseudo ring system from an arbitrary
collection of atoms. No check is made whether the atoms actually form a valid ring system. The
result value of the command is the label of the newly created ring system. This command generates
a ringsystem property invalidation event and may thus indirectly influence the ensemble data.

By default, ring systems are automatically created whenever they are referenced and not yet set up
for the context ensemble.

The command returns the label or reference of the new ringsystem.

Example:
ringsystem create $ehandle {1 2 3}

ringsystem defined
ringsystem defined ehandle label property
y.defined(property)

This command checks whether a property is defined for the ring system. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

Example:
ringsystem defined $ehandle 1 Y_NAME

checks whether ring system 1 is of a type for which property Y_NAME is defined.

ringsystem delete
ringsystem delete ehandle ?label?...
ringsystem delete ehandle all
y.delete()
Ringsystem.Delete(eref,”all”)
Ringsystem.Delete(yref,...)
Ringsystem.Delete(eref,?ylabel/yref/yrefsequence?,...)

This command removes ring systems from the ensemble ring system list and destroys them. A
ringsystem property invalidation event is generated and thus the command may indirectly change
the ensemble data.

The command returns the number of deleted items.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 583

CACTVS Tcl and Python Scripting Language Reference
This command is rarely used. Ring systems are usually generated and destroyed automatically.

ringsystem dget
ringsystem dget ehandle label propertylist ?filterset? ?parameterdict?
y.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The difference between ringsystem get and
ringsystem dget is that the latter does not attempt computation of property data, but rather
initializes the property values to the default and return that default if the data is not yet available.
For data already present, ringsystem get and ringsystem dget are equivalent.

ringsystem ens
y.ens()

PYTHON-only method to get the ensemble reference from a ringsystem reference.

ringsystem exists
ringsystem exists ehandle label ?filterlist?
r.exists(?filters=?)
Ringsystem.Exists(eref,label,?filters=?)

Check whether this ring system exists. Optionally, a filter list can be supplied to check for the
presence of specific features. The command returns boolean 0 if the ring system does not exist, or
fails the filter, and 1 in case of successful testing.

Example:
ringsystem exists $ehandle 99

ringsystem expr
ringsystem expr ehandle label expression
y.exp(rexpression)

Compute a standard SQL-style property expression for the ring system. This is explained in detail
in the chapter on property expressions.

ringsystem fill
ringsystem fill ehandle label ?property value?...
y.fill({property:value,...})
y.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.

Example:
ringsystem fill $eh 1 A_COLOR [lrepeat [ringsystem atoms $ehandle 1 {} count] red

sets the color of the atoms in ring system 1 to red.
584 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ringsystem filter
ringsystem filter ehandle label filterlist
y.filter(filters)

Check whether a ring system passes a filter list. The return value is boolean 1 for success and 0 for
failure.

Example:
ringsystem filter $ehandle 1 [list carbon doublebond]

checks whether the ring system contains one or more carbon atoms and one or more double bonds.
The double bond does not need to include a carbon atom.

ringsystem formulamatch
ringsystem formulamatch ehandle label formula_expression ?other_elements?
y.formulamatch(query=,?other_elements=?)

Match the ringsystem against a formula expression. Its syntax is the same as in formula queries in
molfile scan and other scan commands.

There are several methods to specify whether any elements not mentioned in the formula expression
may or must be present. If the other_elements flag is used, it has the highest priority. If may be set
to 0 (no other elements allowed), 1 (allowed) or 2 (required), and if it is set, any prefix in the formula
expression is ignored. If it is not used, a prefix in the formula expression may be used to control the
matching. Supported prefixes are = (no other elements), >= (other elements allowed) and >
(required). If no prefix is used, the default mode is an exact match without other elements.

The return value is the boolean match result.

Examples:
ringsystem formulamatch $eh 1 >C6

Tests whether the ring system contains six carbon atoms. At least one atom which is not carbon must
be present.
ringsystem formulamatch $eh 1 C5-6(Cl+Br+I)2- 1

Tests whether the ring system has five or six carbon atoms, two ore more heavy halogens, and
potentially any other elements.

ringsystem get
ringsystem get ehandle label propertylist ?filterset? ?parameterdict?
y.get(property=,?filters=?,?parameters=?)
y[property]
y.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
ringsystem get $ehandle 1 {Y_NATOMS A_ELEMENT}

yields a list with two elements, consisting of the ring system size as the first element and the element
numbers of all atoms in the ring system as a nested list as the second result list element. If the
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 585

CACTVS Tcl and Python Scripting Language Reference
information is not yet available, an attempt is made to compute it. If the computation fails, an error
results.
ringsystem get $ehandle 1 B_ORDER cxbond

reports the bond orders of all bonds of the ring system which are carbon-hetero bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the ringsystem get command are ringsystem dget, ringsystem new, ringsystem
nget, ringsystem show, ringsystem sqldget, ringsystem sqlget, ringsystem sqlnew,
and ringsystem sqlshow.

Further examples:
ringsystem get $ehandle 1 E_NAME
ringsystem get $ehandle 1 A_FLAGS(boxed)

ringsystem groups
ringsystem groups ehandle label ?filterset? ?filtermode?
y.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the ring system
overlaps with. This is explained in more detail in the section about object cross-references. An
overlap between a ring system and a group is established when there are common atoms which are
contained in both objects.

Example:
ringsystem groups $ehandle 1

ringsystem hydrogenate
ringsystem hydrogenate ehandle label ?filterset? ?changeset?
y.hydrogenate(?filters=?,?changeset=?)

Reduce all bonds in the ringsystem to single bonds except those excluded by the filter set.

If a change set is supplied, its interpretation is the same as in mol hadd.

The command returns the number of added hydrogens.

Example:
ringsystem hydrogenate $eh 1 {!arobond !ccbond}

This reduces all non-aromatic hetero bonds in ringsystem 1 to single bonds.

ringsystem index
ringsystem index ehandle label
y.index()

Get the index of the ring system. The index is the position in the ring system list of the ensemble.
The first position is index 0.

Example:
ringsystem index $ehandle 99
586 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ringsystem jget
ringsystem jget ehandle label propertylist ?filterset? ?parameterdict?
y.jget(property=,?filters=?,?parameters=?)

This is a variant of ringsystem get which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

ringsystem jnew
ringsystem jnew ehandle label propertylist ?filterset? ?parameterdict?
y.jnew(property=,?filters=?,?parameters=?)

This is a variant of ringsystem new which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

ringsystem jshow
ringsystem jshow ehandle label propertylist ?filterset? ?parameterdict?
y.jshow(property=,?filters=?,?parameters=?)

This is a variant of ringsystem show which returns the result data as a JSON formatted string
instead of TCL or PYTHON interpreter objects.

ringsystem ligands
ringsystem ligands ehandle label ?filterset? ?filtermode? ?sphere?
y.ligands(?filters=?,?mode=?,?sphere=?)

Get the labels of atoms that are ligands to the current ring system, i.e. they are not member of the
ring system, but bonded to it. The filterset and filtermode parameters work as with other object
cross-reference commands.

This command supports a special filtermode parameter in addition to the standard set (exists, count,
exclude, include). The bonds parameter, followed by a bit set combination from the allowed values
ring, sidechain or bridge can be used for topological filtering of the traversable bonds. By default,
no topological bond filtering is applied.

The default sphere number is one, meaning only the direct ring system substituents are reported. A
higher positive number extracts more distant atoms, but still excludes the ring system atoms. A
negative sphere number works the same way, but the result set includes atoms seen in inner spheres.
Duplicate atoms encountered in different spheres are not reported by default.

If the filter set contains a bond filter, it is applied to the bond linking the first sphere atom to the ring
system or leading from an inner to the outer sphere atom. This means it is not sufficient for an atom
to possess any bond which passes the filter, but it must be the bond to the ring system or sphere
expansion atom.

Example:
set subcnt [ringsystem ligands $eh $ylabel {!hydrogen} count]

ringsystem local
ringsystem local ehandle label propertylist ?filterset? ?parameterdict?
y.local(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 587

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
ringsystem local $ehandle 1 A_LABEL_STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to a global re-computation.

ringsystem match
ringsystem match ehandle label ssehandle ?sslabel? ?matchflags? ?ignoreflags?

?atommatchvar? ?bondmatchvar? ?molmatchvar?
y.match(substructure=,?substructureringsystem=?,?matchflags=?,?ignoreflags=?,

?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?)

Check whether the selected ringsystem matches a substructure. Only the first substructure ring
system, or the ring system selected by the substructure label parameter, is tested. The substructure
may be part of any structure ensemble, and even be in the same ensemble as the primary command
ring system. Both the atoms in the ringsystem and the bonds between them are checked.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,
atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset a flag set, an explicit none value must be used.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
map variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels. If no match can be found, the variable is set to an empty list. In case only a bond
or molecule map variable is needed, an empty string can be used to skip the unused map variable
argument positions.

Example:
set ss [ens create {c1ccccc1.c1ncccc1} smarts]
set rs_contains_phenyl [ringsystem match $ehandle $label $ss 1]

ringsystem mols
ringsystem mols ehandle label ?filterset? ?filtermode?
y.mols(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the molecules the ring
system participates in. This is explained in more detail in the section about object cross-references.
Under specific circumstances, it is possible to have ring systems which span more than one
molecule.

Examples:
ringsystem mols $ehandle 1
ringsystem mols $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all molecules the ring system is a part of. The second example
filters the molecules - only molecules which contain heteroaromatic rings are reported. The ring
filter is applied to the molecule because this is the return object, not the ring, so this filter does not
require the ring the command was issued for to be in that class.
588 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
ringsystem new
ringsystem new ehandle label propertylist ?filterset? ?parameterdict?
y.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The difference between ringsystem get and
ringsystem new is that the latter forces the re-computation of the property data, regardless whether
it is present and valid, or not.

ringsystem nget
ringsystem nget ehandle label propertylist ?filterset? ?parameterdict?
y.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The difference between ringsystem get and
ringsystem nget is that the latter always returns numeric data, even if symbolic names for the
values are available.

ringsystem pis
ringsystem pis ehandle label ?filterset? ?filtermode?
y.pis(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the ring
system overlaps with. This is explained in more detail in the section about object cross-references.

Examples:
ringsystem pis $ehandle 1

 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use p or d orbitals, such as in standard covalent multiple bonds. A simple
double bond is described with one  system and one  system in this representation.

ringsystem ref
Ringsystem.Ref(eref,identifier)

PYTHON only method to get a ringsystem reference. See ringsystem ringsystem command.

ringsystem rings
ringsystem rings ehandle label ?filterset? ?filtermode?
y.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring system the ring
is a member of. This is explained in more detail in the section about object cross-references.

Examples:
ringsystem rings $ehandle 1
ringsystem rings $ehandle 1 [list heterocycle aroring]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 589

CACTVS Tcl and Python Scripting Language Reference
The first example returns the labels of the rings which are contained in the ring system. The second
example filters the ring system - a ring label is obtained only if that ring system contains one or more
heteroaromatic rings. These filters are applied to the individual rings in the ring system, not the
command ringsystem.

ringsystem ringsystem
ringsystem ringsystem ehandle label
Ringsystem.Ref(eref,identifier)

Standard cross-referencing command to obtain the label or reference of the ring. This is explained
in more detail in the section about object cross-references.

Example:
ringsystem ringsystem $ehandle #0

returns the label of the first ring system of the ensemble ring system list.

ringsystem set
ringsystem set ehandle label ?property value?...
y.set(?property,value?,...)
y.set({property:value,...})
y.property = value
y[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
ringsystem set $ehandle 1 Y_NAME “The central pharmacophore”

ringsystem show
ringsystem show ehandle label propertylist ?filterset? ?parameterdict?
y.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The difference between ringsystem get and
ringsystem show is that the latter does not attempt computation of property data, but raises an error
if the data is not present and valid. For data already present, ringsystem get and ringsystem
show are equivalent.

ringsystem sigmas
ringsystem sigmas ehandle label ?filterset? ?filtermode?
y.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels of the  systems the ring system overlaps
with. This is explained in more detail in the section about object cross-references.

Examples:
ringsystem sigmas $ehandle 1
590 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

ringsystem sqldget
ringsystem sqldget ehandle label propertylist ?filterset? ?parameterdict?
y.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The differences between ringsystem get and
ringsystem sqldget are that the latter does not attempt computation of property data, but
initializes the property value to the default and returns that default, if the data is not present and
valid; and that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON
script processing.

ringsystem sqlget
ringsystem sqlget ehandle label propertylist ?filterset? ?parameterdict?
y.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The difference between ringsystem get and
ringsystem sqlget is that the SQL command variant formats the data as SQL values rather than for
TCL or PYTHON script processing.

ringsystem sqlnew
ringsystem sqlnew ehandle label propertylist ?filterset? ?parameterdict?
y.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The differences between ringsystem get and
ringsystem sqlnew are that the latter forces re-computation of the property data, and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

ringsystem sqlshow
ringsystem sqlshow ehandle label propertylist ?filterset? ?parameterdict?
y.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the ringsystem get command. The differences between ringsystem get and
ringsystem sqlshow are that the latter does not attempt computation of property data, but raises
an error if the data is not present and valid, and that the SQL command variant formats the data as
SQL values rather than for TCL or PYTHON script processing.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 591

CACTVS Tcl and Python Scripting Language Reference
ringsystem subcommands
ringsystem subcommands
dir(Ringsystem)

Lists all subcommands of the ringsystem command. Note that this command does not require an
ensemble handle, or a label.

ringsystem surfaces
ringsystem surfaces ehandle label ?filterset? ?filtermode?
y.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels of surface patches the ring system is
associated with. This is explained in more detail in the section about object cross-references.

Example:
ringsystem surfaces $ehandle $label

Note that surface patches do not need to be associated with an atom, and if they are not, they are
implicitly not associated with any ring system.

ringsystem xbonds
ringsystem xbonds ehandle label ?filterset? ?filtermode?

y.xbonds(?filters=?,?mode=?)

Get labels or references of crossing bonds which are not contained in the ring system (defined as all
bonds between the registered atoms in the system), but have one atom in the ring system.
592 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The sigma command

The sigma command is the generic command used to manipulate sigma systems. The syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel.

Sigma properties begin with an S_,

Pseudo sigma system labels first, last and random are special values, which select the first sigma
system in the sigma system list, the last, or a random item.

This is the list of officially supported subcommands:

sigma append
sigma append ehandle label ?property value?...
s.append({?property:value,?...})
s.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

sigma atoms
sigma atoms ehandle label ?filterset? ?filtermode?
s.atoms(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the atoms in the  system.
This is explained in more detail in the section about object cross-references.

sigma bonds
sigma bonds ehandle label ?filterset? ?filtermode?
s.bonds(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bonds between the
atoms associated with a  system. This is explained in more detail in the section about object
cross-references.

sigma create
sigma create ehandle ?atom/atomlist?...
Sigma(eref,?aref/arefsequence/alabel?,...)
Sigma(aref,...)
Sigma.Create(eref,?aref/arefsequence/alabel?,...)
Sigma.Create(aref,...)

Define a new  system from an atom set, which may be empty. A new system is always created, even
if one with the same atoms already exists. Before the command is executed, the default  system set
is automatically instantiated if it was not yet computed. Adding a new system invalidates properties
which are sensitive to  set changes.

The command returns the label or reference of the new system.

sigma defined
sigma defined ehandle label property
s.defined(property)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 593

CACTVS Tcl and Python Scripting Language Reference
This command checks whether a property is defined for the  system. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

sigma delete
sigma delete ehandle ?label?...
sigma delete ehandle all
s.delete()
Sigma.Delete(eref,?sref/slabel/srefsequence?,...)
Sigma.Delete(sref,...)
Sigma.Delete(eref,“all”)

This command deletes specific or all  systems from the ensemble. A sigma property invalidation
event is generated and thus the command may indirectly change the ensemble data.

The command returns the number of deleted items.

sigma dget
sigma dget ehandle label propertylist ?filterset? ?parameterdict?
s.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the sigma get command. The difference between sigma get and sigma dget
is that the latter does not attempt computation of property data, but rather initializes the property
values to the default and returns that default if the data is not yet available. For data already present,
sigma get and sigma dget are equivalent.

sigma ens
s.ens()

PYTHON-only method to get the ensemble reference from a  reference.

sigma exists
sigma exists ehandle label ?filterlist?
s.exists(?filters=?)
Sigma.Exists(eref,label,?filters=?)

Check whether this  system exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the system does not exist, or fails the filter, and 1 in
case of successful testing.

sigma expr
sigma expr ehandle label expression
s.expr(expression)

Compute a standard SQL-style property expression for the  system. This is explained in detail in
the chapter on property expressions.
594 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
sigma fill
sigma fill ehandle label ?property value?...
s.fill({property:value,...})
s.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.

sigma filter
sigma filter ehandle label filterlist
s.filter(filters)

Check whether a  system passes a filter list. The return value is boolean 1 for success and 0 for
failure.

sigma get
sigma get ehandle label propertylist ?filterset? ?parameterdict?
s.get(property=,?filters=?,?parameters=?)
s[property]
s.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

sigma groups
sigma groups ehandle label ?filterset? ?filtermode?
s.groups(?filters=?,?groups=?)

Standard cross-referencing command to obtain the labels or references of the groups the  system
overlaps with. This is explained in more detail in the section about object cross-references. An
overlap between a  system and a group is established when there are common atoms which are
contained in both objects.

Example:
sigma groups $ehandle 1

sigma index
sigma index ehandle label
s.index()

Get the index of the  system. The index is the position in the  set of the ensemble. The first
position is index 0.

Example:
sigma index $ehandle 99

sigma jget
sigma jget ehandle label propertylist ?filterset? ?parameterdict?
s.jget(property=,?filters=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 595

CACTVS Tcl and Python Scripting Language Reference
This is a variant of sigma get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

sigma jnew
sigma jnew ehandle label propertylist ?filterset? ?parameterdict?
s.jnew(property=,?filters=?,?parameters=?)

This is a variant of sigma new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

sigma jshow
sigma jshow ehandle label propertylist ?filterset? ?parameterdict?
s.jshow(property=,?filters=?,?parameters=?)

This is a variant of sigma show which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

sigma local
sigma local ehandle label propertylist ?filterset? ?parameterdict?
s.local(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

sigma mol
sigma mol ehandle label ?filterset? ?filtermode?
s.mol(?filters=?,?mode=?)

Standard cross-referencing command to obtain the label or reference of the molecule a  system is
part of. This is explained in more detail in the section about object cross-references.

sigma new
sigma new ehandle label propertylist ?filterset? ?parameterdict?
s.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

The difference between sigma get and sigma new is that the latter forces the re-computation of
the property data, regardless whether it is present and valid, or not.

sigma nget
sigma nget ehandle label propertylist ?filterset? ?parameterdict?
s.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the sigma get command. The difference between sigma get and sigma nget
is that the latter always returns numeric data, even if symbolic names for the values are available.
596 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
sigma pis
sigma pis ehandle label ?filterset? ?filtermode?
s.pis(?filter=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the  system
overlaps with. This is explained in more detail in the section about object cross-references.

Examples:
sigma pis $ehandle 1

sigma ref
Sigma.Ref(eref,identifier)

PYTHON only method to get a reference. See sigma sigma command.

sigma rings
sigma rings ehandle label ?filterset? ?filtermode?
s.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the rings the  system is
associated with. This is explained in more detail in the section about object cross-references. Rings
which only partially overlap with the sigma system are included.

sigma ringsystems
sigma ringsystems ehandle label ?filterset? ?filtermode?
s.ringsystems(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ring systems the 
system overlaps with. This is explained in more detail in the section about object cross-references.

sigma set
sigma set ehandle label ?property value?...
s.set(?property,value?,...)
s.set({property:value,...})
s.property = value
s[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

sigma show
sigma show ehandle label propertylist ?filterset? ?parameterdict?
s.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the sigma get command. The difference between sigma get and sigma show
is that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, sigma get and sigma show are equivalent.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 597

CACTVS Tcl and Python Scripting Language Reference
sigma sigma
sigma sigma ehandle label
Sigma.Ref(eref,identifier)

Standard cross-referencing command to obtain the label or reference of the  system as stored in
property S_LABEL. This is explained in more detail in the section about object cross-references.

Example:
sigma sigma $ehandle #0

returns the label of the first  system of the ensemble  set.

sigma sqldget
sigma sqldget ehandle label propertylist ?filterset? ?parameterdict?
s.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the sigma get command. The differences between sigma get and sigma
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

sigma sqlget
sigma sqlget ehandle label propertylist ?filterset? ?parameterdict?
s.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the sigma get command. The difference between sigma get and sigma sqlget
is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON script
processing.

sigma sqlnew
sigma sqlnew ehandle label propertylist ?filterset? ?parameterdict?
s.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the sigma get command. The differences between sigma get and sigma
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

sigma sqlshow
sigma sqlshow ehandle label propertylist ?filterset? ?parameterdict?
s.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
598 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the sigma get command. The differences between sigma get and sigma
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

sigma subcommands
sigma subcommands
dir(Sigma)

Lists all subcommands of the sigma command. Note that this command does not require an
ensemble handle, nor a sigma label.

sigma surfaces
sigma surfaces ehandle label ?filterset? ?filtermode?
s.surfaces(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels of the surface patches the  system is
associated with. This is explained in more detail in the section about object cross-references.

sigma xbonds
sigma xbonds ehandle label ?filterset? ?filtermode?

s.xbonds(?filters=?,?mode=?)

Get labels or references of crossing bonds which are not contained in the  system (defined as all
bonds between the registered atoms in the system), but have one atom in the  system.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 599

CACTVS Tcl and Python Scripting Language Reference
The surface command

The surface command is the generic command used to manipulate surface patches. The syntax of
this command follows the standard schema of command/subcommand/majorhandle/minorlabel.

Surface properties begin with an O_, not S_ (which is reserved for sigma systems). The mnemonic
behind this is that these are Oberfläche properties (German for surface).

Pseudo surface system labels first, last and random are special values, which select the first surface
patch in the surface patch list, the last, or a random patch.

Examples:
surface get $ehandle 1 O_COLOR

This is the list of officially supported subcommands:

surface append
surface append ehandle label ?property value?...
o.append({?property:value,?...})
o.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

Example:
surface append $ehandle 1 O_ID “_accessible”

surface atoms
surface atoms ehandle label ?filterset? ?filtermode?
o.atoms(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the atoms in the surface
patch. This is explained in more detail in the section about object cross-references. Note that patches
may not be associated with any atom.

Example:
surface atoms $ehandle 1 carbon

returns the labels of the carbon atoms associated with the patch.

surface bonds
surface bonds ehandle label ?filterset? ?filtermode?
o.bonds(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the bonds between the
atoms associated with a patch. This is explained in more detail in the section about object
cross-references. In many cases, patches are associated with one or no atom. In that case, there are
no bonds to retrieve.

Examples:
surface bonds $ehandle 1
surface bonds $ehandle 1 {1 doublebond triplebond} count
600 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The first example returns all labels of the bonds between the atoms in patch one. The second
example returns the number of double or triple bonds between the atoms in the patch.

surface create
surface create ehandle ?atom/atomlist?...
Surface(eref,?aref/arefsequence/alabel?,...)
Surface(aref,...)
Surface.Create(eref,?aref/arefsequence/alabel?,...)
Surface.Create(aref,...)

Define a new surface patch from an atom set, which may be empty. A new patch is always created,
even if one with the same atoms already exists. Adding a new patch invalidates properties which are
sensitive to patch set changes.

The command returns the label or reference of the new patch.

surface defined
surface defined ehandle label property
s.defined(property)

This command checks whether a property is defined for the surface patch. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The ens valid command is used for this purpose.

surface delete
surface delete ehandle ?label?...
surface delete ehandle all
o.delete()
Surface.Delete(eref,?oref/olabel/orefsequence?,...)
Surface.Delete(oref,...)
Surface.Delete(eref,“all”)

This command removes surface patches from the ensemble patch set. A surface property
invalidation event is generated and thus the command may indirectly change the ensemble data.

The command returns the number of deleted items.

surface dget
surface dget ehandle label propertylist ?filterset? ?parameterdict?
o.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the surface get command. The difference between surface get and surface
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and returns that default if the data is not yet available. For data already
present, surface get and surface dget are equivalent.

surface ens
o.ens()
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 601

CACTVS Tcl and Python Scripting Language Reference
PYTHON-only method to get the ensemble reference from a surface reference.

surface exists
surface exists ehandle label ?filterlist?
o.exists(?filters=?)
Surface.Exists(eref,label,?filters=?)

Check whether this patch exists. Optionally, a filter list can be supplied to check for the presence of
specific features. The command returns boolean 0 if the patch does not exist, or fails the filter, and
1 in case of successful testing.

Example:
surface exists $ehandle 99

surface expr
surface expr ehandle label expression
o.expr(expression)

Compute a standard SQL-style property expression for the surface patch. This is explained in detail
in the chapter on property expressions.

surface fill
surface fill ehandle label ?property value?...
o.fill({property:value,...})
o.fill(?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

The command returns the first fill value.

surface filter
surface filter ehandle label filterlist
s.filter(filters)

Check whether a surface patch passes a filter list. The return value is boolean 1 for success and 0
for failure.

Example:
surface filter $ehandle 1 [list carbon doublebond]

checks whether patch is associated with one or more carbon atoms and one or more double bonds.
The double bond does not need to contain a carbon atom.

surface get
surface get ehandle label propertylist ?filterset? ?parameterdict?
o.get(property=,?filters=?,?parameters=?)
o[property]
o.property
602 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

surface groups
surface groups ehandle label ?filterset? ?filtermode?
o.groups(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the groups the surface
patch overlaps with. This is explained in more detail in the section about object cross-references. An
overlap between a surface patch and a group is established when there are common atoms which are
contained in both objects.

Example:
surface groups $ehandle 1

surface index
surface index ehandle label
o.index()

Get the index of the surface patch. The index is the position in the patch set of the ensemble. The
first position is index 0.

Example:
surface index $ehandle 99

surface jget
surface jget ehandle label propertylist ?filterset? ?parameterdict?
o.jget(property=,?filters=?,?parameters=?)

This is a variant of surface get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

surface jnew
surface jnew ehandle label propertylist ?filterset? ?parameterdict?
o.jnew(property=,?filters=?,?parameters=?)

This is a variant of surface new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

surface jshow
surface jshow ehandle label propertylist ?filterset? ?parameterdict?
o.jshow(property=,?filters=?,?parameters=?)

This is a variant of surface show which returns the result data as a JSON formatted string instead
of TCL or PYTHON interpreter objects.

surface local
surface local ehandle label propertylist ?filterset? ?parameterdict?
o.local(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 603

CACTVS Tcl and Python Scripting Language Reference
surface mols
surface mols ehandle label ?filterset? ?filtermode?
o.mols(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels of the molecules a patch is contained in.
This is explained in more detail in the section about object cross-references. It is possible to have
patches which span more than one molecule. Patches which are not associated with any atom also
have no molecule association.

surface new
surface new ehandle label propertylist ?filterset? ?parameterdict?
o.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

The difference between surface get and surface new is that the latter forces the re-computation
of the property data, regardless whether it is present and valid, or not.

surface nget
surface nget ehandle label propertylist ?filterset? ?parameterdict?
o.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the surface get command. The difference between surface get and surface
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

surface pis
surface pis ehandle label ?filterset? ?filtermode?
o.pis(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the surface
patch overlaps with. This is explained in more detail in the section about object cross-references.

Examples:
surface pis $ehandle 1

surface ref
Surface.Ref(eref,identifier)

PYTHON only method to get a surface reference. See surface surface command.

surface rings
surface rings ehandle label ?filterset? ?filtermode?
o.rings(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels of the rings or references the surface patch
is associated with. This is explained in more detail in the section about object cross-references.
Rings which only partially overlap with the patch are included.
604 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Examples:
surface rings $ehandle 1
surface rings $ehandle 1 [list heterocycle aroring]

The first example returns the labels of all rings the patch overlaps with. If the patch does not overlap
with any ring, an empty list is returned. Only labels of rings in the SSSR or ESSSR set are returned,
even if the currently computed ring set is larger. The second example filters the rings - only
heteroaromatic rings are reported.

surface ringsystems
surface ringsystems ehandle label ?filterset? ?filtermode?
o.ringsystems(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the ringsystems the
surface patch overlaps with. This is explained in more detail in the section about object
cross-references.

Examples:

surface ringsystems $ehandle 1

surface set
surface set ehandle label ?property value?...
o.set(?property,value?,...)
o.set({property:value,...})
o.property = value
o[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

surface show
surface show ehandle label propertylist ?filterset? ?parameterdict?
o.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the surface get command. The difference between surface get and surface
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, surface get and surface show are equivalent.

surface sigmas
surface sigmas ehandle label ?filterset? ?filtermode?
o.sigmas(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the  systems the surface
patch overlaps with. This is explained in more detail in the section about object cross-references.

Examples:
surface sigmas $ehandle 1
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 605

CACTVS Tcl and Python Scripting Language Reference
 systems are a rather exotic feature and not commonly used. These are essentially descriptions of
bonding interactions which use s orbitals, such as normal, covalent single bonds, or the central bond
in multiple bonds. A simple double bond is described with one  system and one  system in this
representation.

surface sqldget
surface sqldget ehandle label propertylist ?filterset? ?parameterdict?
o.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the surface get command. The differences between surface get and surface
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

surface sqlget
surface sqlget ehandle label propertylist ?filterset? ?parameterdict?
o.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the surface get command. The difference between surface get AND surface

sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or PYTHON
script processing.

surface sqlnew
surface sqlnew ehandle label propertylist ?filterset? ?parameterdict?
o.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the surface get command. The differences between surface get and surface
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

surface sqlshow
surface sqlshow ehandle label propertylist ?filterset? ?parameterdict?
o.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the surface get command. The differences between surface get and surface
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.
606 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
surface subcommands
surface subcommands
dir(Surface)

Lists all subcommands of the surface command. Note that this command does not require an
ensemble handle, nor a surface label.

surface surface
surface surface ehandle label
Surface.Ref(eref,identifer)

Standard cross-referencing command to obtain the label or reference of the surface patch as stored
in property O_LABEL. This is explained in more detail in the section about object cross-references.

Example:
surface surface $ehandle #0

returns the label of the first surface patch of the ensemble patch set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 607

CACTVS Tcl and Python Scripting Language Reference
The table Command

The table command is the generic command used to manipulate CACTVS table objects. The syntax
of this command follows the standard schema of command/subcommand/tablehandle/args. Table
objects are major objects just like ensembles, reactions or datasets and have, in addition to
object-specific commands, the standard command set for major objects and can possess table-level
properties, which start by convention with prefix T_. Example:
table get $thandle T_XYPLOT

Because tables are pure major objects without an internal set of minor objects, there are no minor
object labels. Nevertheless, there are mechanisms to address columns, rows and cells. Commands
which address rows or columns use a syntax schema of
command/subcommand/tablehandle/address/args.

Depending on the context, column and row arguments to table commands can be either single
addresses, or address ranges. Single addresses are identified either by a numerical row or column
index starting with zero, the magic names end or last, or a symbolic name which is was assigned to
the row or column at some time during its existence. Columns can have additional alias names.
Examples:
table getcol $thandle last datatype
table getcol $thandle 0 data

Address ranges are specified by two simple addresses, separated by a dash character. These ranges
can also be open, meaning that if there is no name component to the left of the dash, start column
or row zero is implied, and if there is no name component to the right of the dash, the rightmost
column or bottommost row is the end of the range. When a column or row range without any range
dashes is specified, the range only includes that single item. Finally, the magic names all or * select
all current columns or rows. Examples:
table delrow $thandle 3-last
table dupcol $thandle E_NAME end

Table objects can store output formatting information in different places - globally, on columns,
rows and individual cells. The precedence for these formats is cell>row>column>global. The fonts,
font sizes and colors, for which there can only be one value, that are used for the output of a specific
cell are determined by the location with the highest precedence where the attribute is set to a definite
value (i.e. in the case of fonts, the location where a font name and not an empty string is provided).
General formatting flags are bit-ored from all locations. There is currently no method to suppress
the use of a formatting flag on output which is set in any checked location. Example:
table setcol $thandle 0 bgcolor white
table setrow $thandle 1 bgcolor red

All cells in row one are output with a red background, provided that there are no cell-level overrides,
and that the output format supports cell coloring.

Tables possess an internal utility dataset. Its handle can be retrieved with
table get $thandle dataset

This internal dataset is useful to store objects which are referenced by rows. Normally, these
referenced objects which are introduced by command such as table addens or table addreaction
are not destroyed when the table is deleted. However, when they are moved into the internal dataset,
are will be deleted with the table, just like other objects in a dataset object when that dataset object
608 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
is destroyed. In case of table file formats which store both table cell data and structure or reaction
objects, the associated objects are moved to the internal dataset when such a file is read.

This is the list of officially supported subcommands:

table addcolumn
table addcolumn tablehandle columntype ?property|datatype|expression?

?name? ?position? ?width? ?startvalue?
t.addcolumn(property=,?name=?,?position=?,?width=?,?startvalue=?)

This command adds a new column to the table. All data values for the new column in existing rows
are initially set to NULL, with the exception of function columns, which are set to the computed value
as far as that is possible from the current table content, and sequences, which are initialized with a
number sequence.

table addcol is a shortened alias command name.

The startvalue parameter is only used for sequence type columns.

The column type argument can be one of:
• data

A data column with cells of a specific data type which is not associated with a CACTVS
property, or where the property association is unknown. If no data type is supplied in the
next argument, the default is double.

• function
A data column with cells which contain dynamically computed values. The next argument
is the SQL-style function expression. If that argument is not provided, the function result for
the cell values will always be NULL. formula is an alias column type name for this type.

• image
Add an structure or reaction image column. This is a special type of property column. The
property behind this column is dynamically adapted according to chosen output formats. For
example, it is E_GIF for HTML pages, E_EMF_IMAGE for Windows MS EXCEL, and
E_PICT_IMAGE for Mac MS EXCEL output. For this column type, the next optional argument
is immediately the column name, not the detailed type specification.

• none
An unspecified column. Useful as place holder in case this is defined later, or to add spacer
columns. For this column type, the next optional argument is immediately the column name,
not the detail type specification.

• property
A data column with cell values which are linked to a CACTVS property. The fundamental data
type, as well as enumeration values, formatting conventions etc. are all inherited from the
property definition. If the property name is not supplied in the next argument, the default is
property E_NAME. Property-associated columns are especially useful for automatic transfer
of chemical object data into a table by means of the table addens and table addreaction
commands.

• sequence
An integer data column automatically filled with sequential numbers starting with one for
the first row, or another value if an explicit start value is given. For this column type, the next
optional argument is immediately the column name, not the detailed type specification.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 609

CACTVS Tcl and Python Scripting Language Reference
The content of the argument of the column type specification must be appropriate to the previous
argument, i.e. a data type for columns of type data, a property name for columns of type property,
or a parseable SQL expression for columns of type function.

For data and property type columns, the column type may also be omitted and the property or data
type name written immediately. These two lines are equivalent:
table addcol $thandle property E_XLOGP2 xlogp
table addcol $thandle E_XLOGP2 xlogp

In the PYTHON interface, the column type and column detail are rolled into a single argument. It can
either be a single item, which is equivalent to the single-argument TCL form, or a tuple with the type
and detail pair corresponding to the two TCL command arguments. Above example in PYTHON:
t.addcol((“property”,”E_XLOGP2”),”xlogp”)
t.addcol(“E_XLOGP2”)

Columns can be given a user-defined name. If the optional name argument is not given, a synthetic
name is automatically supplied. For property columns, it is the name of the property. For other
columns, it is the column index appended to the column type, as in data1 for a data column with
column index one.

By default, columns are appended to the right. This is also done if the optional position argument
is end, an empty string, or a column index beyond the current maximum column index. Otherwise,
the column is inserted into the specified position and all other columns behind it are moved one
position to the right. No columns are overwritten. Existing cell data is also moved if necessary. It is
not possible to add a column to the right beyond the rightmost column in a way that undefined
columns result. It is possible to use a column name in addition to a numerical index. In that case,
the new column is added to the right of the named column.

The next optional argument defines the column width, which is only used for output formatting. It
is the same as the column attribute width and described in the paragraph on the table setcol
command. If this argument is omitted, or an empty string, the width is undefined and defaults are
used. The optional start value argument is only used for sequence columns.

The return value of the command is the new number of columns in the table.

table addrow
table addrow tablehandle ?name|#auto? ?position? ?celldatalist? ?cellobjlist?

?rowobject?
t.addrow(?name=?,?position=?,?celldata=?,?cellobjects=?)

Add a row to an existing table. By default, all cell data values of the newly added row are set to NULL.

Table rows can be named. If the name argument is omitted, set to an empty string (or None for
PYTHON), or #auto is used as magic name, the standard automatically generated row name, of the
form Rowrowcount, is used, with the row count replaced by the integer value. This format can be
overridden by setting a table row name template format string (autorowformat table attribute). Note
that this name uses the total row count of the table after adding the new row, not the insert position.
This makes it less likely to accidentally generate duplicate row names if multiple rows are inserted
into the same position.

By default, the new row is appended to bottom of the table. This also happens if the optional position
argument is end, or larger than the current maximum row index, which starts with zero. If any other
valid row index is given, the new row is inserted into that position and the rest of the rows behind
610 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
it are moved. No existing rows are overwritten. It is not possible to add a row beyond the current
end of the table in such a fashion that undefined rows result.

Next, it is possible to initialize the cell values of the new row. If that option is chosen, the length of
the column data list must smaller then, or the same length, as the number of columns in the table,
and every column data value must be decodable according to the respective column data type.

The optional row object argument can be either an ensemble or reaction handle. If it is specified and
not an empty string, the object becomes associated with the new row, as by the table addens or
table addreaction commands. If an explicit empty string is used, the row is explicitly not
associated with an ensemble or reaction, and no attempt is made to find and decode a row object
source in the column data when it is requested at a later time.

The same processing applies a a cell object list is used. The cell objects (ensembles or reactions) are
transferred to the table and henceforth are under the control of the table and no longer deletable by
normal means. They are only destroyed if the associated table cell is deleted. By default the new
table cells have no cell object, and this also remains the case if the object list element for a cell is
an empty string. Cell objects to be transferred cannot be already undeletable (e.g. a property value
or the cell object of another cell). If such objects need to be set, they must be duplicated first.

If data is extracted from chemical objects and stored in a table object, it is usually more convenient
to use the table addens and table addreaction commands than to script sequences of table
addrow statements.

The table must be editable for this command to be usable.

The return value of the command is the new number of rows in the table.

table adddataset
table adddataset tablehandle datasetlist ?objclass? ?filterlist? ?position? ?mode?
t.adddataset(datasets=,?objclass=?,?filters=?,?position=?,?mode=?)

This command performs a table addens command for each ensemble in the datasets, and a table
addreaction command for each reaction. The command arguments are interpreted as described in
each specialized command, and have the same defaults if they are not set explicitly.

If a dataset contains other objects besides ensembles and reactions, these objects are ignored in the
table data setting operation. If the mode is set to destroy, not only the ensembles or reactions in the
dataset are deleted, but the complete dataset with all its content, including other objects which are
not reactions or ensembles. With mode move, ensembles and reactions are removed from the source
dataset and transferred to the internal table dataset. In this mode, other dataset content objects that
are not reactions or ensembles remain in the source dataset, and the source datasets persist. Finally,
mode preserve (the default) retain all object memberships, and again the source datasets persist.

The command returns the number of added table rows.

table addens
table addens tablehandle enslist ?objclass? ?filterlist? ?position? ?mode?
t.addens(ens=,?objclass=?,?filters=?,?position=?,?mode=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 611

CACTVS Tcl and Python Scripting Language Reference
Capture data from a list of ensembles in a table object. One or more new rows are added, and all table
columns for these rows which refer to property data present or computable on the ensemble are
filled. In addition, references between the new rows and the ensemble are registered.

The object class determines how many rows are added per ensemble. It can be ens, or the type of
any ensemble minor object. One row is added for each ensemble minor object (or the ensemble
proper, in case the object class is ens), provided it passes the filters if a filter list is specified. If the
object class argument is not specified, or given as an empty string (or None in PYTHON) or the special
value auto or #auto, an attempt is made to determine it automatically. If only data columns of
ensemble properties are found, it is then set to ens, but if there are any data columns of properties
related to ensemble minor objects except molecules, the object class is that class. If there are only
molecule and ensemble properties, the class is mol. For each object of the selected class in the
ensemble, one row is added, and the cells filled with the data extracted from the associated ensemble
or ensemble minor object.

For example, assume the object class is atom; let there be table data columns of atom, molecule, and
ensemble properties; and let there be four atoms and two molecules in an ensemble to be processed.
In that case, total of four rows are added, with the ensemble property data cells holding the same data
for all four rows, and the molecule property data cells holding two duplicates for two rows each, and
every atom data cell the data of one of the four different atoms. As long as all minor objects for
which a row is added (with the exception of molecules) are completely contained in exactly one
larger object of the involved classes, property types can be freely combined. For example, atom
properties and molecule or ensemble properties mix, because every atom is only a member of one
molecule and one ensemble. However, the results from combining atom and bond or ring properties
are, while still deterministic, probably not useful for any real application. The same is true for a
mismatch of the column properties and an explicit object class, i.e. combining atom properties with
a bond object class is not likely to be useful.

If the filter list argument is specified, rows are only added for the objects which pass the filter. Those
which do not pass the filter are silently skipped. The type of filters which are suitable are usually
determined by the selected object class. For example, if a row is added for each atom, atom filters
are certainly useful. However, more exotic combinations are possible - for example, atom filters may
be used in combination with a mol object class - in that case only data rows for molecules in which
one or more atoms pass the filter are added.

Only cells in property and function columns are populated with values by this command. Any cells
in pure-data columns without a property descriptor are set to NULL.

By default, the new row or rows are added at the bottom of the table. If desired, a different row index
may be given, with index zero resulting in the insertion of the first new row as the first table row,
and any additional new rows immediately behind it. The special position end may be used to
explicitly append to the table.

By default, the ensemble objects providing the data are preserved, and they remain in their original
dataset membership context. The optional mode argument can be set to change their fate. Its possible
values are preserve (the default), delete (the ensembles are destroyed after setting the table row data)
and move (the ensembles are moved to the internal dataset object of the table). In mode delete, the
relationship between rows and the ensemble is not preserved, because the ensemble is gone after the
row addition.

The command returns the number of added table rows.
612 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
table addens $th $eh

table addmolfile
table addmolfile tablehandle molfilelist/filenamelist ?objclass? ?filterlist?

?position? ?mode?
t.addmolfile(molfiles=,?objclass=?,?filters=?,?position=?,?mode=?)

This command performs the equivalent of a table addens or table addreaction command for
every ensemble or reaction which can be read from the argument structure file handles. The type of
object read from the file, in case there are multiple possibilities, is determined by the configuration
of the file handle. Please refer to the section on the table addens and addreaction commands for
additional explanations. The command arguments after the file handles are interpreted as in these
commands.

Input starts from the current file position of every specified file handle. The command fails if any
file cannot be read to the end. The files are positioned at EOF after a successful operation.

If a file handle list argument is not a molfile object handle, an attempt is made to interpret it as the
name of a structure or reaction data file. If such a file exists, is readable, and of a recognized file
format, it is transiently opened in read-only mode with default settings and automatically closed
when the command completes. This is equivalent to the handling of transient files in the molfile
command.

Different from the table adddataset/addens/addreaction commands, the default object
addition mode of this command is delete. In this mode, the read ensemble or reaction objects are
deleted after the table cells have been filled from the current object, so there is no persistent table
row association with a structure object. In mode preserve, the ensembles remain in memory, and in
mode move, they are also kept, but additionally moved to the internal table dataset. The latter two
modes can of course greatly increase the memory requirements, so these modes should not be used
indiscriminately.

table addfile is a command alias.

The command returns the total number of added table rows.

table addreaction
table addreaction tablehandle reactionlist ?objclass? ?filterlist? ?position?

?mode?
t.addreaction(reactions=,?obvjclass=?,?filters=?,?position=?,?mode=?)

Capture data from one or more reactions in a table object. One or more new rows are added, and all
table columns for these rows which refer to property data present or computable on the reactions are
filled. In addition, a reference is created between the new table rows and the reactions, or, with an
ens object class, the reaction ensembles.

If the object class is reaction, a single row is added per reaction and reaction-level property data is
copied. Alternatively, it may be specified as ens, which is equivalent to the execution of one table
addens command for every reaction ensemble. If this argument is not specified explicitly, or given
as an empty string or the special value auto or #auto, it is automatically determined from the column
types present. If any data columns are reaction properties, the object class is set to reaction,
otherwise ens.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 613

CACTVS Tcl and Python Scripting Language Reference
If the filter list argument is specified, only reactions or ensembles which pass the filter are added.
Those which do not pass the filter are silently skipped.

By default, the new row or rows are added at the bottom of the table. If desired, a different row index
may be specified, with index zero resulting in the insertion of the first new row as the first table row,
and any additional new rows immediately behind it. The special position end may be used to
explicitly append to the table.

By default, the ensemble objects providing the data are preserved, and they remain in their original
dataset membership context. The optional mode argument can be set to change their fates. Its
possible values are preserve (the default), delete (the reactions and all their ensembles are destroyed
after setting the table row data) and move (the reactions are moved to the internal dataset object of
the table). In mode delete, the relationship between rows and the reaction or reaction ensembles is
not preserved, since the reaction is gone after the command.

The command returns the number of added table rows.

table addretrieval
table addretrieval tablehandle ?field?...
t.addretrieval(?field?,...)

Add columns to the table, using the syntax of the result retrieval argument of commands such as
molfile scan or dataset scan. The modification of the table column set is the same as using a
scan command in the to-table result output mode with an existing table as output target. Please refer
to the documentation of molfile scan for details on the syntax.

Example:
table addretrieval $th {*}[knode param $kh customretrieval]

This is an example for the preparation of an output table for a CACTVS KNIME node in the
configuration function. In the KNIME context, an output table must be fully configured by the
configuration script, so this cannot be delegated to the molfile scan command run in the execution
script of the node.

table append
table append tablehandle ?property value?...
t.append({?property:value,?...})
t.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
table append $ehandle T_COMMENT “\nI still do not think this data makes sense!”

table assign
table assign tablehandle srcprop dstprop
t.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same table. Both properties must be associated with
the table object class. This process is more efficient than going through a pair of table get/table
614 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
set commands, because in most cases no string or TCL/PYTHON script object representations of the
property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant table rename directly exchanges
the property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

Examples
table assign $th T_IDENT T_NAME

table blockloop
table blockloop tablehandle column rowvariable ?maxblocks? ?offset? body
t.blockloop(column=,function=,?maxblocks=?,?offset=?,?variable=?)

This command is a convenience function for looping over the contents of a table. It is a more
complex version of the table loop command. It works on blocks of rows which have the same
value in a column instead of a single row.

In the TCL variant, the contents of one or more rows are stored as a nested list in the global TCL row
variable. The inner objects are either lists that contain one cell data element per table column (with
a list table iterator) or dictionaries with column names as keys. In each iteration, after the variable
has been updated, the TCL code in the body argument is executed. The standard TCL loop control
constructs break and continue work as expected within the loop. The iteratorstyle table attribute
controls the formatting of the elements of the outer list (i.e. whether this are lists, or dictionaries. The
default iterator mode is list.

The length of the nested iteration argument list is determined by the number of consecutive rows
which have the same value in the data cell of the block column as the current row. The next iteration
of the loop continues with the first row which has a value in the block column data cell that is
different from the current value. Note that this command does not sort the table. If the same block
column cell value appears in rows which are not consecutive, multiple blocks are processed with the
same value. If the block column is an empty string, or the special row name #name, the block
membership is determined by the row name.

By default, the iteration continues until the end of the table, but an upper limit may be specified in
the optional maxblocks parameter. If this parameter is explicitly set to a negative value, the loop runs
to the end of the table. The default starting point of the loop is the first row. This can be changed by
giving an explicit offset in the second optional parameter.

The PYTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TCL construct),
or a function reference. Functions are called with the table reference and a list of current block data
rows as two arguments, and have their own context frame, so that the specification of a reference
variable is not generally useful in that call style, though is is allowed. For string function blocks the
code is executed in the local call frame, and the variable with the current object reference is visible
locally. Script code blocks must be written with an initial indentation level of zero. Within the
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 615

CACTVS Tcl and Python Scripting Language Reference
PYTHON functions, the normal break and continue loop control commands cannot be used to to scope
limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can be raised. These are
automatically caught and processed in the loop body handler code.

Example:
table cluster $thandle E_SCREENING_RESULT jarvispatrick {colname clusters}
table sort $thandle clusters
table blockloop $thandle clusters rowvar {

foreach row $rowvar {
lassign $row cpdname clusterid
...

}
}

The loop is executed once per cluster with the variable set to the row data block of all structures in
that cluster.

The return value of the command is the number of loop iterations processed. The last value of the
loop variable remains accessible outside the loop.

The commands table dictblockloop and table listblockloop are variants of this command
which ignore the configured iterator style attribute of the table.

table cast
table cast tablehandle dataset/ens/reaction/table ?propertylist?
t.cast(objectclass=,?properties=?)

Transform the table into a different object. With the exception of the table target object class, which
does nothing, the table is destroyed in the process. Depending on the target object class, the result
is as follows:

• dataset
A new dataset which contains all the reaction and ensemble objects associated with the table
rows, without duplicates. Rows without an ensemble or reaction association generate a new
empty ensemble. The property set of the objects in the new dataset is automatically
augmented with the data of the associated table row.

• ens
The ensemble associated with the first table row, or an empty ensemble if no such
association exists. The ensemble property set is automatically augmented with the row data.

• reaction
The reaction associated with the first table row, or an empty reaction if no such association
exists. The reaction property set is automatically augmented with the row data.

• table
Only supported for the sake of completeness, this mode does nothing.

If the optional property list is specified, an attempt is made to compute the listed properties before
the cast operation, so that they may become a part of the new object. No error is raised if a
computation fails.

The command returns the handle or reference of the new object, or the original input object in case
of mode table.
616 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
table celldata
table celldata tablehandle row column ?value? ?flags?
t.celldata(row=,column=,?value=?,?flags=?)

In the simple form without the optional flags argument, this command is essentially a shortcut for
the table setcell and table getcell commands with the value attribute.

If the flags argument is used, setting of the cell data can be modified. The flags argument can be one
or more of the following words:

• append
The data is appended to the current cell data, if the data type of the cell supports the concept
of appending. The default is to replace it.

• clear
Set the cell to a NULL value. The value argument is ignored.

• force
Override any editing locks on the table, column, row or cell.

• recall
Return the old value of the cell before the update as command result.

• recallnew
Return the new value of the cell after the update. Because of the formatting implied by, for
example, columns which hold property values and where the property definition contains
enumerations, constraints, precision limits, etc., this may not be exactly the value argument
which is input.

• settime
Set the update time stamp on the table. By default, this is not done due to its inherently
expensive character because it needs to issue a system call.

table clear
table clear tablehandle
t.clear()

Reset a table. All rows and columns as well as table-level property data are removed, and
user-configurable attributes are reset to default values. However, the table handle remains valid and
can be re-used to set up a new table.

The table needs to be editable to allow this command to succeed.

The command returns the table handle.

table clone
table clone srctablehandle ?dsttablehandle? ?columnrangelist?
t.clone(?target=?,?columnranges=?)

Copy the table definition from the source to another table. If a destination table is specified, all cells,
rows and columns of the destination table are deleted before the information is copied from the
source.

If the destination table handle or reference is omitted, or specified as an empty string (or None for
PYTHON), or the special names new or #auto are used, a new table is created and the command has a
similar effect as table dup.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 617

CACTVS Tcl and Python Scripting Language Reference
The optional column range list argument can be used to copy only some of the columns. By default,
all columns are copied.

This command is similar to table copy, except that no row and cell data is copied. The destination
table has the same column layout and other global attributes of the source table, but now rows or
cells.

The command returns the handle or reference of the destination table, which may just have been
newly created.

table clonecolumns
table clonecolumns srctablehandle columnrangelist dstablehandle ?position?
t.clonecols(?columnranges=?,?target=?,?position=?)

Transfer the definitions of columns in the source table to the destination table.

If the destination table handle or reference is omitted, or specified as an empty string (or None for
PYTHON), or the special names new or #auto are used, a new table is created and the command has a
similar effect as table dup.

Different from the table clone command with a column range list argument, the destination table
is not reset when this command is run. The transferred column definitions are added to the existing
set. In case of column name collisions, the names of the added columns are automatically modified.
If the destination table already contained rows, the cells of the new columns are all NULL values. No
cell data is copied by this command.

If no position is set, the new columns are appended to the right. Otherwise, they are inserted at the
specified position, or, if the position is defined by a column name, to the right of this column.

The short form table clonecols is an alias to this command.

The command returns the handle or reference of the destination table.

table cluster
table cluster tablehandle columnrangelist ?method? ?parameterdict?
t.cluster(columnranges=,?method=?,?parameters=?)

Perform clustering on table data and add the clustering results as an additional table column. The
currently supported methods are kmeans, fuzzykmeans, centroid, ward and jarvispatrick. kmeans is
the default method. The optional parameter dictionary argument is a standard keyword/value
dictionary. Currently the following parameters are recognized:

• colname
The name of the newly added result column. If it is not set, or set to an empty string, the
default name is cluster.

• epsilon
The epsilon value, i.e. the minimum total value the cluster centroids need to have moved as
result of the last iteration to start another iteration cycle. Only used in fuzzy KMEANS
clustering, where the default value is 0.001. If the total movement of the centroids is less
than that, the iteration is stopped immediately.
618 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• exponent
The exponent used in the distance law to compute the location of the cluster centroids. Only
used in fuzzy KMEANS clustering, where the default is 1.5.

• maxncycles
The maximum number of iteration cycles. Only used in normal and fuzzy KMEANS
clustering. If the cluster membership does not change during a cycle in normal KMEANS
clustering, or the total movements of the cluster centroids is less than the epsilon value in
fuzzy KMEANS clustering, iteration is stopped early even if the maximum number of
iterations has not yet been reached.

• ncluster
The number of clusters to find. Used in normal and fuzzy KMEANS clustering and for the
CENTROID and WARD methods. JARVIS-PATRICK clustering determines the number of clusters
algorithmically.

• ncommon
The minimum number of elements needed to be in common among the number of examined
closest neighbor points for joint cluster membership. Only used in JARVIS-PATRICK clustering.
This value must be less than or equal to the nexamine parameter. The default value is one.

• nexamine
The number of closest neighbor points to examine for being in the joint neighborhood of two
points which could potentially be in the same cluster. Only used in JARVIS-PATRICK clustering.
The default value is two.

• nsteps
The number of merge steps. Only used in the CENTROID and WARD methods. The default value
is the minimum of 5 and the number of eligible rows.

• position
The column position where the result column is inserted. It can be either a numerical index,
or the special name end for addition to the right of the current columns. which is the default.

The data type of the result column depends on the selected clustering method:

• centroid
The result column is an integer vector with a length equal to the number of merge steps plus
one. Initially, and this is recorded in vector element zero, every eligible row is in its own
cluster, so all cluster IDs in the range from one to nrows are used. After each merge step, a
new vector index is filled for all rows. All values are the same as that of the previous index,
except that the cluster ID of the cluster with the higher value of the merged pair is withdrawn
and its value replaced by the ID of the other cluster in all rows in the absorbed cluster. If a
full merge is performed, all rows will end up as members of cluster one. Rows which are
not eligible for clustering retain a cluster number of zero during all merge steps. The merge
distances for all steps are stored in a double vector as column header data.

• fuzzykmeans
The result column is a double vector, with the number of elements equal to the requested
cluster number (ncluster parameter). Every element holds the fractional membership value
for that cluster.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 619

CACTVS Tcl and Python Scripting Language Reference
• jarvispatrick
The result column is of type simple integer. It holds the number of the cluster the row is a
member of. Cluster numbers begin with one. In case the row data is NULL or otherwise
excluded from clustering, it is set to zero.

• kmeans
The result column is of type simple integer. It holds the number of the cluster the row is a
member of. Cluster numbers begin with one. In case the row data is NULL or otherwise
excluded from clustering, it is set to zero.

• ward
The result data format is the same as for the centroid method.

Data columns which are used as input data must be convertible into floating-point values. Multiple
columns may be used in parallel, but it is the responsibility of the script writer to perform any scaling
and other data preparation steps.

The return value is the number of clusters found, after the last iteration or merge step, if applicable.

table compare
table compare tablehandle1 tablehandle2 ?rowmode? ?comparisoncolumn?
t.compare(table2=,?rowmode=?,?comparisoncolumn=?)

This command is a dry-run version of the table merge command. Instead of actually modifying the
first table, this command sets the selected row attribute on both tables to indicate which rows from
both tables would be present in a new combined table.

The meaning of the parameters are the same as in the table merge command.

table copy
table copy srctablehandle ?dsttablehandle? ?columnrangelist? ?rowmode?
t.copy(?target=?,?columnranges=?,?rowmode=?)

Copy the table definition and table cell data to another table. If a destination table is specified, all
cells, rows and columns of the destination table are deleted before the information is copied from
the source.

If the destination handle is omitted, or specified as an empty string (or None for PYTHON), or the
special names new or #auto are used, a new table is created and the command has a similar effect
as table dup.

The optional column range list argument can be used to copy only some of the columns. By default,
all columns are copied.

The default row mode is all, where all source table rows are copied. Other supported modes are
selected (only rows for which the selection flag is set are copied) and unselected (only rows for
which the selection flag is not set are copied).

A related command is table clone, which also adjusts the column definitions and other attributes
of the destination table to match that of the source, but does not transfer row and cell data.

The command returns the handle or reference of the destination table, which may just have been
newly created.
620 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
table copycolumns
table copycolumns srctablehandle columnrangelist dstablehandle ?position?
t.copycolumns(columnranges=,target=,?position=?)

Transfer the definitions of columns in the source table to the destination table, and also copy the cell
content.

The copied column definitions are added to the destination table, which is not reset. In case of
column name collisions, the names of the added columns are automatically modified. The number
of rows in the destination table is not changed. Existing cell data from the source table is copied to
the same row in the destination table. If there are more rows in the source table, the extra source cells
are ignored. If there are more rows in the destination table, the extra destination cells have NULL
values.

If no position is set, the new columns are appended to the right. Otherwise, they are inserted at the
specified position, or, if the position is defined by a column name, to the right of this column.

table copycols is a shortened alias to this command.

The command returns the handle or reference of the destination table.

table copyrows
table copyrows srctablehandle rowrange dsttablehandle ?position?
t.copyrows(rowrange=,target=,?position=?)

Copy a range of rows from one table to another. If no explicit position is given, the new rows are
appended to the destination table. The source table retains the copied rows. It is allowed to use this
command to duplicate table rows within a single table. The destination table is not required to have
the same column layout, just the same column names for matching columns. Columns not present
in the destination table are added (with NULL data for existing rows), and the cell order is adapted
while copying if necessary. If a pair of columns has no compatible datatype, an attempt at data
conversion to the destination column type is made. If that fails, the destination cell is silently set to
NULL.

The command returns the handle or reference of the source table.

table create
table create packstring|aid
table create ?property|image|none|enshandle|reactionhandle|datasethandle|

molfilehandle|tablehandle?...
Table(packstring/aid)
Table.Create(packstring/aid)
Table(?property/image/none/eref/xref/dref/fref/tref?,...)
Table.Create(?property/image/none/eref/xref/dref/fref/tref?,...)

Create a new table. The return value of the command is the new table handle or reference.

The first variant of the command generates a fully initialized table with row and column
specifications, cell data and potentially table properties. The single argument can either be a
serialized packed table string (see table pack command), or a PUBCHEM assay identifier (AID). AIDs
are simple integers, or integers prefixed with AID or TID. For these, the full assay content is
downloaded from PUBCHEM. Depending on the size of the assay, this can take a minute or more. The
magic table name pse creates a table with atom information from the periodic system of elements.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 621

CACTVS Tcl and Python Scripting Language Reference
Example:
set th [table create 67]

The second variant initially creates an empty table. By supplying additional arguments, one or more
columns can be specified in a single statement, and/or ensemble and reaction data added to the
specified columns. These are shorthand notations for table addcol or table
addens/addreaction/adddataset/addfile commands. Optional arguments that are a property
name, or the special names image or none are equivalent to
table addcol $thandle $arg

(one such statement per additional argument) and the chemistry object handle arguments are
handled the same way as writing one or more of
table addens $thandle $arg

or
table addreaction $thandle $arg

If a table handle is used as an argument, its column structure and global table properties and
attributes, but not its rows and cell data, are copied as with the table clone command.

The PYTHON version accepts both names or handles and references for properties or data source
objects.

The full command equivalents of the shortcuts offer more options for control of the row or column
addition modes, so this abbreviated command variant can only be only used in simple cases.
Ensemble or reaction handles as row data sources should be supplied after column type or table
handle arguments, otherwise the cell data of these columns rows already existing when a column is
added is set to NULL.

Example:
set th [table create E_NAME E_SMILES E_XLOGP2 E_WEIGHT image $eh1 $eh2]

table data
table data tablehandle ?rowrangelist? ?columnrangelist? ?nullvalue?
t.data(?rowrange=?,?columnrange=?,?nullvalue=?)

Extract cell data from a table as a nested list. By default, the full table content is returned. The
optional parameters allow the selection of a specific subset of the rows and/or columns. The final
optional parameter can be used to control the output format of Null data. If that parameter is omitted,
the global style defined by the undefined table attribute (see table get/set) is used.

For historical reasons, the variant table print is an alternative name for this command.

Example:
set elements [lsort [table data table0 all symbol]]

This command retrieves an alphabetically sorted list of the atom symbols of the PSE.

table dataset
table dataset tablehandle ?filterlist?
t.dataset(?filters=?)
622 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If the table is a member of a dataset, report the handle or reference of the dataset object. If the table
is not a member of a dataset, or does not pass all of the optional filters, an empty string (None for
PYTHON) is the result.

This command is different from table get $thandle dataset. The latter retrieves the handle of
the internal dataset which is an integral part of the table data structure.

table defined
table defined tablehandle property
t.defined(property)

This command checks whether a property is defined for the table. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The table valid command is used for this purpose.

table delcolumns
table delcolumns tablehandle ?columnrange?..
t.delcolumns(?columnrange?,...)

Delete a set of column ranges, including cell data under these columns, from the table. All selected
columns are deleted in a single operation, so all column numbers used in the arguments refer to the
original table, not those after deletion of column sets defined in arguments to the left in the same
command.

The command may also be written as table delcols or table delcol.

The return value is the number of deleted columns.

table delete
table delete ?tablehandle?...
table delete all
t.delete()
Table.Delete(“all”)
Table.Delete(?tref/trefsequence/thandle?,...)

Destroy one or more table objects. The special handle all can be used to remove all deletable tables.
Tables with the undeletable status flag (see table set) are not affected. It is also not possible to
delete the three system tables (element data, expansion fragments and SMILES macros). Finally,
tables with a reference count of two or more, as they are produced by the definition of table slices,
are also not deleted by this command. The referring slice tables need to be removed first before the
underlying base table can be deleted.

Objects referenced by table rows, as introduced by table addens or table addreaction
commands, are usually not deleted, except when they were put into the internal table dataset object.

The return value is the number of successfully deleted tables.

table delrows
table delrows tablehandle ?rowrange?..
t.delrows(?rowrange?,...)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 623

CACTVS Tcl and Python Scripting Language Reference
Delete a set of row ranges, including cell data in these rows, from the table. All selected rows are
deleted in a single operation, so all row numbers used in the argument refer to the original table, not
those after deletion of rows sets defined in arguments to the left in the same command.

The all range is internally optimized to delete all current rows in one step, and to ignore all other
specifications.

The return value is the number of deleted rows.

Example:
table delrows $thandle all

table dget
table dget tablehandle propertylist ?filterset? ?parameterdict?
t.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The difference between table get and table dget
is that the latter does not attempt computation of property data, but rather initializes the property
values to the default and return that default if the data is not yet available. For data already present,
table get and table dget are equivalent.

table dictblockloop
table dictblockloop tablehandle column rowvariable ?maxrows? ?offset? body
t.dictblockloop(column=,function=,?maxblocks=?,?offset=?,?variable=?)

This command is a variant of the table blockloop command. It stores the row data as a dictionary
in the loop variable, with the column names as keys. The value of the iterator style table attribute is
ignored.

Please refer to the table blockloop command description for more information.

table dictloop
table dictloop tablehandle rowvariable ?rowobjectsvariable? ?maxrows? ?offset?

body
t.dictloop(function=,?maxrows=?,?offset=?,?variable=?,?objectvariable=?)

This command is a variant of the table loop command. It stores the row data as a dictionary in the
loop variable, with the column names as keys. The value of the iterator style table attribute is
ignored.

Please refer to the table loop command description for more information.

table dup
table dup tablehandle ?rowrangelist? ?columnrangelist?
t.dup(?rows=?,?columns=?)

Duplicate a table. The return value is the handle or reference of the duplicate. Only the table data
content is duplicated, not any table slices which refer to the original, or any ensembles or reactions
which hold a reference to the original table. However, such references to ensembles or reactions are
624 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
copied to the new table, so that the objects refer to both tables simultaneously after the copying.
System tables can be duplicated just as any other table.

By default, the full table content is duplicated. The optional parameters can be used to restrict
duplication to a row and/or column subset.

This command does not follow the standard dup command syntax of other major objects. It is not
possible to move the duplicate table directly into a dataset.

Example:
set thnew [table dup $th]

table dupcolumns
table dupcolumns tablehandle columnrange ?position?
t.dupcolumns(columns=,?position=?)

Duplicate one or more columns, including their cell data, within a table. If the destination, a simple
column address, is not specified, the duplicated columns are inserted on the right of the table. The
destination cannot be in the range of the source columns.

The command may also be written as table dupcol or table dupcols.

The return value is the new number of columns.

table editcolumn
table editcolumn tablehandle column regexp ?substitution? ?flags?
t.editcolumn(column=,regexp=,?substitution?,?flags=?)

Edit the contents of a table column by performing regular expression matches and substitutions on
cells which are not NULL. This also changes the data type of the column to string, which may have
indirect consequences (see table setcol .. datatype).

If the substitution parameter is not supplied, the substitution value is an empty string, i.e. the
matched part is removed from the cell data string.

The flags parameter may be a combination of the words

• all Substitute all matches of the regular expression. By default, it applies to the first
match. Additional matches are only sought to the right of the last substitution, so
this is not processed recursively.

• nocase Ignore case in regular expression matches

• expanded Support expanded regular expression syntax (see regexp man page)

table editcol is an alias of this command.

The command returns the original table handle or reference.

table ens
table ens tablehandle
t.ens()
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 625

CACTVS Tcl and Python Scripting Language Reference
Return a list of the handles or references of all ensembles which are referenced by the table. Every
ensemble is reported only once, even if it is referenced by multiple rows. Rows with ensemble
references are usually added to tables my means of the table addens command. In case a row has
no ensemble reference, it is ignored, and no output is produced.

table exists
table exists tablehandle ?filterlist?
t.exists(?filters=?)
Table.Exists(tref=,?filters=?)

Check whether a table handle or reference is valid. The command returns boolean 0 or 1. Optionally,
the table may be filtered by a standard filter list, and if it does not pass the filter, it is reported as not
valid.

table expr
table expr tablehandle expression
t.expr(expression)

Compute a standard SQL-style property expression for the table. This is explained in detail in the
chapter on property expressions.

table fill
table fill tablehandle rowrangelist ?columnrangelist? ?unsetonly? ?enshandle?

?reactionhandle?
t.fill(rows=,?columns=?,?unsetonly=?,?ens=?,?reaction=?)

Set the values of table data cells in the specified row range with data from an ensemble or reaction,
for columns that are associated with a property or have another mechanism to compute or retrieve
data from a chemistry object. If no column range is specified, the command visits all columns.

If the unsetonly flag is set, only NULL cells are modified and cells where valid data exists are skipped.

If an ensemble or reaction handle or reference is specified as argument, this object takes precedence
over a potentially present cell object, or present row object. Otherwise, if there is a suitable cell
object, it becomes the data source, and if there is none, the row object assumes this role. If there is
also no row object, the command cannot perform any work and all selected cells remain unchanged.

The command can only modify cells in property columns, not pure data or formula columns. The
property definition of the column is used to retrieve or compute the new cell data from the data
source object. For reaction property columns, an explicit reaction object in the object priority
sequence has precedence, and likewise for ensemble or ensemble minor object property columns,
an explicit ensemble is preferred. If no directly matching source object is found, a reaction linked
to the priority ensemble, or the first reaction ensemble from the priority reaction are used.

The command returns the original table handle or reference.

Note that for tables, there is no (it is rarely used, anyway) standard major object data manipulation
command of the same name.

table filter
table filter tablehandle filterlist
t.filter(filters)
626 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Check whether the filter passes a filter list. The return value is 1 for success and 0 for failure.

table find
table find tablehandle column|all operator value ?mode? ?retrievalcolumn?
t.find(column=,operator=,value=,?mode=?,?retrievalcolumn=?)

The command is very similar to the table select command. The difference is that this command
stops the scan after the first matching row was found. Please refer to the section on that command
for an explanation of the command arguments.

The command uses index information if the search operation allows it and a column index has been
prepared. For large tables, this can make a big difference in search speed.

Example:
set r [table find $thandle E_CID = 5]

The result is the row index of the matching row, or minus one if no such row was found.

table flatten
table flatten tablehandle ?columnrange?
t.flatten(columns=)

This operation simplifies the data types represented in the table. CACTVS table columns can hold any
data type the toolkit knows to manage via its data handler modules, including for example vector
types, which are generally beyond the scope of traditional table formats.

This command attempts to simplify column types to elementary types, such as strings and numerics.
In order to do that, columns with complex data types are split up. For example, a float vector column
is replaced by a group of simple float columns, which are inserted immediately to the right of the
original column. The number of these columns is determined by the longest vector found in the data
cells under the original column, but it is at least one. The names of the new columns are either set
to the names of the property fields (for example, for column data of type compound), or use the
original column name with a bracketed suffix, for example E_XYEXTENT(0). The first suffix is either
zero or one, depending on the setting of the offset table attribute (see table get). The original
column with the complex data is deleted. For columns which are already of a simple type, or of a
type which is not handled by the current implementation, the command does nothing.

Currently, this function is only implemented for standard vectors (integer and float type vectors,
bitvectors, plain and UNICODE string vectors) and the special data types compound, choice, intpair,
floatpair and intquad. Other complex data types are not processed.

If no column range is specified, all table columns are processed. Table columns which are of an
elementary data type are skipped.

The return value is the number of columns after the flattening operation.

table get
table get tablehandle propertylist ?filterset? ?parameterdict?
table get tablehandle attribute
t.get(property=,?filters=?,?parameters=?)
t.get(attribute)
t[property/attribute]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 627

CACTVS Tcl and Python Scripting Language Reference
t.property/attribute

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list and filter arguments, refer to the documentation
of the ens get command.

In addition to retrieving property data, this command is also used to retrieve a large set of attribute
values from the table object. Many of these attributes can also be set. Table objects have the
following public attributes:

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the table author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the table, as free-form string data.

• autorowformat
A string which is used as template for automatically generated table row names if no explicit
names are specified. If it is not set, the fallback naming template is Row%ld, where the
numeric placeholder is filled by the current value of the autorowid attribute. If a custom
template is used, it should also contain a %ld placeholder, and no other C-style formatting
instructions except for this one long integer.

• autorowid
An integer which starts at zero when the table is created and is automatically incremented
for every table row added via a table addrow command or internally called equivalents.
This number is used in conjunction with the autorowformat attribute to generate unique
table row names in case no explicit name is set. The value can be modified if necessary.

• authorurl
A URL with information on the author, or an empty string if unset.

• bgcolor
The global table background color. If unset, an the result is an empty string.
628 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• carbondisplaymode
The default mode for carbon atom rendering of embedded structure or reaction images. It
can be either none (no symbols), special (special C atoms have symbols) or all (all carbon
atoms are rendered with explicit symbols).

• category
A category string to be used if the table is stored in a repository.

• class
A class string to be used in HTML output as attribute of the <table> tag.

• classuuid
The base class UUID of this table object

• colblocksize
Set the column block size. If this value is larger than one, the default, the layout of some
table output formats is adjusted to use repeated blocks of data instead of a simple matrix. For
non-rotated table output, a new row is only started after the set number of entries, each with
their normal item column count, have been written, instead of starting a new row after each
physical table row. For rotated layout, a new printed set of rows, each set comprising of a
number of rows equivalent to the physical table columns, is already forced after the
specified number of rows have been printed left to right, instead of printing all selected rows
left to right. This formatting option is currently only supported for Excel xls, HTML (table
and page) and CDXML layout.

• coldatatypes
The data type of the columns. If the list is shorter than the column count when used with a
set command, only the first column data types are changed.

• coldescriptions
A list of the column description texts.

• collengths
The width of all columns as a list. Columns with undefined widths report minus one. This
is a read-only attribute. Note that this attribute defines an object length (for example, a
character count), not a formatting width, which is defined by the widths attribute.

• colnames
The names of all columns as a list. If the list is shorter than the column count when used with
a set command, only the first names are changed.

• colproperties
A list of the properties of all table columns. If a column is not a property column, an empty
string element is inserted. This is a read-only attribute. This attribute can also be addressed
via its alias names colprops, props or properties.

• coltypes
The column types of all columns as a list. This is a read-only attribute.

• comment
A free-form comment string.

• coords
If the toolkit was compiled with factory support, these are the coordinates of the object icon
on its workbench, encoded as integer pair. This attribute can be changed.

• dataset
A deprecated alternative name for the internaldataset attribute.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 629

CACTVS Tcl and Python Scripting Language Reference
• datatypes
A list of all the data types of the table columns. This is a read-only attribute. This attribute
can also be addressed via its alias coldatatypes.

• dataframe
This attribute is only available in the PYTHON interface and only if the NUMPY module is loaded
or can be auto-imported. The complete table is exported as a NUMPY dataframe object. For
column typing and special issues concerning these, please refer to the nparray and nptype
column attributes.

• date
The date the table configuration was defined.

• deletable
Flag indicating whether the object can be deleted with a standard table delete command.
This attribute is read-only. Objects which are, for example, property data values or a part of
a molfile loop command cannot be deleted by standard means.

• displaywidths
A list of the widths of all table columns. This is a read-only attribute. Table columns which
have no explicit width contribute an empty string, not a negative or zero value. This is for
compatibility with TK widget configuration. Note that this is the formatting width, for
example defined as pixel count or points, not an object length, such as a character count. The
latter attribute can be queried by the collengths attribute. widths is an alias name for this
attribute.

• doi
A digital object identifier for the table object content, if defined.

• downloadfilename
The save name of the file when it is transmitted via HTTP. If is is also specified as part of
the transient output options in table write, that specification has precedence.

• editable
Boolean flag reporting whether the table is editable.

• email
A contact email of the author.

• embedfileformat
The output file format of embedded objects in the table. This applies for example to tables
which are written as Excel or EXCEL XML, where associated structures may be written as CDX
or SKC OLE objects. For table output in formats which do not support this kind of embedding,
the attribute is ignored. If the attribute is set to an empty string, or none, embedding is
disabled where applicable, i.e. embedded EXCEL XML structure images are plain WMF/EMF
drawings, not OLE objects. Otherwise, the attribute must be resolvable to a I/O module name
for molfile objects (see filex command).

• emptyrows
Get a list of row numbers which are empty, i.e. only contain NULL data values. This is a
read-only attribute.

• ens
A list of all ensembles associated with the table rows. This is a read-only attribute. If a
structure data column is associated with the table, an attempt is made to automatically
instantiate the ensembles.
630 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• ensrowcount
The number of rows which are associated with any ensemble. This is a read-only attribute.
If a structure data column is associated with the table, an attempt is made to automatically
instantiate the ensembles.

• ensrows
A list of the row indices of those rows which are associated with an ensemble. This is a
read-only attribute. If a structure data column is associated with the table, an attempt is made
to automatically instantiate the ensembles.

• eod
The value of the end-of-data marker. This attribute is typically used in multi-threaded
applications to indicate that feeder threads have exhausted their data supplies and that no
further table rows are expected to arrive. This attribute is internally used by the table pop
and table wait commands to determine whether they should continue to wait or exit with
an empty result. The initial value of this attribute is zero.

• eodcheck
Perform a check whether at least one row is in the table, or is expected to arrive later. If rows
are currently in the table, or the eod attribute value is less than the targeteod attribute value,
the command returns zero, otherwise one. This attribute is read-only.

• eolchars
The end-of-line chars for text-based table output. The default is platform-dependent (NL on
Linux/Unix, CR on Mac, CR/NL on Windows).
The magic strings windows, mac (both checked for the first three characters only) as well
as unix and linux are automatically translated to the standard platform line terminators and
not copied verbatim. Alternative names for these standard system encodings are crlf, cr and
lf. The special value default resets the attribute to the platform-dependent default.

• failures
A list of properties for which computation failed on this table object. This is a read-only
attribute. Depending on configuration settings, this information may be used to block
pointless attempts at re-computation of incomputable data.

• fgcolor
The global table foreground color. If unset, an the result is an empty string.

• fileformat
The format of the file the table was read from. none is returned if the table was not read from
a file.

• filename
The full path name of the file the table was read from. If the table was not read from a file,
an empty string is returned. This attribute can also be set, and is then used when the table is
written and no explicit filename given.

• font
The global output font name, or an empty string if it is not set.

• fontsize
The global font size in points. If not set, zero is reported.

• footer
A free-form table footer text.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 631

CACTVS Tcl and Python Scripting Language Reference
• footercolor
The table footer color, or an empty string if not set.

• footerfont
The table footer font name, or an empty string if not set.

• footerfontsize
The table footer font size, or zero if not set.

• footerformat
The table footer format flag set. The set is the same as for the format attribute.

• format
The current set of global format flags. This is a keyword list which can contain the flags

none -no flags, equivalent to empty string

left - left-aligned text), center (centered text

right - right-aligned text), bold (bold text

highlight - cell highlight), texthighlight (text highlight

histogram - plot histogram instead of data if supported by output format

border - use extra cell border

padding - use extra interior cell padding

expand - format as auto-expand item

top - text aligned vertically to top

middle - text centered vertically in middle of cell

bottom - text aligned vertically to bottom

multiline - format cell data in multiple lines if possible

gcolor - has explicit foreground color

bgcolor - has explicit background color

italic - use cursive text), underline (use underlined text

embedded - embed content of data which are external references, such as linked files into
the output, instead of passing the reference

mdlnote - augment call data with MDL Molfile note text of associated ensemble or reaction

smilesnote - augment cell data with SMILES note text of associated ensemble or reaction

vertical - use vertical text if supported

precision - use property precision data for formatting

html - data is expected to be already HTML-encoded, no additional formatting for HTML
table output

merge - merge column with column on the left to multi-row column if supported
632 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The flag set is the same in all contexts. However, not all make sense everywhere (i.e. the
merge flag is only useful in column formats, not globally or on individual cells), and other
require additional data (the fgcolor/bgcolor flags).

• framecolor
The color of frames around objects in certain output contexts, for example around
embedded images or OLE objects. This attribute is evaluated only if the rendering is
executed implicitly, for example during an output operation. If, for example, an explicit
E_GIF or E_EMF_IMAGE image is set as cell data, the parameters that were in effect when
these images were generated are not checked. The default frame color is black. It is
sometimes useful to set it to the background color or the rendering, i.e. white, or to suppress
frame output altogether (see table write).

• gflags
If the toolkit was compiled with factory support, this is the currently set object icon
rendering flag collection.

• header
A free-form header text.

• headercolor
The table header color, or an empty string if not set.

• headerdata
A list of the values of the header data for all columns. This is a read-only attribute.

• headerfont
The table header font name, or an empty string if not set.

• headerfontsize
The table header font size, or zero if not set.

• headerformat
The table header format flag set. The flag set is the same as for the format attribute.

• heights
A list of all row heights. This is a read-only attribute. Rows for which a height has not been
set contribute an empty string.

• hidden
Flag indicating whether the object is hidden. This is not the same as the invisible state. This
attribute is intended to be used for rendering selections. This attribute can be changed.

• highlightcolor
The default color for highlighting. It is set by default to red.

• highlightfont
The default font for highlighted text output, or an empty string if not set.

• highlightfontsize
The font size of the highlight font, or zero if not set.

• highlightformat
The format flags used by default for highlighting. The set of flags is the same as for the
format attribute. The default flag set is bold and underline (plus fgcolor, because the
foreground color is set, see highlightcolor attribute).
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 633

CACTVS Tcl and Python Scripting Language Reference
• httpheader
The type of MIME header to add to table output. It can be 0 (no header, the default), 1 (basic
MIME header) or 2 (full header with status code).

• hydrogendisplaymode
The default mode for hydrogen atom rendering of embedded structure or reaction images.
It can be either none (no symbols), special (special H atoms have symbols) or all (all
hydrogen atoms are rendered with explicit symbols).

• imagedirectory
The name of a directory to store images and other external files in which, depending on the
output format, cannot be stored directly in the table file.

• imagemenuoptions
A keyword list to select the inclusion of specific image menu options in table file formats
which support such a feature (currently, only HTML).

• imageurl
The base URL component used for linking images in the image directory (attribute
imagedirectory). In HTML output, this component and the name of image files were once
combined to add working image links to the output file. Since in current toolkit versions,
HTML output employs data URI encoding of the images as replacement for external linking,
this attribute is deprecated.

• infourl
A URL with information on the object content, or an empty string if unset.

• internaldataset
The handle of the internal table dataset object which is part of every table. It is not the handle
of a dataset the table may be a member of, as retrieved by the table dataset command.
The attribute name may be shortened to simply dataset. It is a read-only value - it is not
possible to change an internal table dataset since it is an integral part of the data structure.

• invisible
Flag indicating whether the table is invisible. This is not the same as the hidden state. An
invisible object is no longer accessible via its handle. This is usually the case for objects
which are scheduled for deletion, but still have lingering referring pointers. This attribute is
read-only.

• iteratorstyle
The default style of row data stored in the loop variable of the table loop command. It
can either be list (or tuple, for PYTHON compatibility) or dictionary. In list mode, the row data
is presented as a simple list and elements are accessed via the list index. In dictionary mode,
the data is presented as a dictionary, with the column names as keys. The default iterator
style is list. More information can be found in the command description of table loop.

• linktarget
If the table output is HTML or a similar format with hyperlinks, this parameter controls the
link target specification, if it is not an empty string. For HTML, a value like _blank to open
the link in a new window or the name of an existing window in an application can be set.

• javaobject
If the toolkit was compiled with JNI support, this attribute reports the memory address of the
JNI wrapper class instance, if it exists.
634 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• keywords
A list of keywords associated with the table object.

• license
The license class associated with this table object. Setting the license to a standard type
updates the associated URL with a standard location.

• licenseurl
A URL with details about the table object license.

• literature
A free-form literature reference for the data content of the table.

• markcolor
The color of markings and annotations in certain output contexts, for example in embedded
images or OLE objects. This attribute is evaluated only if the rendering is executed
implicitly, for example during an output operation. If, for example, an explicit E_GIF or
E_EMF_IMAGE image is set as cell data, the parameters that were in effect when these images
were generated are not checked. The default mark color is pure blue.

• maxrows
A maximum number of rows allowed in the table. Attempts to add more rows fail, or, if the
table has an active background export thread, block. Setting it to a negative value, the
default, disables this limit.

• modcount
The object data and content modification count.

• mutexcount
The number of recursive mutex locks held for this object. Only supported on Linux.

• name
A free-form table name as string

• ncols
The number of columns in the table. This attribute may be used in a table set command
to reduce the number of columns, but not to enlarge the table.

• note
Arbitrary data added as note data. This is usually only used on a lower level to added notes
to individual cells.

• notesize
The size of the table-level note data. This is a read-only attribute.

• nrows
The number of rows in the table. This attribute may be used in a table set command to
reduce the number of rows. Adding table rows is also possible by manipulating this
attribute. In that case, all new data cells are set to NULL.

• nulldatarows
A list of the row indices of those rows where all columns are NULL values.

• nullensrows
A list of the row indices of those rows which are not associated with an ensemble. This is a
read-only attribute. If a structure data column is associated with the table, an attempt is made
to automatically instantiate the ensembles.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 635

CACTVS Tcl and Python Scripting Language Reference
• nullreactionrows
A list of the row indices of those rows which are not associated with a reaction. This is a
read-only attribute. If a reaction data column is associated with the table, an attempt is made
to automatically instantiate the reactions.

• offset
This attribute can be either zero or one. It influences the naming of flattened columns (see
table flatten command)

• onclick
For HTML output, the name of a JavaScript function to be called when a table cell is clicked.
The function is called with three arguments: The automatically generated DOM ID of the table
cell, and the row and column indices, starting with zero.

• onmouseover
For HTML output, the name of a JavaScript function to be called when a the mouse is moved
over a table cell. The function is called with three arguments: The automatically generated
DOM ID of the table cell, and the row and column indices, starting with zero.

• onmouseout
For HTML output, the name of a JavaScript function to be called when a the mouse is moved
away from a table cell. The function is called with three arguments: The automatically
generated DOM ID of the table cell, and the row and column indices, starting with zero.

• orcid
The ORCID code of the author of the table (see www.orcid.org).

• orientation
This value can be none (the default), landscape or portrait. It describes the orientation of a
drawing area specified via the paper attribute. Few I/O modules use this information. The
most important formats which implement this is are CDX and CDXML.

• paper
An attribute describing the size of the drawing areas for formats such as CDX or CDXML,
which can encode this type of information. Possible values are none (the default), a3, a4,
a5, a6, a7, b3, b4, b5, b6, letter, legal and executive. The associated orientation of the
drawing orientation can be set via the orientation attribute

• parameters
A keyword/value dictionary of format-specific output options which are not represented by
a general table object attribute. I/O modules may possess individual additional control
parameters (see tablex get/set commands). The default values for these are
automatically added to the parameters table attribute when a table file is written, and may
be examined afterwards, but key/value pairs which have been explicitly configured via this
attribute are not overwritten and take precedence.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.
636 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• progress
A user-defined progress value intended to track the state of lengthy operations on the table.
It is an integer between zero and one hundred and is initially set to zero. When the argument
is set, it accepts a floating point value, but the stored value is automatically rounded to the
next integer and forced into the 0..100 range.

• pyobject
If the toolkit was compiled with Python support, this attribute reports the memory address
of the Python wrapper class instance, if it exists. This attribute is read-only.

• pyrefcount
If the toolkit was compiled with Python support, this attribute reports the reference count of
the Python wrapper class instance, if it exists. This attribute is read-only.

• reactioncolumn
The index of the first column which has the reactionsource attribute set. If no such column
can be found, the result is minus one. This attribute is read-only.

• reactioncolumnfileformat
The file format associated with columns which contain decodable reaction data. By default,
this attribute is unset, which means that an attempt is made to automatically detect the
format, as with a reaction create command.

• reactionimageproperty
The name of a property to use for rendering reaction images in formats which allow the
inclusion of images in multiple formats, such as HTML. In that case, supported properties
include X_GIF, X_SVG_IMAGE and X_PDF_IMAGE. In table file formats which cannot include
images, or support only a single image format, this attribute is ignored.

• reactions
A list of all the reactions associated with the table rows. This is a read-only attribute.

• reactionrowcount
The number of rows which are associated with a reaction. This is a read-only attribute. If a
reaction data column is associated with the table, an attempt is made to automatically
instantiate the reactions.

• reactionrows
A list of the row indices of those rows which are associated with a reaction. This is a
read-only attribute. If a reaction data column is associated with the table, an attempt is made
to automatically instantiate the reactions.

• record
The current table row iterator record. The first row is record one.

• refcount
If the TCL interpreter is using native CACTVS objects instead of string-based major object
handles and integer-based minor object labels to identify toolkit objects, this returns the
number of TCL object references active for this table. This attribute is read-only.

• references
Cross references of the table. This is a nested list of class UUIDs and reference type tags.

• regid
For registered data tables, the registration ID. Zero if this is a private table.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 637

CACTVS Tcl and Python Scripting Language Reference
• rownames
A list of the names of all rows. This is a read-only attribute.

• rownametype
This can be either string, or numeric, and has an effect on how row names are compared
during sorting and other operations. The names are nevertheless always stored as strings.

• rowobjectassociations
This is a boolean attribute. On querying, it indicates whether this table has any rows which
are associated with existing ensemble or reaction objects. When setting, it has an effect only
if the boolean argument value is false. This operation then removes any existing
associations between structures or reactions and rows on this table (see table
addens/addreaction). Deleting structures or reactions while they are associated with a
table can be slow if multiple or large tables exist in the application, since they all need to
be searched for associations with the object to be deleted. This is because currently
structures or reactions only maintain a table reference count, but not any information with
which table(s) and row(s) they are associated with.

• scoped
A boolean object visibility control flag. If set, and global control flag
::cactvs(object_scope)is also set, the object is visible only in theTCL interpreter which
set the scope flag and thus claimed it. Object list commands executed in other interpreters
omit this object, and attempts to decode its handle in other interpreters will fail. The most
common use of this feature is the hiding of persistent chemistry objects in scripted property
computation functions.

• selected
Flag indicating whether the object is selected. This attribute can be changed. This flag is
unrelated to row or column selections - it is a standard major object flag.

• selectedcolumns
The currently selected set of columns, as a numerical list of column indices.

• selectedrows
The currently selected set of rows, as a numerical list of row indices.

• separator
The current separator character. This is updated if table data is read from a text file with
automatic detection of the separator character or with an explicitly named separator (see
table read command). It also has an effect on formatting of ASCII table output. The
default separator is a tab character. If you set it to a string which has more than one character,
only the first character is actually recorded.

• sizehint
An integer indicating the expected maximum row count of the table. This is used for internal
optimizations. A value of minus one indicates that no size hint is in effect.

• soapmethod
The name of a method which is used for SOAP data exchange involving this table.

• soapschema
The name of a schema which is used for SOAP data exchange involving this table.

• sqlddl
Compose an SQL statement which can be used to define a compatible database table. The
precise syntax used depends on the configured SQL dialect in ::cactvs(sql_dialect).
638 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• structurecolumn
The index of the first column which has the structuresource attribute set. If no such column
can be found, the result is minus one. This attribute is read-only. The attribute name
enscolumn is an alias.

• structurecolumnfileformat
The file format associated with columns which contain decodable structure data. By default,
this attribute is unset, which means that an attempt is made to automatically detect the
format, as with a ens create command. The attribute name enscolumnfileformat is an
alias.

• structureimageproperty
The name of a property to use for rendering structure (ensemble) images in formats which
allow the inclusion of images in multiple formats, such as HTML. In that case, supported
properties include E_GIF, E_SVG_IMAGE and E_PDF_IMAGE. In table file formats which
cannot include images, or support only a single image format, this attribute is ignored.

• style
The name of a predefined output style. This is currently only used by the CDX and CDXML
table output formats, which support both the CHEMDRAW default style and the ACS journal
style (acs).

• stylesheet
This is only used in htmltable output. It is the outputfile-relative path name of a CSS file
which is linked to the primary output file via a <link> tag.

• symboldisplaymode
The default mode for atom rendering of embedded structure or reaction images. It can be
either none (no symbols), symbol (element symbols), label (atom labels), index (atom list
index), box (colored square marker), compact (symbols with contracted atoms) or residue
(A_RESIDUE label)

• targeteod
The target value of the eod attribute. Once it matches or exceeds this value, the table is not
expected to receive any more rows. The initial value of this attribute is one. This attribute
is for example checked by processing threads.

• title
A free-form table title text.

• titlecolor
The table title color, or an empty string if not set.

• titlefont
The table title font name, or an empty string if not set.

• titlefontsize
The table title font size, or zero if not set.

• titleformat
The table title format flag set. The set is the same as for the format attribute.

• tooltip
If the toolkit was compiled with factory support, this is the tooltip of the object icon on a
workbench. This attribute can be changed.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 639

CACTVS Tcl and Python Scripting Language Reference
• undefined
This attribute controls the I/O of undefined cell data. It is a string consisting of one or more
words, separated by commas. The first word is used for string-based output of NULL cell
values. All words are recognized when decoding cell data from strings. Any input matching
any of the words are stored as a NULL value. The default value is
„NULL,N/A,UNDEF,UNDEFINED,UNSET,NOTSET“. With this string, NULL cells are
printed as “NULL”, and a total of six magic words for the input of NULL data are recognized.

• uuid
An automatically generated UUID globally identifying the object. This attribute is read-only,
different for every object, and not dependent on its contents.

• variable
The name of a global TCL array variable in the base interpreter which is linked to the table.
Table updates are reflected in the variable contents, and changes of the variable elements
will change the table object contents. The 2-dimensional TCL array variable uses numerical
row and column indices. If there is no linked variable, which is the default, the result is an
empty string.

• version
The version number of the table. This is a string in a 1.2.3 (or shortened) style,

• versionuuid
The UUID associated with this table object version.

• x
If the toolkit was compiled with factory support, this is the x coordinate of the object icon
on its workbench. This attribute can be changed.

• y
If the toolkit was compiled with factory support, this is the y coordinate of the object icon
on its workbench.This attribute can be changed.

Table attributes which are not marked read-only can be set by the table set command.

Variants of the table get command are table new, table dget, table jget, table jnew,
table jshow, table nget, table show, table sqldget, table sqlget, table sqlnew,
and table sqlshow. These commands only work on property data and cannot be used to access
attributes.

table getcell
table getcell tablehandle row column ?attribute?
t.getcell(row=,column=,?attribute=?)

Get the cell data value, or a cell attribute. The following cell-level attributes are supported:

• bgcolor
The background cell color, if it is set on the cell level.

• comment
A free-form text comment

• exists
Check whether the addressed cell exists in the table. The return value is a boolean result. No
error is raised if the cell address cannot be resolved.
640 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• fgcolor
The foreground cell color, if it is set on the cell level.

• format
Cell-level format flags. This is the same set as for the global table attribute of the same
name, which is explained in the section describing the table get command.

• isnull
A boolean check whether the data value of the cell is NULL.

• mergedbgcolor
The effective cell background color, merged from cell>row>column>table format
specifications.

• mergedfgcolor
The effective cell foreground color, merged from cell>row>column>table format
specifications.

• mergedformat
The effective format flags for the cell, merged from cell>row>column>table format
specifications.

• image
A TK image handle when the table object is linked to a TK table widget.

• note
A free-form cell note. In output formats such as MS EXCEL this is displayed as a tool tip. Note
that this data can be binary.

• notesize
The size of the note, in bytes.

• object
The table cell object (the handle of an ensemble or reaction), or an empty string if no such
object exists.

• tag
The cell tag in a linked TK table widget.

• value
The cell data value.

• window
The name of a linked TK window displaying cell contents.

The attributes image, tag and window are only useful for developers who want to display a CACTVS
table in a GUI tool developed with the TK toolkit and its table widget.

If the last optional command argument is omitted, it is assumed to be value.

table cellget is an alias for this command.

table getcolumn
table getcolumn tablehandle column ?attribute?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 641

CACTVS Tcl and Python Scripting Language Reference
t.getcolumn(column=,?attribute=?)

Get data from a specific column. All attributes which can be set (see table setcolumn command),
can also be read. In addition, the following attributes can only be read, but not set:

• avg
The computed average value of the column data cells. NULL cells are ignored. This operation
only succeeds on numerical table columns. average is an alias.

• count
The number of non-null data values under this column.

• data
A list of all the values of the column data cells, in row order. The size of the returned list is
the same as the row count. values is an alias.

• data(fieldname)
This form is a variant of above command. It is used to access a specific data field of the
column data, or perform datatype-specific conversion operations. The allowed field names
are determined by the specification of the column property, if it exists, and/or the column
datatype. If the column data is already a property field, the field name signifies further
indexing from that property data subset onwards. At this time, not all indexing operations
possible in other index-driven commands are available, especially index accesses where
individual data items determine success or failure (such as key-indexed dictionary values)
are not possible.

• distinct
Get the number of distinct cell values in this column. Implicitly, this sets up a column index.

• exists
A boolean pseudo-attribute indicating whether the column with the specified identifier
exists in the current table or not.

• hasnull
A boolean flag indicating whether any of the cells in the column is a NULL cell.

• index
The numerical column index of the specified column identifier. If the identifier cannot be
resolved, minus one is reported.

• isnull
A boolean value indicating whether all rows under the column exclusively contain NULL
values.

• max
The computed maximum value of the column data cells. NULL cells are ignored. This
operation only succeeds on numerical table columns.

• min
The computed minimum value of the column data cells. NULL cells are ignored. This
operation only succeeds on numerical table columns.
642 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• maxsize
The the maximum size (as per the size pseudo-element in property retrieval commands) of
all non-null rows of the column. This is especially useful for string-class columns (returning
the maximum string length) and vector-class columns (maximum vector size). If there are
no non-null cells, in the column, the return value is an empty string.

• minsize
The the minimum size (as per the size pseudo-element in property retrieval commands) of
all non-null rows of the column. This is especially useful for string-class columns (returning
the minimum string length) and vector-class columns (minimum vector size). If there are no
non-null cells in the column, the return value is an empty string.

• nparray
This attribute is only available in the PYTHON interface and only if the NUMPY module is loaded
or can be auto-imported. The return value is a NUMPY array of the column data. Vector data
is either represented as 2-dimensional arrays (if the vector length is constant over all column
values), or object_ if it varies. Not all CACTVS data types can be translated to NUMPY, and the
command can thus fail for more complex column data types. For an export of a full table as
a NUMPY dataframe, see the dataframe attribute on the table object.

• nptype
This attribute is only available in the PYTHON interface, and only if the NUMPY module is
loaded or can be auto-imported. It returns the NUMPY item datatype for elements of this
column as NUMPY object, or none if the column data cannot be represented as NUMPY data. For
vectors the type is the element type if all vector lengths in the table column are identical,
otherwise object_, due to limitations in the NUMPY data model.

• nullrows
Get a list of all rows which have NULL values in this column.

• notesize
The byte length of the note attribute. If no note is attached, the result is zero.

• objects
A list of the handles of all table cell objects set in that column, in row order. Cells for which
no object has been set report an empty string list element.

• propertyfield
The property field index of the column. If the column is not a property column, or the
column is specified to contain data of a complete property record, not just a field, the value
minus one is returned.

• sqlname
The name of the column, reformatted to be easily usable in the context of SQL statements.
These column names are automatically used when the table is exported in one of the SQL
database dialects.

• stddev
The computed standard deviati8on of the column data cells. NULL cells are ignored. This
operation only succeeds on numerical table columns.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 643

CACTVS Tcl and Python Scripting Language Reference
• sum
The computed sum of the column data cells. NULL cells are ignored. This operation only
succeeds on numerical table columns.

• unique
Test whether the row values under this column are unique. The command returns a list of
three values. The first is a boolean value telling whether all values are unique, followed by
a pair of row indices of a duplicate value pair if it exists. If the column values are unique,
the reported row indices are both minus one. The uniqueness test is performed by
temporarily creating a column index and thus scales better than n2, but is also means only
columns where an index can be built can be tested.

The exists and index attributes allow the specification of non-existing column identifiers. In all other
cases, an error is raised if the column cannot be identified.

If the last optional command argument is omitted, it is assumed to be data.

table colget and table getcol are aliases for this command.

Example:
table colget $th mycol
table colget $th mycol data(CHF)

The first form retrieves all column data values in standard format. The second form assumes that the
column supports index CHF, which is for example the case if the column data type is currency. In
that case, the returned values are automatically converted from whatever original currency it is in.

table getparam
table getparam tablehandle property ?key? ?default?
t.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

table getrows
table getrows tablehandle rowrange ?attribute?
t.getrows(rows=,?attribute=?)

Get data from a specific row range. All attributes which can be set (see table setrow command),
can also be read. In addition, the following attributes can only be read, but not set:

• data
A nested list of all the values of the data cells of the row set. The size of the returned inner
list is the same as the column count, and the size of the outer list the row count between the
first and last specified rows. values is an alias.
644 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• dictdata
The same as data, except that the row information is returned as a dictionary, with the
column names as keys. dictvalues is an alias.

• exists
Report as a boolean value whether the specified row range could be resolved.

• index
The list of numerical row indices of the specified row identifiers. If the row range cannot
be resolved, a single minus one value is reported.

• isnull
A boolean value indicating whether all columns in the specified row range consist
exclusively of NULL values.

• objclass
The class of objects, such as ens, reaction or atom, associated with each row in the retrieval
range. The default attachment, even for rows which are not connected to a chemistry object,
is ens.

• objects
A nested list of the cell objects in that row set. Cells for which no cell object has been set
report an empty string.

• notesize
A list of the he byte lengths of the note attributes in the row set. If no note is attached, the
result is zero for that row.

If the last optional command argument is omitted, it is assumed to be data.

table rowget and table getrow are aliases for this command.

A common error when using this command is to forget that it can return data on multiple rows, and
therefore the return value is always nested list. If only a single row needs to be accessed in a
statement, and list unwrapping is tedious, the table getrow1 command can be used instead.

table getrow1
table getrow1 tablehandle row ?attribute?
t.getrow1(row=,?attribute=?)

This command is essentially the same as table getrows, but it only accepts a simple single-row
identifier, not a row range.

The return value is a simple list for the column values, not a nested list as with table getrows,
which can be convenient.

Important: For reasons of backward compatibility, table getrow is an alias for table getrows, not
table getrow1!

table getparam
table getparam tablehandle property ?key? ?default?
t.getparam(property=,?key=?,?default=?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 645

CACTVS Tcl and Python Scripting Language Reference
Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

table hierarchy
table hierarchy thandle ?filterlist? ?root?
t.hierarchy(?filters=?,?root=?)

Return the hierarchy handle or reference of the hierarchy the table is part of. If the table is not
member of a hierarchy, or does not pass all of the optional filters, an empty string or None for PYTHON
is returned. By default, the hierarchy object which directly contains the table is returned. If the root
flag is set, the root hierarchy object is reported instead, which is the same only if the hierarchy has
only a single level.

Example:

table hierarchy $thandle

table index
table index tablehandle
t.index()

Get the position of the table in the object list of its dataset. If the table is not member of a dataset,
-1 is returned.

table innerjoin
table innerjoin tablehandle1 tablehandle2 ?column1? ?column2? ?cmpflags?
table join tablehandle1 tablehandle2 ?column1? ?column2? ?cmpflags?
t.innerjoin(table2=,?column1=?,?column2=?,?comparisonflags=?)
t.join(table2=,?column1=?,?column2=?,?comparisonflags=?)

Perform a relational inner join on two tables and return the handle or reference of a newly created
join table. The two command variants are aliases.

The source tables remain unchanged. If no explicit table columns are specified, in both tables the
first column is used. If only one column name or index is specified, it applies to both tables. With
two column names or indices, the first is used to select the join column on the first input table, and
the second on the other table.

This command explanation is also referenced by the table object subcommands leftjoin, rightjoin,
and outerjoin. This is the reason why the explanation of some command features goes beyond
describing exclusively the innerjoin subcommand.

The result table always contains, in this order, the columns of the first table, followed by those of
the second table, with the exception of the omitted join column of the second table. The names of
columns originating from the second table are adjusted if necessary to avoid duplication of column
646 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
names in the result table. Data attached to rows on either input table outside of cell values, such as
structure or reaction references, are not copied to the output table.

By default, the join condition is a simple equality check on the data of a single column from each
table. The data value comparison method may be modified by the last optional argument, for
example to use case-insensitive or punctuation-ignorant comparison. The recognized values in this
flag set are dependent on the column data types and the same as in the prop compare command.
At this time, the fundamental comparison operator is always an equality check - other operators such
as less than etc. are not supported. The row values of the join columns are not required to be sorted
in either input table. NULL data values in the comparison column never match another data value,
even if it also is NULL, following the standard rules of relational algebra. Parallel joining on multiple
columns is not yet supported.

The column data types are not required to be identical. If they disagree, an attempt is made to cast
the data values of the first table to the datatype of the column of the second table. If that fails, the
input row of the first table is skipped and never included in the result table, even in left, right or outer
joins.

In an inner join, rows from the first able are omitted in the output if there is no matching column
value in the second table. This is always the case if the column value is NULL - a NULL value is never
equivalent to another NULL. If either table has more than one matching row for a column value,
multiple combined output rows result from that pairing, with all possible combinations of row data
blocks (but not individual join column values - these are by definition identical) from either table
result.

The table leftjoin, table rightjoin and table outerjoin commands are extensions of the
fundamental inner join operation. These generate selected additional rows in the output for rows
from the tables which do not match a counterpart in the join column, following the normal relational
algebra rules.

table jget
table jget tablehandle propertylist ?filterset? ?parameterdict?
t.jget(property=,?filters=?,?parameters=?)

This is a variant of table get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

table jnew
table jnew tablehandle propertylist ?filterset? ?parameterdict?
t.jnew(property=,?filters=?,?parameters=?)

This is a variant of table new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

table jshow
table jshow tablehandle propertylist ?filterset? ?parameterdict?
t.jshow(property=,?filters=?,?parameters=?)

This is a variant of table show which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 647

CACTVS Tcl and Python Scripting Language Reference
table leftjoin
table leftjoin tablehandle1 tablehandle2 ?column1? ?column2? ?cmpflags?
t.leftjoin(table2=,?column1=?,?column2=?,?comparisonflags=?)

Perform a relational left join on two tables and return the handle or reference of a newly created join
table. The command arguments and result value are explained in the table innerjoin command.

The difference between a standard inner join and a left join is that rows from the first input table
which do not match any values of the join column in the second table are still output, with all column
data originating from the second table set to NULL values.

table list
table list ?filterlist?
Table.List(?filters=?)

Without a filter list argument, the command returns a list of the handles of all tables currently
existing in the application, including those of the system tables.

If a filter list is specified, only those tables which pass all filters are listed.

Examples:
table list

table listblockloop
table listblockloop tablehandle rowvariable ?maxrows? ?offset? body
t.listblockloop(column=,function=,?maxblocks=?,?offset=?,?variable=?)

This command is a variant of the table blockloop command. It stores the row data as a simple
nested list in the loop variable, without column names. The value of the iterator style table attribute
is ignored.

Please refer to the table blockloop command description for more information.

For the sake of compatibility with the PYTHON interface syntax, the command may also be invoked
as table tupleblockloop.

table listloop
table listloop tablehandle rowvariable ?rowobjectsvariable? ?maxrows? ?offset?

body
t.listloop(function=,?maxrows=?,?offset=?,?variable=?,?objectvariable=?)

This command is a variant of the table loop command. It stores the row data as a simple list in
the loop variable. The value of the iterator style table attribute is ignored.

Please refer to the table loop command description for more information.

For the sake of compatibility with the PYTHON interface syntax, the command may also be invoked
as table tupleloop.

table lock
table lock tablehandle propertylist/table/all ?compute?
t.lock(property=,?compute=?)
648 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Lock property data of the table, meaning that it is no longer subject to the standard data consistency
manager control. The data consistency manager deletes specific property data if anything is done to
the table which would invalidate the information. Blocking the consistency manager can be useful
when building tables from components in a script. Property data remains locked until is it explicitly
unlocked.

The property data to lock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the table are locked. If the boolean compute flag is set, an
attempt is made to compute the property if it is not yet present. Otherwise, a request to lock
non-existent data is silently ignored. It is not possible to lock individual property fields.

• all
All valid table properties are locked. The compute flag is ignored.

• table
This is an object class identifier. All property data which is controlled by the table major
object and attached to the specified object class is locked. Because a table currently does not
have minor objects, this command does the same as the all variant.

The lock can be released by an table unlock command.

The return value is the table handle.

table loop
table loop tablehandle rowvariable ?rowobjectsvariable? ?maxrows? ?offset? body
t.loop(function=,?maxrows=?,?offset=?,?rowvariable=?,?objectsvariable=?)
for r in t:

This command executes a loop over the rows of a table. On each iteration, the variable rowvariable
is set to a list of the cell values of the current row, and then the body argument is executed as script.

For TCL scripts, within the loop, the standard TCL break and continue commands work as expected.
If the body script generates an error, the loop is exited.

By default, the loop runs from the first row to the end of the table. The optional arguments can be
used to set a maximum iteration count, and to change the starting point of the loop. If the maximum
iteration count is explicitly set to a negative value, the loop runs to the end of the table.

The content of the row variable is dependent on the configured table iterator style (see iteratorstyle
table attribute). It can either be a list, with simple cell values, or a dictionary with column name and
cell values. The default is the list style.

If a row objects variable is specified, it contains the handles of the cell objects in the current row,
and empty strings (None for PYTHON) for those cells without a cell object. The object variable cannot
be a string looking like an integer, otherwise the argument will be interpreted as maxrows argument.
It is also possible to explicitly skip the argument by using an empty variable name. The reported cell
objects are direct references to the cell content and remain locked to the table. They cannot and do
not need to be discarded in the loop.

During the execution of the loop, the record table attribute is continuously updated to the current
1-based row number.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 649

CACTVS Tcl and Python Scripting Language Reference
The PYTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TCL construct),
or a function reference. Functions are called with the table handle, 0-based row number, row data
tuple or dictionary and the row objects tuple or dictionary as four arguments.

Normal PYTHON functions have their own context frame, and are passed arguments, so that the
specification of a loop variables is not generally useful in that call style, though is is allowed. For
string function blocks the code is executed in the local call frame, and the variable with the current
object reference is visible locally. Script code blocks must be written with an initial indentation level
of zero. Within the PYTHON functions, the normal break and continue loop control commands cannot
be used to to scope limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can
be raised. These are automatically caught and processed in the loop body handler code.

In PYTHON, there is also an object iterator so that simple loops over table rows, with the row data as
iterator value, can be written with a for statement. The table object iterator is of the self style (i.e.
there is one per table, these are not independent objects), so nesting them is not possible on the same
table.

PYTHON object loop constructs and their peculiarities are discussed in more detail in the general
chapter on PYTHON scripting.

Example:
table loop $th rowvar {

echo “Col0: [lindex $rowvar 0] Col1: [lindex $rowvar 1]”
}

The table blockloop command is a more complex variant of this command. It operates on blocks
of rows with a common cell value in a column instead of simply stepping from one row to the next.

The table listloop variant of this command always stores the row data as a list in the loop
variable. The value of the iterator style table attribute is ignored.

The table dictloop variant of this command always stores the row data as a dictionary in the loop
variable, with the column names as keys. The value of the iterator style table attribute is ignored.

There are also rownamedictloop and rownamelistloop variants, which additionally report the name
of the current table row.

The return value of the command is the number of loop iterations processed. The last value of the
loop variables remain accessible outside the loop, if loop variables were used.

table merge
table merge tablehandle1 tablehandle2 ?rowmode? ?columnmode? ?comparisoncolumn?
t.merge(table2=,?rowmode=?,?columnmode=?,?comparisoncolumn=?)

Merge two tables into one. The first table is updated. The second table remains valid and retains all
its data. It is not possible to merge a table with itself.

The first table will usually be subject to row and column updates. What kind of updates are
performed is determined by the row and column modes. The row mode can be one of:

• append
All rows from the second table are appended to the first, without checking for duplicates.
650 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• exclusive
Any rows which are present in both tables are deleted from the first table. In addition, rows
from the second table which do not match rows in the first table are appended. This is the
opposite of the intersect mode.

• intersect
Rows from the first table which have no equivalent in the second table are deleted from the
first table. Matching rows remain unchanged in the first table, and no data is ever appended
to the first table.

• join
This mode is a combination of the transfer and union modes.

• replace
The data of rows which have a duplicate in the first table overwrites all data cells in the
matching row in the first table. This can be used, depending on the column mode, to add or
update column data which is not present or NULL in the first table. The difference to the
transfer mode is that even non-NULL cells in the first table are overwritten by data from the
second table. Rows from the second table which do not match a row in the first table are
ignored.

• second
Rows in the second table which do not match any rows in the first table are appended to the
first table. All original rows in the first table are deleted. This is similar to the subtract mode,
with the order of the tables reversed.

• subtract
Only rows from the first table which do not match rows from the second table are retained
in the first table. Matching rows are deleted. No data is appended.

• transfer
The data of rows which have a duplicate in the first table overwrites NULL data cells in the
matching row in the first table. This can be used, depending on the column mode, to add or
update column data which is not present in the first table. The difference to the replace mode
is that non-NULL cells in the first table are not overwritten by data from the second table.
Rows from the second table which do not match a row in the first table are ignored.

• union
Rows from the second table for which there is no duplicate in the first table are appended
to the first table. This is the default row mode. Rows which are duplicates are skipped.

The comparisoncolumn parameter determines which column is used to check for duplicate rows. By
default, it is #name, i.e. the row name is used instead of real column data. For tables without explicit
row names, this is equivalent to the row index. For tables which were generated by direct output
from the molfile scan command, it has been automatically set to the matched file record number.
Query result tables from the same file can therefore be merged easily. Instead of the row name, any
cell data of a real column in the first table may be used for identity checks. However, this column
must have an equivalent in the second table, or an error results.

The column mode determines which column definitions from the second table are added to the first
table, and whether any columns on the first table are deleted if there is no corresponding column in
the second table. The supported column modes are:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 651

CACTVS Tcl and Python Scripting Language Reference
• append
All columns of the second table are appended to the right of the current table. This can lead
to duplicate column names and is not a frequently used mode. Old row data on the first table
becomes NULL for these new columns.

• left
The columns on the first table are not changed.

• intersect
All columns on the first table for which no equivalent column exists in the second table are
deleted in the first table. Columns in the second table without an equivalent in the first table
are ignored and their cell data will not be copied from the second table. This is the default
column merge mode.

• right
The second table determines the column set. Any column on the first table for which there
is no equivalent in the second table are deleted, and any column definitions in the second
table for which there is no equivalent in the first table are added to the first table. Old row
data on the first table becomes NULL for these new columns.

• union
Any columns on the second table for which no equivalent column exists are recreated on the
first table. Old row data on the first table becomes NULL for these new columns.

The order of the columns on the two merged tables is not important for property columns. Column
matching uses property definitions and field indices to find equivalent columns regardless of their
name. Pure data columns without property definitions require a matching name and data type in
order to be perceived as equivalent. The column modes left, intersect and union are most often used.
If the two tables have identical column sets, the merge result are the same in all these modes.

If property T_QUERY is valid on both tables, and it describes a query on the same data source, it is
updated on the first table to represent a single query which would yield the results of the merged
table. This is done by manipulating the query tree in that property by combining the old two trees
under a suitable logical operator such as and or or. This is intended to facilitate convenient
management of query results in tables, as they are, for example, produced by a molfile scan
command with direct table output.

table metadata
table metadata tablehandle property ?field ?value??
t.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands table setparam and table
getparam can be used for convenient manipulation of specific keys in the computation parameter
field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

table move
table move tablehandle ?datasethandle|remotehandle? ?position?
t.move(?target=?,?position=?)
652 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Make a table a member of a dataset, or remove it from a dataset. If the dataset handle parameter is
omitted, or an empty string (or None for PYTHON), the object is removed from its current dataset. If
it was not a dataset member, this command variant does nothing. The dataset handle may be the
name of a remote dataset for moving objects over a network connection.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of
dataset objects minus one, the object is appended as per the default. It is legal to use this command
for moving objects within the same dataset.

Another special position value is random. This value moves to the object to a random position in
the dataset. Using this mode with remote datasets is currently not supported.

The dataset handle cannot be a transient dataset. It is not possible to move a table into its own built-in
dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of a
dataset

Examples:
table move $thandle $dhandle 0
table move $thandle

In the first sample line, the table is inserted as the first element in a dataset. The second line reverts
this operation and removes the table from the dataset.

This command can be used with a remote dataset descriptor. In that case, the table is packed into a
serialized object representation, transmitted over the network and restored as member of the remote
dataset at the specified position. The local table is deleted if the transfer succeeds.

table movecolumns
table movecolumns tablehandle columnrange ?destination?
t.movecolumns(columnrange=,?destination=?)

Move one or more columns including their cell data within a table. If the destination, a simple
column address, is not specified, the selected columns are moved to the right of the table. The
destination cannot be in the range of the source columns.

The command may also be written as table movecol or table movecols.

The command returns the original table handle or reference.

table moverows
table moverows tablehandle rowrange ?destination?
t.moverows(rowrange=,?destination=?)

Move one or more rows, including their cell data within a table. If the destination, a simple row
address, is not specified, the selected rows are moved to the bottom of the table. The destination
cannot be in the range of the source rows.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 653

CACTVS Tcl and Python Scripting Language Reference
The command may also be written as table moverow.

The command returns the original table handle or reference.

table mutex
table mutex tablehandle mode
t.mutex(mode)

Manipulate the object mutex. During the execution of a script command, the mutex of the major
object(s) associated with the command are automatically locked and unlocked, so that the operation
of the command is thread-safe. This applies to builds that support multi-threading, either by
allowing multiple parallel script interpreters in separate threads or by supporting helper threads for
the acceleration of command execution or background information processing. This command locks
major objects for a period of time that exceeds a single command. A lock on the object can only be
released from the same interpreter thread that set the lock. Any other threaded interpreters, or
auxiliary threads, block until a mutex release command has been executed when accessing a locked
command object. This command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

table need
table need tablehandle propertylist ?mode? ?parameterdict?
t.need(property=,?mode=?,?parameters=?)

Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original table handle or reference.

Example:
table need $th T_XYPLOT recalc
654 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
table new
table new tablehandle propertylist ?filterset? ?parameterdict?
t.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The difference between table get and table new
is that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

table nget
table nget tablehandle propertylist ?filterset? ?parameterdict?
t.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The difference between table get and table nget
is that the latter always returns numeric data, even if symbolic names for the values are available.

table nnew
table nnew tablehandle propertylist ?filterset? ?parameterdict?
t.nnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the table get command. The difference between table get and table nnew
is that the latter always returns numeric data, even if symbolic names for the values are available,
and that property data re-computation is enforced.

table normalize
table normalize tablehandle column ?singlerow?
t.normalize(column=,?singlerow=?)

Normalize a table column with numerical data to an average value of zero and a standard deviation
of one.

If the data type of the column is a floating-point vector type (vectors of floats or doubles), and the
singlerow flag is set, the normalization is performed individually on each vector in the cells of the
selected column and not over all rows together.

The return value of the command is a list of the offset and scaling factors used to normalize the data
column, in that order. In case the singlerow command variant was used, the return value is a list of
these number pairs with one list element per row.

If the command is used on float or double vector columns in normal mode, all vector elements are
treated as independent data values.

It is possible to normalize integer-type columns. However, since this command does not change the
data types of the columns, only the offset and scaling values are reported but the column data is not
changed because this cannot be done in a reasonable fashion.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 655

CACTVS Tcl and Python Scripting Language Reference
Any attempt to normalize non-numeric columns results in an error.

table outerjoin
table outerjoin tablehandle1 tablehandle2 ?column1? ?column2? ?cmpflags?
t.outerjoin(table2=,?column1=?,?column2=?,?comparisonflags=?)

Perform a relational outer join on two tables and return the handle or reference of a newly created
join table. The command arguments and result value are explained in the table innerjoin
command.

The difference between a standard inner join and an outer join is that rows from either the first input
table which do not match any values of the join column in the second table, or from the second input
table which do not match any values of the join column in the first table, are still output, with all
column data originating from the respective other table set to NULL values. The outer join is a fusion
of a left and right join.

table pack
table pack tablehandle ?rowrangelist? ?columnrangelist? ?maxsize?

?compressionlib?
t.pack(?maxsize=?,?rows=?,?columns=?,?compressionlib=?)

Pack the table into a compressed, base64-encoded, serialized object string. This string can be used
with a table unpack command to restore the table.

By default the full table is packed, but the optional range parameters, which are both range lists, can
be used to pack a subset of the table.

The maximum size of the object string (default -1, meaning unlimited size) can be configured by the
optional maxsize parameter. The size is specified in bytes. If the pack string would be longer than
the maximum size, an error results.

Note that this command does not pack ensembles or reactions which are associated with a table. If
a table is restored, this linkage is lost.

The default compression library is zlib. Other useful variants include lzo and gzip (and there are
other internal types), but these may not be available on all builds due to license issues, and you need
to specify the compression library when a dataset is unpacked. It is generally recommended to stay
with zlib.

The command returns the pack string.

In PYTHON, tables support the standard pickle/unpickle protocol.

Example:
set ts [table pack table0 {F Cl Br I} {vdwradius covradius}]

This command copies the Van der Waals and covalent radii of the halogens from the PSE table into
a pack string. The string can be restored to a subset table with a
set thnew [table unpack $ts]

table poploop
table poploop tablehandle ?mode? varname ?objvarname? body
t.poploop(function=,?mode=?,?rowvariable=?,?objectsvariable=?)
656 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Perform the table poprow command (see below) in a loop. The loop is repeated until no more rows
can be extracted from the table. In each iteration, the extracted table data is stored in the specified
variable, the row is deleted, and the code in the body executed. If execution of the body code results
in an error, the loop is stopped immediately.

If an object variable name is specified, it contains a list or dictionary of the handles of the cell objects
in the current row, with empty strings (None for PYTHON) as elements for cells which do not possess
a cell object. These objects are unlinked from the current row and are no longer associated with the
table. It may be necessary to dispose them in the loop if they are not linked to other controlling
objects or moved to, for example, a target dataset.

In the TCL interface, the loop can be left early without raising an error by executing a standard TCL
break or return loop control command in the body.

The PYTHON version of the loop method does intentionally have a different argument sequence for
convenience. The function argument may either be a multi-line string (similar to the TCL construct),
or a function reference. Functions are called with the table object reference, the row data tuple or
dictionary and the row objects tuple or dictionary as three arguments.

Normal PYTHON functions have their own context frame, and are passed arguments, so that the
specification of loop variables is not generally useful in that call style, though is is allowed. For
string function blocks the code is executed in the local call frame, and the variable with the current
object reference is visible locally. Script code blocks must be written with an initial indentation level
of zero. Within the PYTHON functions, the normal break and continue loop control commands cannot
be used to to scope limitations. Instead, the custom exceptions BreakLoop and ContinueLoop can
be raised. These are automatically caught and processed in the loop body handler code.

There is no PYTHON iterator for this loop style.

The possible values of the optional mode argument are the same as in the table poprow command,
as is the default mode list.

The command is thread-aware and will enter a wait loop until the EOR condition on the table has been
met, so that other threads may fill the table.

The return value is the number of rows processed. The last value of the loop variables remain
accessible outside the loop, if loop variables were used.

table poprow
table poprow tablehandle ?mode?
t.poprow(?mode=?)

Remove the first row of the table and return its content as result. The form of the result can be
modified by the optional mode parameter. Its possible values are:

• list
This is the default. The row data is returned as a standard TCL list.

• dict
The row data is returned as a TCL dictionary. The primary column names are the dictionary
keys. For columns without a name, a synthetic name in the form col%d is generated.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 657

CACTVS Tcl and Python Scripting Language Reference
• ens
Return an ensemble object. The source of the ensemble is, in this order, either an existing
association of the row with an ensemble, the first column marked as structure source (see
description of column flags), or an empty ensemble constructed on the fly. Column data
which is not already present on the result structure is attached as ensemble properties if
possible. If a column is already a property column, and the column property is an ensemble
property, it is directly attached to the ensemble. For other column data, with the exception
of explicit property data of incompatible objects, synthetic property definitions are
automatically created. NULL data is skipped.

• object
The return value is an automatically chosen major object, either an ensemble or a reaction,
depending on the type of existing row associations, source columns, or present property
types. This mode can also be selected as auto or #auto.

• reaction
As above, but the result is a reaction object. The source is either an existing row association
with a reaction, a reaction source column, or a newly constructed empty reaction.

• rownamedict
The same as the dict mode, except that the dictionary also contains a rowname key with the
name of the current row as value.

• rownamelist
The same as the list mode, except that the first list element is the row name, not the value
of the leftmost column.

For this command to work, the table needs to be editable. If there are no more table rows, an empty
result is returned. If the table has an active background import thread, the command blocks until the
import thread has added another row, or has terminated.

The command may be abbreviated as table pop.

table properties
table properties tablehandle ?pattern? ?noempty?
t.properties(?pattern=?,?noempty=?)

Return a list of the valid properties on the table object. If desired, the property list can be filtered by
the optional string match pattern. Since tables incorporate no minor objects, only true table
properties (standard prefix T_) are listed. Properties of ensembles or reactions associated with the
table are not output because these are not component objects, just cross-references.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The command may also be written as short form table props.

Example:
set plotproplist [table props $th T_*PLOT*]

table purge
table purge tablehandle propertylist/table ?emptyonly?
658 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
t.purge(?properties=?,?emptyonly=?)

Delete property data from the table. In contrast to performing property deletions on, for example,
ensembles this operation does not branch out to properties which are stored on objects linked to the
table. Ensemble or reaction references are not traversed because they are not true container object
memberships.

This command only deletes proper table properties (usually starting with T_). If the object class
name table is used instead of a property name, the data of all table properties is deleted.

The optional boolean flag emptyonly restricts the deletion to those properties where the value of a
property is identical to the default.

table randomize
table randomize tablehandle ?seed?
t.randomize(?seed=?)

Shuffle the rows of the table in a pseudo-random fashion. If the seed argument, an integer, is
provided, it is used to seed the random generator. If the command is called the first time without a
seed, the current time stamp is automatically provided as seed and the random number sequence
becomes unpredictable. Subsequent calls of the command without a seed parameter continue with
the random number sequence defined by the seed, until the command is again called with a seed
argument. The random generator is then re-seeded and the number sequence specific to the seed is
re-started.

This command is useful for testing the robustness of algorithms with respect to data ordering.

The command returns the original table handle or reference.

table rank
table rank tablehandle ?method? ?{column ?direction ?cmpflags??}?..
t.rank(?method?,?(column,?direction,?cmpflags)???,...)

Rank the table rows according to data in specific columns. The command returns a list of the
individual ranks of the rows, with one numeric list item per row and in order of the rows. It does not
sort the table.

There are three different ranking schemes:

• centered
If there are multiple rows of the same superiority, their rank is the average position in the
result list. For example, if there are two entries which would occupy both second place, their
rank is both 2.5, the average of position 2 and 3 in the list. The next rank assigned is fourth
place.

• olympic
If there are multiple rows of the same superiority, they all get assigned the highest unclaimed
rank. The next tier receives ranks which skip those which would have been assigned had the
ranks of the superior positions been all different. For example, if there are two rows with
first rank, the next assigned rank is third. This is the default method.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 659

CACTVS Tcl and Python Scripting Language Reference
• sequence
If there are multiple rows of the same superiority, they all get assigned the highest open rank.
The next tier get ranks in immediate sequence, without correcting for ties. For example, if
there are two tied top rows, they both get first rank, and the next rank assigned is second.

The rest of the optional arguments select the columns to use for ranking, and the comparison
operations used to determine the rank. Each argument is a list of one to three elements. The first list
element, the column name, is mandatory. The special column name #name can be used to use the
row name as criterion, #row or #record for the row number, and #random or #rnd as tiebreaker.

If the second element of a rank specification is not supplied, the sort direction for rank comparisons
is up, meaning that lower values imply a higher (numerically lower) rank. The sort order can also
be specified as down, which inverts this.

Finally, the comparison operation can be influenced by providing a list of comparison flags. These
the same as used with the prop compare command.

In case multiple comparison columns are given, columns to the left have precedence over columns
to the right.

Not specifying any comparison column is syntactically allowed, but reports all rows as of the same
rank.

table reactions
table reactions tablehandle
t.reactions()

Return a list of the handles or references of all reactions which are referenced by the table. Every
reaction is reported only once, even if it is referenced by multiple rows. Rows with reaction
references are usually added to tables my means of the table addreaction command. In case a
row has no reaction reference, it is ignored, and no output is produced.

table read
table read filename ?parameter value?...
table read filename ?dictionary?
Table.Read(filename,?parameter,value?,...)
Table.Read(filename,?dictionary?)

Read a table file into a newly allocated CACTVS table object and return the handle or reference of the
new table if the operation succeeded. The column data types and other attributes of the new table
are set appropriately according to the data found in the file. This is even true for pure ASCII text
tables, because an attempt is made to promote the column formats to integers, floats or booleans
after the data has been read initially as strings, if the data content allows the conversion.

Besides a normal file name, it is also possible to specify stdin as magic file name to read from
standard input, or a pipe by starting the file name argument with the “|” character. If a normal file
is used, and the suffix cannot be identified by the currently loaded table file format I/O handlers, an
attempt is made to auto-load a handler by constructing a standard module name from the suffix (see
tablex command for more information about table file format handlers). Additionally, some URL
formats, such as http(s)://, (s)ftp:// and gs:// (GOOGLE storage) are also recognized as file
names. For these formats, the file is automatically temporarily downloaded, read, and again deleted
from local disk space. Access credentials can be embedded in the URL in standard fashion.
660 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For normal disk files, but not when reading from stdin, pipes or URLs, the file format is automatically
detected by looking into the file content, independently of the file suffix. This is done by invoking
in reverse load order the detection function of all currently loaded table I/O modules and the built-in
handlers. For build-in table handlers, but only for those, such as the simple separator-controlled text
table dumps, the table file may be gzip-compressed (but not bz2, etc.), and the format is still
auto-detected. For other table disk files, the presence of gzip or bz2 compression is detected, but
no automatic format detection takes place behind the compression layer. These files can still be read
without prior decompression by explicitly stating the format in the argument dictionary.

Additional optional parameters to control the input can be specified either as a number of
keyword/value argument pairs, or a single dictionary argument. The recognized control keywords
are the same for both variants.

• colnames
In some cases it may not be possible to automatically detect whether the table file contains
column names or not in the first data line. The boolean colnames parameter allows the
programmer to provide this information explicitly. If the title reader hint is also used, the
column names are expected to come after the title line.

• debug
A boolean flag indicating that, if set, debug information should be printed while reading the
file. This is primarily a developer option.

• firstrecord
The first row record (starting with one) to read. By default, table input starts at the first row.
Not all table file format I/O modules support this.

• format
By default, the file format is identified automatically. However, in order to enforce reading
the input source as a specific format, for example in case of an ASCII table file with
confusing separator characters, it is possible to explicitly state the format with the format
parameter. If the handler for that format is not yet loaded, an attempt at auto-loading it is
made.

• headeronly
A set boolean parameter instructs the table I/O format handler to only read the table column
definitions and table-level properties. This is not supported on all table formats. If a table I/O
module does not support this input mode, the full table is read instead, as by the default
operation. This includes all the information which would be read in header-only mode, but
also all row and cell data, which requires more memory and takes longer to read. If
header-only mode is supported, the result table has no rows and no cells after input, and also
no associated row chemistry objects.

• maxrows
If set to a non-negative integer value, this parameter limits the maximum number of rows to
read from the table. By default, the maximum row count is not limited.

• rownames
In some cases it may not be possible to automatically detect whether the table file contains
row names or not. The boolean rownames parameter allows the programmer to provide this
information explicitly.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 661

CACTVS Tcl and Python Scripting Language Reference
• scoped
If set, directly set the scoped attribute, which makes the table invisible from TCL interpreters
other than the one performing the read.

• separator
This parameter provides a way to explicitly define a separator character for ASCII-style text
tables. By default, an attempt is made to determine the separator character automatically if
the table file format is identified as an ASCII-based format with a variable separator. This
option is ignored for file formats with a more advanced internal structure.

• sheetname
CACTVS table objects can represent only a single table, not multiple tables forming a sheet
collection, notebook or similar construct in the input file. In case files are read which contain
multiple tables, for example sqlite, xlsx or fits files, the desired table can be selected via the
sheetname string option. The alternative parameter name table is an alias for sheetname. If
a multi-table file is read, and no such sheet name provided, the first table from the file is the
one extracted. There is currently no way to read multiple tables from such a file with a single
command, nor a method to query the number or names of sheets or tables present.

• skiperrors
If this boolean parameter is set, rows which cannot be decoded are ignored. This is useful for
example in case there are trailing blank or comment lines in the file. However, the read
command will then also remain silent in case all rows fail, for example because of a
mis-identification of the file format, so this option should be used with care.

• table
An alias for sheetname, for a more familiar naming if, for example, a specific table from a
database file is read.

• target
If set to a table handle, the data is read into this existing table, which is fully reset before input
commences. By default, a new table object is allocated.

• title
A boolean flag indicating whether the table reader should interpret the first line as title string.
If column names are also read, these follow the title line. The title string is stored in the title
table object attribute.

If a read table file contains, besides the cell data, structure or reaction object data, as it is possible
for example with native CACTVS or KNIME table files, these objects are automatically read and moved
into the internal table dataset object. Proper row references to these objects are also established.

table load is an alternative command name.

Example:
set th [table read $file colnames 1 separator “!”]

This reads a slightly unusual ASCII table with exclamation marks as separators, and column names
in the first row.

table readblob
table readblob data ?parameter value?...
662 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
table readblob data ?dictionary?
Table.Readblob(data,?parameter,value?,...)
Table.Readblob(data,?dictionary?)

This command is the same as the table read command, except that is reads from an in-memory
blob instead from a file. If the responsible table I/O module for the table file format does not support
in-memory decoding, a temporary file is automatically created and removed after reading.

Currently, automatic format detection of in-memory table data does not work in some cases, or
forces the inefficient use of a temporary file. It is advisable to specify an explicit file format in the
optional arguments to avoid this problem.

table loadblob is an alternative command name.

table recalc
table recalc tablehandle ?rowrangelist? ?columnrangelist?
t.recalc(?rows=?,?columns=?)

Recompute the values of all cells which are linked to column computation functions in the specified
block. The default re-computation block is the complete set of rows and columns. This command
does not affect cell data which is not linked to a function.

The return value is a boolean status code indicating whether all requested values could be computed.

table ref
Table.Ref(identifier)

PYTHON only method to get a table reference from a handle or another identifier. For tables, other
recognized identifiers are table references, integers encoding the numeric part of the handle string,
the UUID of the network object, or its name.

table rename
table rename tablehandle srcproperty dstproperty
t.rename(srcproperty=,dstproperty=)

This is a variant of the table assign command. Please refer the command description in that
paragraph.

table replot
table replot tablehandle ?rowrange? ?columnrange?
t.replot(?rows=?,?columns=?)

Replot structure and reaction images embedded in the table. The default replot block is the complete
set of rows and columns. The command only affects data cells of columns of type image.

The command returns the original table handle or reference.

table rewind
table rewind tablehandle
t.rewind()

Reset the table iterator record. This is equivalent to setting the record table attribute to one.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 663

CACTVS Tcl and Python Scripting Language Reference
The command returns the original table handle or reference.

table rightjoin
table rightjoin tablehandle1 tablehandle2 ?column1? ?column2? ?cmpflags?
t.righjoin(table2=,?column1=?,?column2=?,?comparisonflags=?)

Perform a relational right join on two tables and return the handle or reference of a newly created
join table. The command arguments and result value are explained in the table innerjoin
command.

The difference between a standard inner join and a right join is that rows from the second input table
which do not match any values of the join column in the first table are still output, with all column
data originating from the first table set to NULL values.

table rownamedictloop
table rownamedictloop tablehandle rowvariable ?rowobjectsvariable? ?maxrows?

?offset? body
t.rownamedictloop(function=,?maxrows=?,?offset=?,?rowvariable=?,

?objectsvariable=?)

This command is a variant of the table loop command. It stores the row data as a dictionary in the
loop variable, with the column names as keys. In addition, the dictionary key rowname holds the
name of the current table row. The value of the iterator style table attribute is ignored.

Please refer to the table loop command description for more information.

table rownamelistloop
table rownamelistloop tablehandle rowvariable ?rowobjectsvariable? ?maxrows?

?offset? body
t.rownamelistloop(function=,?maxrows=?,?offset=?,?rowvariable=?,

?objectsvariable=?)

This command is a variant of the table loop command. It stores the row data as a simple list in
the loop variable. The first list element is the name of the current row. The value of the iterator style
table attribute is ignored.

Please refer to the table loop command description for more information.

For the sake of compatibility with the PYTHON interface syntax, the command may also be invoked
as table rownametupleloop.

table scan
table scan tablehandle/queryhandle expression ?mode? ?parameterdict?
t.scan(query=,?mode=?,?parameters=?)

This command is a variation of the dataset scan or molfile scan commands. The query
expression is matched, in row order, on all ensemble or reaction objects associated with the table
rows, i.e. the same objects as reported by the table ens and table reactions commands. An
attempt is made to automatically instantiate these objects if a row currently has no association, but
a structure source column has been configured via the structuresource or reactionsource attribute.
Rows which do not possess a structure or reaction reference even after this attempts are skipped and
can never return a match.
664 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The default retrieval mode for this scan command variant is rowlist, which is an alias of the indexlist
mode of dataset scans. In this mode, matching row indices are returned as a list. If an ensemble or
reaction is associated with multiple rows, it is tested repeatedly for every row it is associated with.

For further information on the operation of this command and the use of the various arguments, refer
to the paragraph on dataset scan.

The optional parameter dictionary is the same as for molfile scan, but not all parameters are
actually used. At this time, only the matchcallback, maxhits, maxscan, order, progresscallback,
progresscallbackfrequency, sscheckcallback, startposition and target parameters have an effect. In
case a progress callback function is used, the table handle is passed as argument in place of the
molfile handle in molfile scan.

This command does not operate on table cell data, but exclusively on the associated structures,
reactions, and their present or computable data. For queries on table cell data, use the table find
command. However, the delete query mode of this command does indeed remove matching table
rows, not delete the associated objects.

table select
table select tablehandle column|all operator value ?mode? ?retrievalcolumn?
t.select(column=,operator=,value=,?mode=?,?retrievalcolumn=?)

Perform a scan over the table and mark all rows which match a value. This command processes
multiple matches. For a simple version of the command which stops after the first match, see table
find.

The default mode is new, which resets all current select flags on the rows before running the
command. The alternative modes are or, which just sets additional flags, and, which resets the
selection flag for rows which are currently selected but not pass the new expression, and eor or xor,
which invert the selection flag on all rows which are matched.

The column argument is either the name or index of an existing table column, or the magic word all,
which runs the scan on all columns. There is currently no support for scans which use more than one,
but not all columns. The special column name #name to test the row names is also supported.

For single-column scans, the value argument needs to be a string which can be decoded as the data
type of the scanned column. For all scans, the argument is parsed separately for each column. Only
columns where the data successfully decodes according to their data type are searched. Other
columns where the value argument cannot be parsed are silently skipped.

The operator argument is a standard arithmetic operator, optionally modified by either
single-character modifier flags, or specified as a list with the symbolic names of these modifier
flags. The syntax of this argument is compatible to that of property query leaf expressions of the
molfile scan command. The operators in and notin are also supported. In that case, the value
argument must be a valid list. The list is split, and each element parsed and matched separately. For
the in operator, rows where any of the multiple elements match with an equality comparison are
selected. For a notin match, none of the elements must match in an equality comparison.

Examples:
table select $thandle E_NAME *= “*chloro*”
table select $thandle E_NAME {= shell} “*chloro*”
table select $thandle E_WEIGHT <= 200
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 665

CACTVS Tcl and Python Scripting Language Reference
table select $thandle SID in [ens get $eh E_SIDSET]

The first two sample statements are equivalent and both perform a shell-syntax string match on the
column E_NAME, matching any data which contains the substring chloro. The third example performs
a simple numeric comparison, and the last example tests whether the SID column data value is one
of a list of alternatives.

The result is by default a list of the row indices of all selected rows after the operation. In addition,
the selection attribute on matched rows is set and can be queried by attribute retrieval commands.
If the name of a retrieval column is set, the return value is a list of the cell data of matching rows of
that column. The special column name #name for access to row names is also supported. The
manipulation of the row selection flag is not changed if this retrieval type is used instead of the
default index retrieval.

This command has limited power in the types of comparison operations it supports. For a more
extensive search capability please refer to the table sqlselect command. However, in many
cases this simpler command is much faster than the SQL version, especially if it operates on columns
with indices and uses a search operator which can make use of the index information.

This command does not support data access via linked ensembles or reactions. It can only test cell
data directly stored in the table.

table set
table set tablehandle ?property/attribute value?...
table set tablehandle ?dictionary?
t.set(property/attribute,value,...)
t.set({property/attribute:value,...})
t.property/attribute = value
t[property/attribute] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Examples:
table set $thandle T_COMMENT “This data, if leaked in an appropriate fashion, will
lead to the waste of years of research by our competitors”

The command can also be used to set a rich set of table attributes. The list of attributes is documented
in the section on the table get command.

Example:
table set $thandle bgcolor “grey80” imagedirectory “/www/images” imageurl “.”

table setcell
table setcell tablehandle row column ?attribute value?...
table setcell tablehandle row column value
t.setcell(row,column,?attribute,value?,...)
t.setcell(row,column,value)
t.setcell(row,column,{attribute:value,...})
t.setcell(row,column,(attribute,value,...))

Set the cell data value, or a cell attribute. The second form is a shortcut for setting the cell data value
and equivalent to using an explicit value attribute name. In the PYTHON variant, the attribute set can
also be specified as a dictionary.
666 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The following cell-level attributes are supported:

• bgcolor
The background cell color, for output in formats which support this.

• class
The class attribute of <td> tags when writing html output.

• comment
A free-form text comment.

• fgcolor
The foreground cell color, for output in formats which support this

• font
The name of a font to use in rendering. This overrides fonts set on the cell column or
top-level table object.

• fontsize
The size of the font to use in rendering. This overrides font sizes set on the cell column or
top-level table object.

• format
Cell-level data format flags. This is the same set as for the global table attribute of the same
name, which is explained in the section describing the table get command.

• image
A TK image handle if the table object is linked to a TK table widget.

• linktext
A text overlaying a link to use when formatting URLs in formats like HTML. An empty string
results in the link value to be printed verbatim.

• note
A cell note, which can be a block of arbitrary bytes, not just a string. In output formats such
as MS EXCEL this is displayed as a tool tip.

• object
A per-cell chemistry object. Currently, these must be ensembles or reactions (specified by
their handles), or an empty string in order to remove an existing cell object. A cell object
has precedence when computing cell data over a row object, if one is simultaneously
present. An ensemble or reaction cell object cannot be deleted by ens/reaction delete
commands. It is deleted by another table setcell command, or when the row, column or
complete table is destroyed. Cell objects are stored in retrieved in the native CACTVS table
format, even in output modes where row objects are not. Other table file formats do not
preserve these. Setting a cell object duplicates the source object, just like setting an
ensemble or reaction property value.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 667

CACTVS Tcl and Python Scripting Language Reference
• objectref
This is the same operation as the object command, except that the cell object is not copied.
At the time the command is executed, the new cell object must be deletable (i.e. not a
property value, and not a cell object anywhere else). After it has been set, is is managed by
the table and cannot be deleted by normal means. When the table cell is deleted, or another
cell object is set, this object is destroyed.

• shape
Set a KNIME-compatible graph rendering shape for the cell. Valid shape names are default,
rectangle, circle, triangle, revtriangle, diamond, asterisk, cross, xshape, hline and vline.

• shapesize
Set a KNIME-compatible graph rendering shape size multiplier for the cell. This is a
floating-point attribute, and 1.0 is the default.

• tag
The cell tag in a linked TK table widget.

• value
The cell data value. It must be encoded in a format which can be decoded as the data type
specified in the column definition.

• window
The name of a TK window displaying cell contents.

The attributes image, tag and window are only useful for developers who want to display a CACTVS
table in a GUI tool developed with the TK toolkit and its table widget.

The command returns the original table handle or reference.

table setcolumn
table setcolumn tablehandle column ?attribute value?...
t.setcolumn(column,?attribute,value?,...)
t.setcolumn(column,{attribute:value})
t.setcolumn(column,(attribute,value,...))

Set column attributes. The following column-level attributes can be set:

• alias
An alias name for the column which can be used to identify it in addition to its numerical
index or primary column name.

• bgcolor
The background column color, for output in formats which support this.

• bgcolorfunction
An SQL-style function to compute the background color. If this is set, it has precedence over
direct color specification via the bgcolor attribute, but has lower precedence that a
background color specified directly on a cell.
668 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• celldata
Set the cell values of the column starting with the first row. The attribute argument is
expected to be a list, which is split into per-cell values. If there are fewer list elements than
rows, the remaining rows of the current column are not touched. If there are more list
elements than rows, additional rows are added, which have NULL values in all columns
except the current one. data, value or cellvalue are alias names for this attribute. To set all
cells of the column to the same value, use the coldata attribute.

• class
The class attribute of table cells in HTML output, if not overridden by an explicit table cell
class.

• coldata
Set the cell values of the column to a common value. Use the celldata attribute to set column
cells to different values via a value list. colvalue is an alias attribute name.

• comment
A free-form text comment.

• dataformat
A formatting string which is used in text-oriented formats (i.e. HTML, EXCEL) to reformat the
data cell value on file output. Every instance of ‘%s’ in the formatting string is replaced by
the cell value string, and that result be written to the file. The original cell content remains
unchanged. With an empty formatting string (the default) the normal raw data formatting is
used.

• datatype
The column data type, which can be any data type a property definition can use. If there are
already rows in the table when the command is executed, an attempt is made to cast the
column values from their original data type to the new one. If this does not succeed, failing
cells are set to NULL values. If the column is associated with a property, and the new data type
is not storage-compatible with the native property datatype, the column connection with the
property is lost.

• dbdefault
This attribute is only used in SQL output. If it is not empty, its value is used to specify a
column default value as per the SQL standard in the written table definition. The value is
used verbatim in output, so depending on the column type, it may have to be properly quoted
in SQL fashion.

The special value auto or #auto can only be used when there are already data rows in the
table. With this command argument, and if the current data type is string, and the columns
are not associated with a property and its native data type, the string contents of the data cells
are analyzed across all rows, an optimally matching numerical data type (boolean, color,
integer, double, date, uint64, intvector, doublevector) is determined and the column data
type as well as the cell data contents are updated. This variant is usually used after reading
some table data from a file in a format without explicit column data type information. For
these inputs, the data is initially stored as string columns in the table object.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 669

CACTVS Tcl and Python Scripting Language Reference
• dbflags
This attribute encodes a set of hint flags for setting up SQL database columns for storing data
of this table column. It format is the same of the dbflags attribute of property definitions (see
prop set command). This column flag overrides the corresponding flag of a property linked
to the column.

• dbforeignkey
This attribute is only used in SQL output. If it is not empty, its value is used to specify a
foreign key relationship as per the SQL standard in the written table definition. The format
is foreigntable(foreigncolumn). The value is used verbatim in output, so if the foreign table
or column contains unusual characters or whitespace, they must be properly quoted in SQL
fashion. The allowed syntax of this attribute in the context of more exotic table or column
names is dependent on the target SQL dialect and not checked when the attribute is set.

• dbindex
Specify the type of index to be used on SQL database tables which are derived from this
CACTVS table column. Possible values are none (the default, no index), generic (simple index
with support for multiple identical values) and unique (primary index with no duplicate
column data values).

• description
A free-form textual description of the column.

• displaywidth
A field output formatting width, usually defined in characters. This attribute is different
from the fieldlength attribute, which defines an inherent data size. If the width is negative,
the attribute is considered unset.

• editable
A boolean flag indicating whether this column is editable or not. The default is editable.

• fgcolor
The foreground column color, for output in formats which support this.

• fgcolorfunction
A SQL-style function to compute the foreground color. If this is set, it has precedence over
direct color specification via the fgcolor attribute, but has lower precedence that a
foreground color specified directly on a cell.

• fieldlength
The inherent field length, in characters or significant digits. This is attribute is different from
the displaywidth attribute, which is only used for output formatting. A negative value
defines the attribute as unset.

• flattening
A boolean flag indicating if the column data should automatically be temporarily flattened
(see table flatten command) on output.

• font
The column-level output font name, or an empty string if it is not set.

• fontsize
The column-level font size in points. If not set, zero is reported.
670 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• format
Column-level data format flags. This is the same set as for the global table attribute of the
same name, which is explained in the section describing the table get command.

• function
A SQL-style generator expression for the data in the column cells. This attribute has an effect
only if the column type if type function. Cell data values are automatically recomputed when
the function definition changes, or any of the data in the column the function references.

• headerbgcolor
The background color of column headers. If not set, use an empty string.

• headerdata
A data value for the column header data field. When set, it must be decodable by the input
function for the column header data type. Note that this is data for the independent header
data field, not for the main column cells.

• headerfgcolor
The foreground color of column headers. If not set, use an empty string.

• headerfont
The font to use for column headers, or an empty string if not set.

• headerfontsize
The size of the font for column headers. If not set, zero is reported.

• headerformat
Column header data format flags. This is the same set as for the global table attribute format,
which is explained in the section describing the table get command.

• headerproperty
The name of a property to associate the header data field with. If it is changed, existing
column header data is discarded. Note that this is property which is independent of the main
column cell property (attribute property).

• imageparameters
A keyword/value parameter set to be used for the computation of images. This attribute has
an effect only on columns of type image. Any parameter defined here overrides the
parameter of the same name in the global parameter settings on the image property (i.e.
E_GIF, E_EMF_IMAGE, etc.). The parameter override is only temporary while the image data
is computed. The global parameter set is not changed permanently.

• imageborder
An integer image border value to be used when images are embedded in some output
formats. For example, in HTML output this is used for the border attribute in the tag.

• indexed
A boolean flag indicating whether the data of the table column is currently indexed or not.
Index creation or re-creation can be forced by setting it to true, and the index can be torn
down by setting it to false. Note that this is not the same as the database index attribute
dbindex. This index is an in-memory index on the column data which is used to accelerate
simple look-ups via the table find command group. The read-only attribute index (see
table getcol) is again not the attribute as this one.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 671

CACTVS Tcl and Python Scripting Language Reference
• isname
A boolean flag indicating that the column data contains names of persons. If set, table sort
and comparison functions use a special string comparison algorithm to deal with titles and
other personal name prefixes properly. This flag is ignored for columns which do not hold
string data.

• linktext
A text overlaying a link to use when formatting URLs in formats like HTML. An empty string
results in the link value to be printed verbatim.

• mimetype
An indication of the format of data held in blob or disk files. If the table column is linked
to a property, the value of the property is copied when the column is created. This attribute
is used for example when mapping blob columns to different KNIME image column types.

• name
The primary name of the column. Columns should avoid duplicate names, though this is not
illegal. In case multiple identical column names are desired, a suitable set of unique and
different alias names should be configured, and columns only be identified by these alias
names.

• note
An arbitrary sequence of bytes attached as a column-level note.

• precision
The precision of numerical column data values, in significant digits. This attribute overrides
any precision defined for properties linked to the column. Negative precisions (presumably
meaning that the numeric value is only precise to tens, hundreds etc. range) are currently not
supported. Setting this attribute also sets the precision column format flag as a side effect.

• property
The name of the property the column data is associated with. If this attribute is set, it also
automatically defines the column data type, precision and unit by copying those values from
the property definition record. If the property is changed, any current data values on this
column are deleted. If the table rows are still associated with chemical objects, an attempt
is made to re-fill the column data cells.

It is possible to define table columns which only refer to a specific field of a property. In that
case, the name of the property is specified with standard field access syntax:
table setcol $thandle $col property E_IRSPECTRUM(source)

• reactionproperty
A boolean flag indicating that the data in this table column is a reaction identifier, but not a
direct structure encoding like a REACTION SMILES string or an RXN blob. This information can
be used to restore structure information for tables where the rows have no references to
external ensemble objects.

• reactionsource
A boolean flag indicating that the data in this table column is a string-based reaction
encoding in a format which could, for example, be decoded with a reaction create
command. This information can be used to restore reaction information for tables where the
rows have no references to external reaction objects.
672 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• resetcellformat
This is a pseudo attribute which can only be set. It takes a boolean argument. If it is true, all
cell-level cell formats, which override the column/row/table-level formatting, are reset for
this column.

• shape
Set a KNIME-compatible graph rendering shape for the column. Valid shape names are
default, rectangle, circle, triangle, revtriangle, diamond, asterisk, cross, xshape, hline and
vline.

• shapesize
Set a KNIME-compatible graph-rendering shape size multiplier for the column. This is a
floating-point attribute, and 1.0 is the default.

• structureproperty
A boolean flag indicating that the data in this table column is a structure identifier, but not
a direct structure encoding like a SMILES string or an SD blob. This information can be used
to restore structure information for tables where the rows have no references to external
ensemble objects.

• structuresource
A boolean flag indicating that the data in this table column is a string-based structure
encoding in a format which could, for example, be decoded with an ens create command.
This information can be used to restore structure information for tables where the rows have
no references to external ensemble objects.

• transform
A transformation function for numerical table data values. The currently supported types are
linear (the default), inv (negated), abs (use absolute value), log or ln (natural logarithm),
log10 (decadic logarithm), log2 (logarithm base 2), -log (negative natural logarithm), -log10
or p (negative decadic logarithm), -log2 (negative logarithm base 2), percent (multiplied by
100) and score (divided by 100). This attribute is for documentation only. The column data
values are not updated by changing this attribute.

• type
The table column type. Possible values are none, data (data defined via a property or at least
a data type), image (an image of the structure or reaction associated with a data row, with
the image property automatically chosen to be suitable for a specific output format) and
function for data columns which are dynamically computed and updated from the contents
of other columns by means of SQL-style expressions (see function attribute). If the column
type is changed, any previous cell data for that column is deleted. If the table rows are still
associated with chemical objects, and attempt is made to re-fill the column cells.

• unit
A free-form string describing the unit of the data.

• urn
A URN associated with the column.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 673

CACTVS Tcl and Python Scripting Language Reference
• vectorsize
If the data type of the column is a vector type, set the size of the individual cell data vectors
in the column to a specified common size. If vectors get enlarged beyond their original size,
they add 0 or NULL element values. If the size is smaller than that of an existing vector, it is
truncated. If the column data type is not a vector, the command is ignored.

The command returns the original table handle or reference.

table setcol and table colset are command aliases.

table setparam
table setparam tablehandle property ?keyword value?...
table setparam tablehandle property dictionary
t.setparam(property,?key,value?...)
t.setparam(property,dict)

Set parameter values in the metadata section of existing property data attached to the table. This
command does not change the parameters for computations in the property definition (see prop
setparam command for this function). It only stores its data in the parameter set which was copied
into the metadata when the property was computed for the table.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

table setrow
table setrow tablehandle rowrange ?attribute value?...
t.setrow(rowrange,?attribute,value?,...)
t.setrow(rowrange,{attribute:value,...})
t.setrow(rowrange,(attribute,value,...))

Set row attributes for one or more table rows. The following row-level attributes can be set:

• alias
An alias name for the row which can be used to identify it in addition to its numerical index
or primary row name.

• anchor
A string as navigation aid pointing to this row. This attribute is only used in HTML output,
where it is output as a tag.

• bgcolor
The background row color, for output in formats which support this.

• class
The class attribute of the <tr> tag. Only used in html output.

• data
A list of the cell values for the row. The length of the list must be the same as the number
of table columns. If more than one row is selected, the same values are entered for all these
rows. values is an alias for this attribute.

• editable
A boolean flag indicating whether this row is editable or not. The default is editable.
674 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• ens
Associate an ensemble with the table row. If this ensemble is not the same as the one
currently associated, the old row data is invalidated, and an attempt is made to re-fill the row
with data from the new ensemble. If the argument is an empty string, the row is explicitly
set to be not associated with an ensemble. On retrieval, if no explicit or null ensemble
association is set, but a column of the table is marked as structure source (see table setcol
command), an attempt is made to create the ensemble from the data in the columns marked
with this flag. These are scanned from left to right. If the data conversion from any of those
succeeds, the new ensemble is automatically and permanently associated with the row, and
the scan is stopped. An automatically created ensemble exists independently of the table in
the normal chemical objects set, and must be explicitly deleted when no longer needed.
structure is an alias for this attribute.

• fgcolor
The foreground row color, for output in formats which support this.

• font
The row-level output font name, or an empty string if it is not set.

• fontsize
The row-level font size in points. Setting is to zero disables the attribute for this row.

• format
Row-level data format flags. This is the same set as for the global table attribute of the same
name, which is explained in the section describing the table get command.

• height
An integer attribute to set the row height in various output formats, for example EXCEL or
HTML. The unit depends on the output formats - usually these are pixels.

• label
Associate the row with a minor object label. This makes only sense if the table row is also
associated with an ensemble, and holds minor object data, such as atom or bond properties.
If the value is set to minus one, the label is undefined.

• linktext
A text overlaying a link to use when formatting URLs in formats like HTML. An empty string
results in the link value to be printed verbatim.

• name
Set the name of the row as arbitrarily formatted string. By default, and if row names were
not read from file, rows do not have names and are addressed by their numerical indices. If
an empty string is passed, this is interpreted as no name. It is not illegal to have multiple
rows with the same name, but in that case care should be taken to identify them by their row
index, or a suitably set unique alias.

• note
An arbitrary sequence of bytes attached as a row-level note.

• reaction
Associate a reaction with the table row. If this reaction is not the same as the one currently
associated, the old row data is invalidated, and an attempt is made to re-fill the row with data
from the new reaction. If the argument is an empty string, the row is explicitly set to be not
associated with a reaction. On retrieval, if no explicit reaction or null association is set, but
a column of the table is marked as reaction source (see table setcol command), an attempt
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 675

CACTVS Tcl and Python Scripting Language Reference
is made to create the reaction from the data in the columns marked with this flag. These are
scanned from left to right. If the data conversion from any of those succeeds, the new
reaction is automatically and permanently associated with the row, and the scan is stopped.
An automatically created reaction exists independently of the table in the normal chemical
objects set, and must be explicitly deleted when no longer needed.

• shape
Set a KNIME-compatible graph rendering shape for the row. Valid shape names are default,
rectangle, circle, triangle, revtriangle, diamond, asterisk, cross, xshape, hline and vline.

• shapesize
Set a KNIME-compatible graph rendering shape size multiplier for the row. This is a
floating-point attribute, and 1.0 is the default.

• selected
Mark the rows as selected or deselected, depending on the value argument.

The command returns the original table handle or reference.

table rowset is an alias.

table show
table show tablehandle propertylist ?filterset? ?parameterdict?
t.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The difference between table get and table show
is that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, table get and table show are equivalent.

table sort
table sort tablehandle ?{column ?direction ?cmpflags ?cmpvalue???}?...
t.sort(?(column,?direction,?cmpflags,?cmpvalue)????,...)

Sort the rows of a table according to the cell values in one or more columns. Every sort criterion
argument after the table handle argument is a list or tuple of between one and four elements. In the
simplest case, it is just the name of a single column. Additionally, a sort direction (up or down, the
default is up) can be specified, plus comparison flags. The comparison flags argument supports the
same set of flags as in the prop compare command and is explained there in detail.

If a comparison value is supplied as fourth argument, the sort utilizes the comparison results of cell
values against this value for ranking, not the direct comparison result between the cell values. This
is for example useful when sorting according to a bitvector similarity value to an external structure.

Sort columns to the left in the column specification list have precedence over those on the right. The
special column name #name or #rowname can be used to sort on the row names, #row (or #record)
to sort on the row number, and #random to sort on a random value assigned to every row, effectively
duplicating the table randomize command. The row number criterion is also always added
implicitly as an additional rightmost sort column to yield a stable sort. If an unstable sort is required,
add a final explicit #random sort column, which has precedence over the implicit row number sort.
676 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The command returns the original table handle or reference.

table split
table split tablehandle row
t.split(row)

Split a table into two. The original table retains all data rows up to, but not including, the split row.
A new table with the same basic attributes, properties and column layout is created and gets the rest
of the original data.

The command returns the handle or reference of the new table.

table splitcolumn
table splitcolumn tablehandle column ?separators? ?separatormerge?
t.splicolumn(column=,?separators=?,?separatormerge=?)

Split a table column into multiple result columns. This also changes the table column data type to
string, which can have indirect consequences (see table setcol .. datatype).

The default split characters are whitespace. If the separator argument is set, every character in the
separator string is an equivalent split character. It is also possible to set the separator to an empty
string, which performs splits of cell data into individual characters. By default, every encountered
separator character defines a new split position. The the merge flag is set to true, every sequence of
separator characters is a split position instead. For example, a series multiple white spaces in the
input then defines only a single word split, not multiple splits producing some empty result words.

The original split column retains the first result word after the split. Additional columns are inserted
to the right of the source column, with the cell which contains the largest number of words defining
the total number of columns added. NULL cells are not split, and result cells in added columns for
which no split word was found because there are less words in the source cell than in the cells with
the largest number of words, or the source cell is NULL, are also set to NULL.

The return value is the number of columns added, which is one less than the largest number of words
found in a cell, if there were any non-NULL cells.

table splitcol and table colsplit are command aliases.

table sqldget
table sqldget tablehandle propertylist ?filterset? ?parameterdict?
t.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The differences between table get and table
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

table sqlfind
table sqlfind tablehandle query ?maxrows? ?offset? ?mode?
t.sqlfind(query=,?nmax=?,?offset=?,?mode=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 677

CACTVS Tcl and Python Scripting Language Reference
This command is very similar to the table sqlselect command, except that the query execution
stops after the first matched row.

The result is the index of the matched row, or minus one in case no row matches.

table sqlget
table sqlget tablehandle propertylist ?filterset? ?parameterdict?
t.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The difference between table get and table
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or
PYTHON script processing.

table sqlnew
table sqlnew tablehandle propertylist ?filterset? ?parameterdict?
t.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The differences between table get and table
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

table sqlselect
table sqlselect tablehandle query ?maxrows? ?offset? ?mode?
t.sqlselect(query,?nmax=?,?offset=?,?mode=?)

Perform a SQL-style select operation on the table and set the selected row flags depending on
whether the row was selected by the query. This command yields multiple matches. For a simple
version of the command which stops after the first match, see table sqlfind.

The default mode is new, which resets all current select flags on the rows before running the
command. The alternative modes are or, which just sets additional flags, and, which resets the
selection flag for rows which are currently selected but not pass the new expression, and eor or xor,
which invert the selection flag on all rows which are matched.

By default the number of selected rows is unlimited. This can be explicitly requested by setting the
first optional parameter to a negative value. Any positive value stops the execution of the command
after the specified number of matched rows have been processed. The second optional parameter is
the index of the first row where processing starts. The default is zero, meaning that the table scan is
started at the top.

The expression argument is an SQL expression which checks cell values. The syntax of this
expression is that of the where clause of an SQL statement. The syntax is compatible to the SQL
dialect used in the MYSQL database. Almost all SQL functions that database provides in the 4.1
release can be used here, including aggregate functions and function columns which are
dynamically computed. However, only columns in the local table can be used. Cross-referencing to
other tables is not supported.
678 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
table sqlselect $thandle “E_WEIGHT>avg(E_WEIGHT) and E_NROTBONDS<5”

where E_WEIGHT and E_NROTBONDS are either the names of existing table columns, or the table has
retained active row references to ensembles. In case a reference is used, the data is obtained
indirectly by reading existing property data from the linked ensemble, or even by computing it on
the fly. This type of ensemble- or reaction-linked computation is only possible for column names
which can be identified as properties. Existing table columns which are used in the expression can
be property columns, function columns, or simple data columns. The use of existing columns has
precedence over references, even if the cell data is, for example, NULL and not identical to what
would be obtained from the structure object.

Ensemble or reaction references in rows are conveniently introduced by using table addens or
table addreaction commands to fill the rows. They are silently lost if the ensembles or reactions
which provided the data are deleted from memory. It is possible to save tables in the native CACTVS
format with all reference objects, so that they could be restored from a file, but this is not the default.
Normally, tables lose object references when written to file and re-read.

The result is a list of the row indices of all selected rows after the operation.

This command is very powerful, but can be overkill in many circumstances. For a simpler, and in
many cases faster, alternative refer to the table select command.

table sqlshow
table sqlshow tablehandle propertylist ?filterset? ?parameterlist?
t.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the table get command. The differences between table get and table
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

table string
table string tablehandle ?format? ?parameter value?...
table string tablehandle ?format? ?dictionary?
t.string(?format?,?parameter,value?,...)
t.string(?format?,?dict?)

Encode the contents of the table as a blob image of an file of the specified format. Except that the
output goes to a blob instead of a file, this command is the same as table write.

The result value is a byte vector, not a string, so this command can be used with binary table formats.

table subcommands
table subcommands
dir(Table)

Lists all subcommands of the table command. Note that this command does not require a table
handle.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 679

CACTVS Tcl and Python Scripting Language Reference
table transfer
table transfer tablehandle propertylist ?targethandle? ?targetpropertylist?
t.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one table to another table or other major object, without going through an
intermediate scripting language object representation, or dissociate property data from the table. If
a property in the argument property list is not already valid on the source table, an attempt is made
to compute it.

If a target object is specified, the return value is the handle or reference of the target table. The source
table and the target object cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple table get, i.e. the result is the property data value or value
list. The property data is then deleted from the source object. In case the data type of the deleted
property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only unlinked
from the source object, but not destroyed. This means that the object handles or references returned
by the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

table transfercolumn
table transfercolum tablehandle srcolumn dstcolumn ?target?
t.transfercolumn(srccolumn=,dstcolumn=,?target=?)

Transfer column data to another data column, or auxiliary cell data field. The data transfer operation
attempts casting of the source value to the datatype of the destination - either the column datatype,
or a string for the auxiliary cell values. If a cast fails, the cell data is a NULL value without an error
message. The original data remains unchanged. The source and destination column may be
identical, and this can be useful if the target is not the cell value. When casting to a string for the
auxiliary cell fields, the string is formatted according to the format set on the table, column, row and
cell level.

The transfer target can either be data (the column data, which is the default), comment (cell
comment) or linktext (the text output instead of the actual underlying link destination when writing
table files which support links, such as HTML, MS WORD or PDF.

The return value is the table handle or reference.

table trim
table trim tablehandle ?positions?
t.trim(?positions=?)

Remove leading or trailing table rows or columns where all cells have NULL values. If no position
argument is specified, both rows and columns are processed. This is equivalent to the positions
680 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
argument all. Alternatively, location values columns (only columns are processed), rows (only rows
are processed), or a list of left (leading columns), right (trailing columns), top (leading rows) and
bottom (trailing rows) are recognized.

This command only processed leading or trailing rows or columns. Empty rows or columns which
are embedded in the middle of the table are not removed.

This command is useful for quickly cleaning up tables with spurious extra empty rows or columns,
as they are often found in Excel spread sheets and similar sources.

The command returns the original table handle or reference.

table unlock
table unlock tablehandle propertylist/table/all
t.unlock(property=)

Unlock property data for the table, meaning that they are again under the control of the standard data
consistency manager.

The property data to unlock can be selected by providing a list of the following identifiers:

• Property names
Valid property instances on the table are unlocked. Non-existent data is silently ignored. It
is not possible to unlock individual property fields.

• all
All valid table properties are unlocked.

• table
This is an object class identifier. All property data which is controlled by the table major
object and attached to the specified object class is unlocked. Since tables currently do not
have minor objects, this command does the same as the all variant.

Property data locks are obtained by the table lock command.

The return value is the original table handle or reference.

table unpack
table unpack datastring ?compressionlib?
Table.Unpack(data=,?compressionlib=?)

Unpack a base64-encoded serialized object string which was created by a table pack command.
The return value of this function is the handle or reference of the newly created table object, which
is an exact duplicate of the packed original table.

Packed tables may also be unpacked by the table create command.

The default compression library is zlib. For more options, see table pack.

table valid
table valid tablehandle propertylist
t.valid(property/propertysequence)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 681

CACTVS Tcl and Python Scripting Language Reference
Returns a list of boolean values indicating whether values for the named properties are currently set
for the table. No attempt at computation is made.

Example:
table valid $thandle T_COMMENT

reports whether the table has a comment property attached or not.

table has is an alias to this command.

table varexport
table varexport tablehandle ?varname? ?reset?
t.varexpor(?variable=?,?reset=?)

Export the table contents into a global TCL array or PYTHON dictionary variable in the current
thread-local main interpreter. If the boolean reset flag is given as true, any previous variable contents
are erased. If the variable name is not specified, the variable name set via the variable table attribute
(see table get command) is used. If the variable name is unset or an empty string, the command
does nothing. The variable table attribute is updated if a variable name is supplied.

The rows and columns of the table are translated into a comma-separated numerical index in the
array variable, i.e. the cell at the first row and column in the table has the array index or dictionary
key “0,0”. The addressing is scheme is row-first.

Within the TCL interface, this command establishes a variable trace link between the variable and the
table. Any data updates in either the table or the TCL variable is automatically reflected in the other
object.

The command returns the original table handle or reference.

table varimport
table varimport tablehandle ?varname?
t.varimport(?variable=?)

Import cell data from a global TCL array variable or PYTHON dictionary in the current thread-local
main interpreter. The array variable is expected to use row and column addressing with row-first
numerical, comma-separated indices (see table varexport), and to contain element data which is
compatible with the column data types of the table.

If the variable name is not specified, it is taken from the variable table attribute (see table get
command). If the variable name is not set, or an empty string, the command does nothing. In any
case, the variable table attribute is not changed, and, for TCL, no automatic update link between the
TCL variable and the table is established. Existing table cells for which no array variable element
exists remain unchanged. Array variable elements which do not correspond to existing table cells
are ignored.

Example:
set tvar(0,0) “data_for_row0_col0”
set tvar(0,1) “data_for_row0_col1”
table varimport $thandle tvar

If the tvar variable did not exist before, and the table has at least one row and two columns, and these
cells can accept string data, the first two table cells in row zero are updated.
682 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The use of this command with variables which are linked to the table object (via table varexport
or table set commands) is not required, since data changed a linked variable is automatically
propagated.

The command returns the original table handle or reference.

table verify
table verify tablehandle property
t.verify(property)

Verify the values of the specified property on the table. The property data must be valid, and a table
property. If the data can be found, it is checked against all constraints defined for the property, and,
if such a function has been defined, is tested with the value verification function of the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.

table wait
table wait tablehandle conditionflags
t.wait(conditionflags)

Suspend execution of the current thread until one or more conditions on the table have been met.
While waiting, the mutex lock on the table is released, so that other threads can manipulate it. While
a wait operation is in progress, the table cannot be deleted.

The flags may be a list of one or more of the following flags, plus none or an empty string (and None
for PYTHON) if no flags should be set:

• eod
The end-of-data condition has been reached (see the eod, targeteod and checkeod table
attributes)

• hasrows
The table has one or more rows of data.

• norows
The table contains no (more) rows

• script
A script embedded in an RPC input stream was received. This flag is reset when an RPC
transfer for the table begins, and set when either the script was received, or a status flag that
no script will me sent in the transmission. In the latter case, the importscript attribute of the
table is set to an empty string. Scripts are always transmitted after the table column
definition and other structure information has been sent, but usually before all cell data has
been transmitted.

table write
table write tablehandle ?filename? ?format? ?parameter value?..
table write tablehandle ?filename? ?format? ?dictionary?
t.write(?filename?,?format?,?parameter,value?,...)
t.write(?filename?,?format?,?dict?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 683

CACTVS Tcl and Python Scripting Language Reference
Save the contents of the table to a file. If no filename is specified, or an empty string, #auto or None
for PYTHON, the same filename as that the table was originally read from, or configured via a table
set command, is used. If this name is not set, a name with a standard suffix located in the temporary
directory is generated, but this requires that the format argument is set. Besides a normal file name,
standard output and standard error (stdout, stderr) as well as, except on Windows, an open TCL or
PYTHON file or socket handle may be specified. If the file name begins with a vertical bar, a pipe
channel is opened. If the file name is specified, it is remembered as future default.

If no explicit table file format is specified, an attempt is made to infer the format from the file name
suffix. If necessary, table I/O modules are loaded automatically. If none of these measures are able
to automatically choose an format, the original table format is used if it is defined. If still no table
file format can be identified, an error is reported. Otherwise, the selected file format is remembered
as future default.

The rest of the optional arguments are either keyword/value pairs (an even number of additional
command arguments) or a single dictionary argument with the same possible set of keyword/value
pairs. The following keywords are recognized:

• append
A boolean value of 1 as attribute value instructs the table I/O module to append the data, not
to rewrite the file or database table. This is currently supported only for a few table formats,
such as database table I/O modules which do not delete and recreate the destination table in
this mode.

• compression
Select the compression method of the table file format if it supports different types of
compression. For example, ORC table files can use compression methods none, zlib or
snappy. The allowed compression schemes depend on the format, and most formats do not
use compression, or utilize a fixed method. In these cases, the value is ignored.

• colblocksize
The column block size. specified as an integer of 1 (the default, no column blocking) or
more. Not many table formats support the combination of columns into blocks. This is the
same attribute as can be set or retrieved for the table as a table-level attribute, but if used in
this context, it is not permanently changed. After the command completes, the old value is
restored.

• colnames
A boolean flag indicating whether the column names shall be included in the output or not.
This flag is only honored when the file format allows a choice whether to include these or
not.

• columns
The argument is a column range list. Only the selected columns are output. By default, all
columns are written. The alias cols is also recognized.

• compact
A boolean attribute. If set, the output is formatted in a compact style, if the format supports
distinct compact/compressed and expanded/beautified/human-readable representations.
For most formats, this flag is ignored.
684 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• corsdomain
If specified, and the httpheader attribute is also set to a value larger than zero, the output
HTTP header contains a CORS domain header line (Access-Control-Allow-Origin:). Useful
values for this parameter are either * (for free access), a host name, or a domain name. If this
parameter is not specified, HTTP headers do not contain information, which usually is
equivalent to allowing access for AJAX queries only from the same server as the requesting
page.

• debug
A boolean flag indicating that, if set, debugging information should be printed while writing
the file. This is primarily a developer option.

• downloadfilename
If a HTTP header is configured (see httpheader attribute), a download target file name is
included in the HTTP header if the attribute is not set to an empty string. By default, the value
of this attribute is copied from the persistent downloadfilename table attribute. If it is neither
set there, nor as transient write attribute, no save file name is transmitted.

• embedfileformat
The format of embedded objects in the table. This is equivalent to setting the same attribute
with a table set command. It is explained in the paragraph about the table get
command.

• extsjsstatus
This flag only applies to the extjs table file format. If set, the content is wrapped in an XML
dictionary with keys success set to true, and the table data under key data. This format is
expected by the EXTJS Web toolkit in response to AJAX submissions.

• firstrow
The first row (in zero-based index notation) to output. By default, output starts at row zero.

• flatten
A boolean flag indicating whether the data of columns of complex data types such as vectors
and compound properties should be temporarily expanded into columns of simpler data
types. Please refer to the table flatten command for more details. In any case, this variant
of the flattening operation is transient and the table is restored to the same column set after
the write as it had when the command was started. The default value for this option is
dependent on the selected output format. If output is in a format which does not support
vector data in cells, flattening is performed by default. For output in vector-capable formats,
column flattening is disabled by default.

• formatbits
A collection of additional formatting bits to be applied to the output besides the
format-dependent standard set. This is not a commonly used attribute, and not every format
bit is compatible with every output format. Example:
table write $th1 kinome_export.xlsx xlsx {formatbits unit|rescale}

In this example, the Excel cells in the output do not only contain the cell values, but additionally
(for those columns which are associated with a property, which then also needs to possess a
specified unit) the unit name as a string, and an attempt is made to adjust the Excel cell value
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 685

CACTVS Tcl and Python Scripting Language Reference
to lie between 1 and 1000 with automatic adjustment of the unit within a known unit series, for
example by switching between the unit names pMol, nMol, uMol, mMol and Mol.

• frame
A boolean value indicating whether certain graphical representations of structures or
reactions should be wrapped in a frame or not. Examples are embedded OLE objects in XLSX
and RTF output. By default, a frame is drawn around the structure or reaction rendering in
these formats, ensuring, for example, uniform size and centering of the images in the output
file. This option has only an effect if the rendering is produced implicitly at output time. If
cell data has been explicitly set to, for example, an E_GIF or E_EMF_IMAGE, the presence or
absence of a frame in the drawing is not checked and must have been configured by suitable
property computation parameters when the image was computed. It is also possible to retain
an invisible frame by setting its color to the background color, see framecolor table object
attribute.

• httpheader
Configure whether the table data content output should be prefixed by a HTTP header. This
can be useful when scripting CGI or FCGI applications. The value can be 0 (no HTTP header
prefix, the default), 1 (standard HTTP header prefix, without status code) or 2 (HTTP header
including 200 status code). String values none, default and status are also recognized. Not
all table I/O modules support this feature.

• maxrows
An integer indicating the maximum number of rows to write. A negative value (the default)
indicates that there is no set limit.

• mode
The output mode for the table, interpreted like the standard text file output modes. The value
can be either w or a, and is ignored for most table file formats. The only exception are those
formats which can store more than one table in the file. For these files, the current table may
either be added or replaced in mode a (depending on the sheet name), or a new file is written
with the current table as only data in mode w. The default value of this option is w, and it is
not supported for direct string output (table string command), where the implied value
is always w.

• monochrome
If this boolean value is set, the output of structure and reaction drawings is configured to be
monochrome, i.e. use only black and white rendering colors. This applies only to renderings
which are created at the moment the file is written (e.g. OLE objects or generic image class
columns), but not if, for example, a GIF or EMF image has been set as explicit cell data - these
are not re-computed. Cell property data formatting colors are not modified by this flag. The
values of the framecolor and markcolor table attributes are ignored when the flag is set.

• oleautoupdate
This boolean value only applies to output formats which include Microsoft OLE objects.
Such files can be written in two styles: With the pre-rendered display (a WMF image) and
the silent OLE data backing it, so that it is only updated when the OLE application
supporting the embedded data format is started by a double click, or auto-updating, which
means that the OLE application is automatically started when the document is opened and
686 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
the image is re-rendered immediately. Generally, the pre-rendered images are of inferior
quality than the native Windows re-rendered images, but re-rendering a lot of OLE objects
in a document can take significant time. This option, which is by default off, lets you control
the update style.

• overspill
A boolean flag which can be set to prevent distributing tables onto multiple pages if the
rendering of the table is larger than the configured paper size. This option has an effect only
for output formats which use the concept of a paper as drawing area, such as RTF or CDXML
and generally provide means to manually reformat the table in the native editing program
(e.g. MS WORD for RTF or CHEMDRAW for CDXML, but not PDF).

• pagebreaks
A boolean attribute which influences the placement of page breaks in some output formats,
for example CDXML tables. If set, a new page is started at the end of a column block in
rotated mode. By default, the current page is filled until no additional row or column can be
placed.

• paperorientation
The orientation of the paper for print output, specified as portrait or landscape. The default
is portrait. This is not the same as the rotate attribute, which controls the layout of the table
data, not the dimensions of the output medium. Only output formats which use paper-based
formatting (currently this is jut PDF) use this attribute. The parameter may also be
abbreviated to orientation.

• papersize
The size of the paper, specified as a standard name such as A4 or letter, to be used for
formatting. This attribute is currently only used for PDF output and has no effect for other
formats. This parameter may be abbreviated to simply paper. If this parameter is not set, the
default paper size, which is configurable via the ::cactvs(paper_size) control variable, is
used.

• recodebitvectors
A boolean value indicating whether a bit vector should be recoded on output to an integer
vector with zero bit padding for bits filling up a full integer value instead of writing a true
bitvector. This is only supported on a few output formats, most notably SQL database
formats.

• rotate
A boolean flag which will, if set, virtually rotate the table by 90 degrees counterclockwise
for output, thus swapping rows and columns. This is supported only for a few formats, such
as HTML and EXCEL. The table object in memory does not change by this operation. The
attribute controls the layout of the table output, not the dimensions of the output medium
(see paperorientation parameter).

• rownames
A boolean flag indicating whether the row names shall be included in the output or not. This
flag is only honored when the file format allows a choice whether to include these or not.

• rows
The argument is a row range list. Only the selected rows are output. By default, all rows are
written.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 687

CACTVS Tcl and Python Scripting Language Reference
• sheetname
The name of the sheet the current table is stored in, if the selected output file format supports
this concept. The default sheet name is dependent on the output format.

• structures
A boolean flag indicating whether structures (ensembles and reactions) associated with the
table rows should be included in the file. This option has an effect only for a few formats
where this is supported, for example the native binary CACTVS table format. Only the primary
row object is written - if cell data has been set from other structure objects, their association
is not remembered and they are not included in the output.

table save is a command alias.

table yield
table yield tablehandle ?waitusecs?
t.yield(?waitusecs=?)

This command is primarily useful in multi-threaded application. It temporarily sets the table
undeletable, releases all mutex locks, instructs the thread scheduler to yield the current thread, and
them either immediately or after the specified number of microseconds re-acquires the mutex locks
and restores the original object deletability.

The return value of the command is the original table handle or reference.

A typical application is within a table loop or table poploop command where the processing
of a row by the loop command is faster than the delivery of new table rows by a separate thread.
Using this command can lead to a better distribution of table access time between the loop command
and the data provision thread and an overall speed-up of the computation.
688 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The vertex Command

The vertex command is used to access information about vertices in generic network objects (see
network command). In many respects the behavior of vertex objects in networks is comparable to
that of atoms in ensembles, and the commands for handling vertices are similarly structured.

Pseudo vertex labels first, last and random are special values, which select the first vertex in the
vertex list, the last, or a random vertex.

The command node is an alias for vertex, allowing the use of a more standard nomenclature, but
without the benefit of a matching prefix on the names of vertex properties. The prefix for vertex
properties is V_.

The following vertex commands are supported:

vertex append
vertex append nhandle label ?property value?...
v.append({?property:value,?...})
v.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

vertex children
vertex children nhandle label ?filterset? ?filtermode? ?sphere? ?allowduplicates?
v.children(?filters=?,?mode=?,?sphere=?,?allowduplicates=?)

This is a variant of the vertex neighbors command, with the additionally applied constraint that
all matching vertices must have a value of property V_LEVEL which is exactly higher by one than that
of the originating vertex.

The command parameters are explained in the paragraph on command vertex neighbors.

The vertex parents command can be used to find parents instead of children.

vertex connections
vertex connections vhandle label ?filterset? ?filtermode?
v.connections(?filters=?,?mode=?)

Standard cross-referencing command to obtain the labels or references of the connections the vertex
is participating in. This is explained in more detail in the section about object cross-references.

Example:
vertex connections $nh $v

vertex create
vertex create nhandle ?property value?...
Vertex(nref,?property,value?...)
Vertex(nref,dict)
Vertex.Create(nref,?property,value?...)
Vertex.Create(nref,dict)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 689

CACTVS Tcl and Python Scripting Language Reference
Create a new vertex in the existing network object. The new vertex is created without any
connections or initial data except for its automatically assigned label.

An initial set of vertex properties can be set by the optional property/value arguments.

The commands returns the label or reference of the new vertex.

vertex defined
vertex defined nhandle label property
v.defined(property)

This command checks whether a property is defined for the vertex. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The network valid command is used for this purpose.

vertex delete
vertex delete nhandle ?label?...
vertex delete nhandle all
v.delete()
Vertex.Delete(nref,?label?,...)
Vertex.Delete(vref,...)
Vertex.Delete(nref,“all”)

Delete specific or all vertices and all connections a deleted vertex is participating in.

The command returns the number of deleted vertices.

vertex dget
vertex dget nhandle label propertylist ?filterset? ?parameterdict?
v.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The difference between vertex get and vertex
dget is that the latter does not attempt computation of property data, but rather initializes the
property values to the default and return that default if the data is not yet available. For data already
present, vertex get and vertex dget are equivalent.

vertex exists
vertex exists nhandle label ?filterlist?
v.exists(?filters=?)
Vertex.Exists(nref=,label=,?filters=?)

Check whether this vertex exists. Optionally, a filter list can be supplied to check for the presence
of specific features. The command returns 0 if the vertex does not exist, or fails the filter, and 1 in
case of successful testing.

Example:
vertex exists $nh 99
690 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
vertex filter
vertex filter nhandle label filterlist
v.filter(filters)

Check whether a vertex passes a filter list. The return value is boolean 1 for success and 0 for failure.

Example:
filter create rootnode property V_LEVEL value 0 operator =
vertex filter $nh $v rootnode

vertex get
vertex get nhandle label propertylist ?filterset? ?parameterdict?
v.get(property=,?filters=?,?parameters=?)
v[property]
v.property

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
vertex get $nhandle 1 {V_LABEL V_IDENT}

yields the label and ID data of vertex 1 as a list. If the information is not yet available, an attempt
is made to compute it. If the computation fails, an error results.
vertex get $nhandle 1 C_ONTOLOGY_LINK

gets the ontology link types of all connections the vertex participates in.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the vertex get command are vertex new, vertex dget, vertex nget, vertex
show, vertex sqldget, vertex sqlget, vertex sqlnew and vertex sqlshow.

Further examples:
vertex get $nhandle 1 V_ONTOLOGY_TERM(structurehash)

vertex index
vertex index nhandle label
v.index()

Get the index of the vertex. The index is the position in the vertex list of the network. The first
position is index 0.

Example:
vertex index $nhandle 99

vertex jget
vertex jget nhandle label propertylist ?filterset? ?parameterdict?
v.jget(property=,?filters=?,?parameters=?)

This is a variant of vertex get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 691

CACTVS Tcl and Python Scripting Language Reference
vertex jnew
vertex jnew nhandle label propertylist ?filterset? ?parameterdict?
v.jnew(property=,?filters=?,?parameters=?)

This is a variant of vertex new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

vertex jshow
vertex jshow nhandle label propertylist ?filterset? ?parameterdict?
v.jshow(property=,?filters=?,?parameters=?)

This is a variant of vertex show which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

vertex neighbors
vertex neighbors nhandle label ?filterset? ?filtermode? ?sphere? ?allowduplicates?
v.neighbors(?filters=?,?mode=?,?sphere=?,?allowduplicates=?)

This command (which can also be invoked as subcommand neighbours) is a cross-referencing
command with some extra options and, in some filter modes, slightly different behavior than the
standard object cross-reference subcommands.

In the simplest case, it returns the labels or references of the immediate neighbor vertices. A
neighbor vertex is a vertex which is linked via a connection to the originating vertex. In case the
filter list contains connection filters, the connection leading to the originating vertex must pass the
check, not just any connection of the neighbor vertex.

Example:
filter create onto_isa property C_ONTOLOGY_LINK value is_a operator =
vertex neighbors $nhandle 1 onto_isa

returns a list of neighbor vertex labels which are linked via a connection which encodes an
ontological “is a” definition. Neighbor vertices which participate in such a link with another vertex,
but not the originating vertex, are not returned.

This command supports two special filtermode values in addition to the standard set (exists, count,
exclude, include). The incoming mode only sees links where the originating or previous vertex is the
last vertex in the vertex list of any passed connection. The outgoing mode only sees links where the
originating or previous vertex is the first vertex in the vertex list of any passed connection.

Example:
vertex neighbors $nh $vlabel {} outgoing

only returns the links where the originating vertex is the first vertex in the connection linking the
originating vertex to its neighbor. In applications where the connections are set up in a directional
fashion, or example in networks representing an ontology with “is a” relationships, this mode allows
the traversal of the network in the direction of increasingly generic terms.

By default vertices in the immediate neighborhood are examined, but this change be changed by the
sphere parameter. The immediate neighbors are in sphere 1 (the default for this parameter), the next
group of vertices is in sphere 2, and so on. If the sphere is not 1, the special filtering of connections
is no longer active and the normal object substitution mechanism for cross referencing is used. When
going beyond the first sphere, it is also possible that a vertex may be reached by multiple paths of
692 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
the selected length. By default, these vertices are returned only once, but with the last optional
parameter this behavior may be changed.

A positive sphere value only selects vertices in that sphere. A negative sphere parameter value
returns a list of all neighbors up to and including the sphere identified by the absolute parameter
value.

Example:
vertex neighbors $nh $vlabel {} outgoing -5

Above example reports the labels of all vertices of to a distance of 5 steps from the starting point
which can be reached via outgoing directional connections.

vertex network
v.network()

PYTHON-only method to get the network reference from a vertex reference.

vertex new
vertex new nhandle label propertylist ?filterset? ?parameterdict?
v.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The difference between vertex get and vertex new
is that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

vertex nget
vertex nget nhandle label propertylist ?filterset? ?parameterdict?
v.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The difference between vertex get and vertex
nget is that the latter always returns numeric data, even if symbolic names for the values are
available.

vertex parents
vertex parents nhandle label ?filterset? ?filtermode? ?sphere? ?allowduplicates?
v.parents(?filters=?,?mode=?,?sphere=?,?allowduplicates=?)

This is a variant of the vertex neighbors command, with the additional automatically applied
constraint that all matching vertices must have a value of property V_LEVEL which is exactly one less
than that of the originating vertex.

While it would often be expected that there is only a single parent to a vertex, this is not a condition
enforced in a generic network, and potentially multiple parents can be found and reported by this
command. In any case, the command alias vertex parent in singular is also recognized.

The command parameters are explained in the paragraph on command vertex neighbors.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 693

CACTVS Tcl and Python Scripting Language Reference
The vertex children command can be used to find children instead of parents.

vertex paths
vertex paths nhandle label targetlabel ?parameterdict?
v.paths(target=,?parameters=?)

This command finds paths between a pair of vertices, traversing connections.

The return value of the command is a nested list, even it only a single path is found. Every sublist
contains all the labels (if this is not overridden in the parameter dictionary) of the vertices in one
path, including those of the start and end vertices. Every connection is used only once in any path,
and no path crossings through a vertex are allowed. Every vertex, with the possible exception of path
end points, appear only once in any single path. Paths from a vertex via some connections back to
itself are allowed. The vertex must be a member of a cyclic connection for such paths to exist.

If the destination vertex is specified as an empty string, all possible paths emerging from the source
vertex and not violating any other specified constraints are returned. This includes shorter sub-paths
which are contained in a longer paths - these are reported as separate result items.

The optional parameter dictionary can be used to further customize the path walking and result
reporting. The following dictionary keywords are recognized:

• filters
A filter set specification to limit the set of vertices and/or connections which can be a part
of the path. The default filter set is empty and all vertices and connections can be used in
the path.

• flags
A collection of keywords which further modify path traversal and result reporting.
Currently, the following flag words are recognized:

none
Equivalent to not setting any flag

ascending
Property V_LEVEL must increase on each path node, but not necessarily in an uniform
manner.

descending
Property V_LEVEL must decrease on each path node, but not necessarily in an uniform
manner.

constant
Property V_LEVEL must be constant on path nodes

different
Property V_LEVEL must be different from node to node. The same value may be encountered
at multiple nodes, as long as these are not direct neighbors in the path.

concatenate
Return path as concatenated string, not as list elements
694 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
outgoing
Path connections must be traversed from first to second node in connection definition. This
option is useful only if the connections have been set up in a directional fashion.

incoming
Path connections must be traversed from second to first node in connection definition. This
option is useful only if the connections have been set up in a directional fashion.

rootfinder
Path connections must first be traversed in incoming or outgoing direction, and then in
reverse direction to the target node. The point of inversion can be anywhere in the path, but
there can only be one.

minlength
Only report the found paths of minimum length, and those that are the minimum length or
less after the lengthfuzz parameter is subtracted, if one was specified. This flag bit is not
identical to the parameter of the same name in the general parameter dictionary.

maxlength
Only report the found paths of maximum length, and those that are the maximum length or
more after the lengthfuzz parameter is added, if one was specified. This flag bit is not
identical to the parameter of the same name in the general parameter dictionary.

endpoints
Only report the terminal nodes of found paths, as simple list elements, not the complete path.
In addition, reporting of terminal nodes which are contained in the full paths of longer
matches are suppressed. The encounter check uses vertex identities, not the properties
which are reported in the result. For example, if the result set consists of vertex labels 1-2,
1-2-3, and 1-2-4-5, the result is a list with elements 3 and 5.

• length
A specific length all reported paths must have. This is equivalent to setting the maxlength
and minlength parameters to the same value.

• lengthfuzz
A fuzz value to allow paths slightly longer than the minimum or slightly shorter than the
maximum length to be still reported, if the minlength or maxlength options are set in the
flags parameter. The default fuzz is zero.

• maxlength
The maximum length of reported paths. The default maximum path length is 30. The path
length is defined as the number of nodes in the path.

• maxpathcount
The maximum number of paths returned. If there are more paths, traversal is stopped early.
The default value is -1, indicating an unlimited number of reported paths. The order in which
paths are found depends on the internal representation of the network and is not guaranteed
to be canonic.

• minlength
The minimum path length of reported paths. The default minimum path length is 2, i.e. a
path cannot consist only of the start node.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 695

CACTVS Tcl and Python Scripting Language Reference
• property
The name of the property whose values are reported as path elements. The default is
V_LABEL, the standard vertex identifier. The use of a property name with a field instead of
a simple property name is also supported.

Example:
vertex paths network0 $v1 $v2 \

[dict create property V_ONTOLOGY_TERM(id) flags outgoing]

This example returns all paths from network vertex v1 to v2 in outgoing direction. The reported path
data is the value of field id of property V_ONTOLOGY_TERM on every vertex in the paths.

vertex ref
Vertex.Ref(nref,identifier)

PYTHON only method to get a vertex reference. See vertex vertex command.

vertex set
vertex set nhandle label ?property value?...
v.set(?property,value?,...)
v.set({property:value,...})
v.property = value
v[property] = value

Standard data manipulation command. It is explained in more detail in the section about setting
property data.

Example:
vertex set $nhandle 1 V_IDENT “V1294”

vertex show
vertex show nhandle label propertylist ?filterset? ?parameterdict?
v.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The difference between vertex get and vertex
show is that the latter does not attempt computation of property data, but raises an error if the data
is not present and valid. For data already present, vertex get and vertex show are equivalent

vertex sqldget
vertex sqldget nhandle label propertylist ?filterset? ?parameterdict?
v.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The differences between vertex get and vertex
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.
696 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
vertex sqlget
vertex sqlget nhandle label propertylist ?filterset? ?parameterdict?
v.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The difference between vertex get and vertex
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or
PYTHON script processing.

vertex sqlnew
vertex sqlnew nhandle label propertylist ?filterset? ?parameterdict?
v.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The differences between vertex get and vertex
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

vertex sqlshow
vertex sqlshow nhandle label propertylist ?filterset? ?parameterdict?
v.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the vertex get command. The differences between vertex get and vertex
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

vertex subcommands
vertex subcommands
dir(Vertex)

Lists all subcommands of the vertex command. Note that this command does not require a network
handle or a vertex label.

vertex vertex
vertex vertex nhandle label
Vertex.Ref(nref,identifier)

Return the vertex label stored in property V_LABEL (TCL) or a minor object reference (PYTHON). This
is useful in case the label used in the command is not a straightforward numerical label or reference
but some other vertex identification format.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 697

CACTVS Tcl and Python Scripting Language Reference
Substructure Match Commands

Substructure and reaction substructure matching is a complex functionality. While a limited number
of object commands are supplied (ens match, mol match, etc.), comprehensive match functionality
is accessible via special commands. The match command implements various structure matching
commands.

The match command
The match command matches substructures, maximum common substructures, and reactions. Its
syntax scheme is
match ss ?-option value?... ss_spec st_spec

?atommatchvar? ?bondmatchvar? ?molmatchvar?
match mcss -option value?... ss_spec st_spec

?atommatchvar? ?bondmatchvar? ?molmatchvar?
match rss -option value?... rxnss_spec rxn_spec ?reagent_atommatchvar?

?reagent_bondmatchvar? ?reagent_molmatchvar? ?product_atommatchvar?
?product_bondmatchvar? ?product_molmatchvar?

match(class=’ss’/’mcss’/’rss’,substructure=,structure=,?align=?,
?allowmissingstereo=?,?anchor=?,?atomenvproperty=?,?atomhighlight=?,
?atomlistcomparison=?,?atommapproperty=?,?atommatchcount=?,
?bondenvproperty=?,?bondhighlight=?,?bondmapproperty=?,?burnmode=?,
?chain=?,?charge=?,?clearatomhighlight=?,?clearbondhighlight=?,
?cmpflags=?,?cmpflags2=?,?command=?,?creategroup=?,
?daylightaromaticity=?,?excludeenvironment?,?excludeflags_ss=?,
?excludeflags_st=?,?excludeh=?,?excludelabels_ss=?,?excludelabels_st?=,
?excludelabels_st_root=?,?excludestructures=?,?exclude_ss_h=?,
?exclude_st_h=?,?fixedframework=?,?forceringmatch=?,?formula=?,?fuzz=?,
?generalize=?,?heavyatoms=?,?hinstances_ss=?,?implicit_is_singlearo=?,
?includeflags_ss=?,?includeflags_st=?,?includelabels_ss=?,
?includelabels_st=?,?isotope=?,?kekule=?,?limit=?,?mapanchor=?,
?maxopenlinks=?,?mode=?,?multihighlight=?,?noaliphaticonaro=?,?noarofg=?,
?nochainonaro=?,?nochainonring=?,?nodoubleonaro=?,?noheterofg=?,
?nomultibondfg=?,?nosingleonaro=?,?nosuperatommultilink=?,
?nosuperatomonh?,?omitrecursion=?,?openhcount=?,?overlap=?,?pionaro=?,
?queryatomexpansion=??remembercomplexmatches=?,?restrictsubstitution=?,
?rotateterminals=?,?stereo=?,?strictexclusion=?,?strictsmarts=?,
?superatomexpansion=?,?superatommapproperty=?,?tautomers=?,
?terminal=?,?timeout=?,?transferstereo=?,?useatomtree=?,?useatomtype?,
?usebondorder=?,?usebondtree=?,?varbondglobal=?,?varbondlocal=?,?wedge=?,
?atommatchvariable=?,?bondmatchvariable=?,?molmatchvariable=?,
?product_atommatchvariable=?,?product_bondmatchvariable=?,
?product_molmatchvariable=?)

The first word defines the match class and also the type of the expected structure or reaction
arguments. Match class ss performs a substructure match operation, class mcss a simple maximum
common substructure match operation, and class rss a reaction substructure match. In the latter case,
the substructure and structure arguments are expected to be reaction substructures (for example,
SMIRKS) and reaction handles or specifications (for example, reaction SMILES) instead of simple
structures.

Structure and substructure may both be independently specified in several different formats:

• An ensemble handle or reference

This is probably the most common format. It is allowed to match a structure or a part of it
onto itself. Example:
match ss $ss_handle $st_handle

For reaction substructure matching, the argument should be a reaction handle or reference.
698 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• A list of an ensemble handle and a molecule label, or a molecule reference in PYTHON.

This short-cut selects one molecule from the substructure or structure ensemble for
matching. All other molecules in the ensemble are ignored. Example:
match ss $ss_handle [list $st_handle 1]

This mode is not applicable to reaction substructure matching.

• A SMILES or SMARTS string.

The argument is interpreted as a SMARTS expression, with full query feature support and
without implicit hydrogen addition for the substructure argument and as standard SMILES
for the structure argument. The temporarily decoded structure is automatically destroyed
after the command has completed. However, for the sake of performance, decoded
substructure SMARTS structures are cached, so that it is only a small performance hit if the
same substructures are repeatedly passed to this command. The exact size of the
SMILES/SMARTS cache varies, but is usually around 500 substructures. Example:
match ss c1ccccc1 $st_handle

For reaction substructure matching, the argument is expected to be reaction SMILES or SMIRKS
string instead.

• Another standard string-based structure representation

This includes packed ensemble serialized ensemble (or reaction, for rss matching) object
strings, and hex-encoded SMILES. These specifications are essentially managed like
SMILES/SMARTS strings, but the decoded structures are not cached.

The return value of the command is the number of successful matches. For simple match modes,
which return only a match/nomatch result, this is 0 or 1, but modes which can produce multiple
matches may return higher counts.

The final three optional parameters are names of variables which receive atom, bond and molecule
mapping information. If these parameters are not supplied, or a variable name is spelled as an empty
string (or None for PYTHON), no variable is created or modified. If a variable is specified, but no match
is found, the map variables are set to empty strings. For reaction matching, there are separate
variable sets for the reagent and product side. In Python reaction matching the standard three
variables apply to the reagent side, while the product side is addressed with an explicit argument
name prefix i.e. , atomapvariable= vs. product_atommapvariable=. The variable named in
parameter atommapvariable is used both for normal substructure and reagent-side reaction match
information.

For match modes which can only return a single match, these map variables are simple nested lists.
Each list element contains a substructure and a structure object label or reference, in this order. The
number of elements in the result list corresponds to the number of substructure objects. Example:
match ss CN CCN amap bmap mmap

The variable amap is set to “{1 2} {2 3}”, which is the first match of the C-N substructure fragment
on the ethylamine structure. The numbers are atom labels - in case of SMILES strings, atom labels
are assigned in the order the atoms appear in the string. The bmap variable is set to “{1 2}”, since
only a single bond is involved. The first bond of the substructure matches the second bond of the
structure. Finally, the mmap variable is set to “{1 1}”, because both substructure and structure
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 699

CACTVS Tcl and Python Scripting Language Reference
contain only a single molecule, which was assigned the default label 1. The bond and mol map
results are still nested lists, even if they appear in this simple example as plain lists

There is no guarantee that the lowest possible labels are use for a simple match - the match algorithm
uses internal optimizations for choosing good start atoms for matches. Matches should not be
expected to start with an atom with the lowest label. Match result variables are filled in the order of
the objects in the internal object lists, which also is not necessarily an ascending label sequence.

These nested result lists can easily be transformed to an TCL array with a statement like
array set array_amap [join $amap]

The array variable array_amap now contains elements which are named with the substructure
labels, and have values which correspond to the structure labels. The unzip command is also useful
to isolate substructure or atom label sets.

In case a match mode is invoked which can return more than one match, the map variables are
constructed with an additional nesting level. They are a list, where each element describes one
match. Each of these elements for a specific match is formatted as in above description of simple
match results. Note that the actual number of reported matches does not influence the scheme - if
there is a theoretical possibility that more than one match can be found, the maximum nesting level
is 3, not 2, even if only a single match is finally found.

Example:
set nmatches [match -mode distinct CC CCC amap]

Here, the match count is 2 (the distinct mode reports matches which differ by at least one structure
atom from any previous match - the all mode reports 4 matches, which include reversals of the CC
fragment), and the amap variable is set to “{{1 1} {2 2}} {{1 2} {2 3}}”. The first match is
substructure atom 1 on structure atom 1, and 2 on 2, the second match maps substructure atom 1 on
structure atom 2, and substructure atom 2 on structure atom 3.

The match ss command has a large number of options, which can be used to fine-tune the matching
process. In the TCL version, any number of options, in any order, may be inserted before the
substructure specification. In the PYTHON version, they are specified as named arguments. Every
argument after the structure must use the named argument style.

This is the list of options:

-align
-align none/rotate/redraw/xaxis/yaxis/diagonal/combined

If a match was successful, change the layout of the structure by modifying the A_XY atomic 2D
coordinates property.

Mode none, which is the default, does not perform any 2D coordinate changes.

In modes xaxis, yaxis and diagonal, the coordinates of the matched structure atoms are extracted
and the largest principal component/eigenvector of these computed. The structure is then rotated
in such a way that this eigenvector is aligned to the x-axis, y-axis, or diagonal (lower left to
upper right). No coordinates of the substructure atoms are used.
700 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
In rotate mode, the structure is rotated in steps of 15 degrees, with and without a flip. The
orientation which is in best alignment with the coordinates of the matched substructure atoms
is retained.

In redraw mode, the structure is completely redrawn, using the coordinates of the matching
substructure atoms as starting point. The rest of the structure is drawn around it. The matched
structure atoms possess the same coordinates as the matching substructure atoms.

There are some limitations in this mode, which are automatically enforced by setting the
corresponding match control flags. First, it is not possible to match partial ringsystems. A
substructure ring atom must match the same class of ring system, i.e. a substructure 6-membered
ring fragment only matches a structure benzene or cyclohexane ring, but not naphthalene,
adamantane, etc. This limitation is deeply rooted in the 2D layout generator, which treats ring
systems different from the acyclic connections. Acyclic substructure atoms can only match
acyclic structure atoms, with the exception that a terminal acyclic substructure atom may still
match a structure ring atom.

The final mode besteffort combines the redraw and rotate modes - if a match in mode redraw
fails, the match attempt is automatically repeated in mode rotate, which has relaxed match
conditions with respect to ring system checks.

-allowmissingstereo
-allowmissingstereo none/atoms/bonds/both

If not set to none, the default, stereogenic atom or bond centers on the structure side may be
matched by corresponding centers on the substructure with defined stereochemistry if they do
not possess a non-zero stereo descriptor in A_LABEL_STEREO or B_LABEL_STEREO. If there is a
structure-side stereo descriptor on the matched center, the normal stereo match process applies
(i.e. absolute or relative stereo matching). This is a global option which applies to the complete
substructure pattern. There are also atom- and bond-specific bits in A_QUERY and B_QUERY to
control this feature on a local level in the pattern.

-anchor
-anchor nested_anchor_object_list

This option defines restrictions on which substructure and substructure atoms or bonds must
match. The argument is a nested list where each outer list element is a list of two or three
elements.

The first two of the inner list elements are either an object label, an empty string, or the word
any. The latter two options are equivalent. The first sublist item identifies a substructure object,
the second a structure object. If no third sublist argument is supplied, the object labels are
interpreted as atoms. With the third optional argument, an explicit minor chemistry object
classification such as atom or bond can be set, though currently only anchor atoms and bonds
are supported.

If any or an empty identifier is used as sublist argument, it is read as a wildcard. If two object
labels are paired, the two objects must map onto each other in all reported matches. If these
objects are incompatible, no matches are found. If a wildcard is used, it means that the partner
object must be in the match, but without the need to match any specific counter object. If fuzzy
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 701

CACTVS Tcl and Python Scripting Language Reference
matching is used, this can make sense even on the structure side. The use of a pair of wildcards
is not illegal, but has no filtering effect.

Example:
match ss -anchor {{1 2} {any 3}} $sshandle $ehandle

This sample line only returns a match where (in addition to meeting the query conditions of the
substructure ensemble object) substructure atom 1 maps onto structure atom 2, and structure
atom 3 is part of the match without requesting it to be mapped to any specific substructure atom.
match ss -anchor {{1 2 bond}} $sshandle $ehandle

This command only reports matches where substructure bond 1 is mapped to structure bond 2.

-atomenvproperty
-atomenvproperty 0/1

If set, fill property A_SSMATCH_ENVIRONMENT on match. This is an experimental feature.

-atomhighlight
-atomhighlight none/structure/substructure/both

If this flag is set, all matched atoms in the structure (modes structure or both, or numeric
encodings 1 or 3) or substructure (modes substructure or both, or the equivalent numeric
encodings 2 or 3) have the highlight flag set in property A_FLAGS. In case multiple matches are
generated, the result depends on the -multihighlight option setting. By default, only the first
match is highlighted, but highlighting the union of all found matches is also possible. This
option does not reset existing atom highlight flags - see the -clearatomhighlight option for
this functionality. By default this function is disabled (equivalent to mode none or 0).

-atomlistcomparison
-atomlistcomparison intersection/identity

Specify how the matching of atom list should be handled if they are encountered on both the
structure and substructure sides. By default any common element in these lists is sufficient for
a match (intersection mode), but in identity mode they must contain the same set of elements.

-atommapproperty
-atommapproperty none/structure/substructure/both

If this flag is set, for each match a new instance of property A_SSMATCH is attached to the
structure (in modes structure or both, or numeric encodings 1 or 3) ensemble, or a new instance
of property A_STMATCH to the substructure (in modes substructure or both, or the equivalent
numeric encodings 2 or 3) ensemble - the first match is recorded in A_SSMATCH or A_STMATCH,
the second in A_SSMATCH/2 or A_STMATCH/2, and so on. If instances of this property are already
set on the structure or substructure ensembles, the new instances start with the highest existing
instance number plus one. Structure or substructure atoms which are not used in a match have
their respective A_SSMATCH or A_STMATCH data set to 0. Matched structure atoms are marked
with the atom label of the matching substructure atom, and matched substructure atoms with the
atom label of the matching structure atom. By default, this flag is not active (equivalent to mode
none or 0).
702 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
-atommatchcount
-atommatchcount none/structure/substructure/both

Specify whether the number of time an atom was matched in successful matches should be
recorded in properties A_SSMATCH_COUNT (for the structure side) or A_STMATCH_COUNT (for the
substructure side).

-bondenvproperty
-bondenvproperty 0/1

If set, fill property AB_SSMATCH_ENVIRONMENT on match. This is an experimental feature.

-bondhighlight
-bondhighlight none/structure/substructure/both

If this flag is set, all matched bonds in the structure (modes structure or both, or numeric
encodings 1 or 3) or substructure (modes substructure or both, or the equivalent numeric
encodings 2 or 3) have the highlight flag set in property B_FLAGS. In case multiple matches are
generated, the result depends on the -multihighlight option setting. By default, only the first
match is highlighted, but highlighting the union of all found matches is also possible. This
option does not reset existing bond highlight flags - see the -clearbondhighlight option for
this functionality. By default this function is disabled (equivalent to mode none or 0).

-bondmapproperty
-bondmapproperty none/structure/substructure/both

If this flag is set, for each match a new instance of property B_SSMATCH is attached to the
structure (in modes structure or both, or numeric encodings 1 or 3) ensemble, or a new instance
of property B_STMATCH to the substructure (in modes substructure or both, or the equivalent
numeric encodings 2 or 3) ensemble - the first match is recorded in B_SSMATCH or B_STMATCH,
the second in B_SSMATCH/2 or B_STMATCH/2, and so on. If instances of this property are already
set on the structure or substructure ensembles, the new instances start with the highest existing
instance number plus one. Structure or substructure bonds which are not used in a match have
their respective B_SSMATCH or B_STMATCH data set to 0. Matched structure bonds are marked
with the bond label of the matching substructure bond, and matched substructure bonds with the
bond label of the matching structure bond. By default, this flag is not active (equivalent to mode
none or 0).

-burnmode
-burnmode modeflags
This flag has no effect in normal stand-alone substructure matches. Its settings are relevant in
case prior substructure matches to exclude certain areas of the structure from matching are
spliced into the processing before the actual substructure match. This mode defines how the
exclusion match effects remaining area for the final match. Thius is a bit set and multiple flags
can be combined. Possible values are atoms (mark all matched atoms are excluded), bonds
(mark matched bonds), carbon (mark matched carbon atoms, but not the rest of the matched
structure part), terminals (mark matched terminal atoms), ringsystems (mark all complete
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 703

CACTVS Tcl and Python Scripting Language Reference
ringsystems where at least one atom was matched) and aroringsystems (mark the connected
aromatic part of ringsystems where at least one ring atom was matched).

-chain
-chain 0/1

If set, this flag allows additional matches after the first match only if these matches are chained
to a previous match, i.e. they do not overlap with any previous match, but a normal or complex
bond exists between at least one structure atom of the new match and a structure atom of a
previous match. In more complex cases, the results of this command variant can depend on the
atom order. For example in case of a structure which contains a left part A and a right part AA
linked by some construct, matching with substructure fragment A returns a single hit if the left
part is matched first, but two fragment matches if the right part is matched first. However, within
a single chain of building blocks in the structure it does not matter where the first match occurs
- the chain fragment is recursively appended in all directions and ultimately cover all linked
blocks. The chain does not need to be linear - rings or star topologies can be matched, too.
Obviously, this option has no effect in match mode first, because specific results are only
generated when more than a single match is sought.

-charge
-charge 0/1

This flag determines whether atomic formal charges on the substructure and substructure atoms
are used for determining the possibility of an atom match. By default, formal charges are
ignored. This option only affects the standard match attributes. Atom query expressions which
explicitly refer to property A_FORMAL_CHARGE always use their comparison result to determine
matches.

-clearatomhighlight
-clearatomhighlight 0/1

If this flag is set, all highlight bits in property A_FLAGS are reset on the structure (and possibly
the substructure) ensemble before the first match is processed. By default, this flag is not set and
any existing A_FLAGS highlight bit pattern remains unchanged. Because the reset is performed
in the routine where the highlight bits are set, this option is effective only in combination with
the -atomhighlight option. The decision whether to reset the flags on the structure or
substructure side, or both sides, follows the setting of the -atomhighlight mode.

-clearbondhighlight
-clearbondhighlight 0/1

If this flag is set, all highlight bits in property B_FLAGS are reset on the structure (and possibly
the substructure) ensemble before the first match is processed. By default, this flag is not set and
any existing B_FLAGS highlight bit pattern remains unchanged. Because the reset is performed
in the routine where the highlight bits are set, this option is effective only in combination with
the -bondhighlight option. The decision whether to reset the flags on the structure or
substructure side, or both sides, follows the setting of the -bondhighlight mode.
704 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
-cmpflags
-cmpflags flags

This option provides a direct access to the full set of flags which modify the substructure match
process. The more common flags can be set or unset with specific options of this command for
convenience. The default flag set is bondorder|useatomtree|usebondtree.

The flag set can either override the default flags (if specified as simple attribute list), added to
them (if prefixed with a ’+’), removed, (if prefixed with a ’-’), or toggled (if prefixed with a ’^’).

These are generally useful flags recognized:

• none
No flags

• arotautomer
See tautomer flag.

• atomlistcontained
When this flag is set and matching a structure side atom list onto a substructure side atom
list, the match is only successful if all elements of the structure list are also listed in the
substructure list. The substructure list may contain additional elements. By default, an single
common element between the lists is sufficient for a positive match. This flag cannot be
used together with atomlistidentity.

• atomlistidentity
When this flag is set and matching a structure side atom list onto a substructure side atom
list, the match is only successful if the lists contain the same set of allowed elements, though
they do not need to be listed in the same order. By default, an single common element
between the elements is sufficient for a positive match. This flag cannot be used together
with atomlistcontainer.

• bondorder
Match bond order of non-aromatic bonds. This flag should usually be set.

• bondreaction
Match reaction query bond attributes against structure property B_REACTION_CENTER, if
present. By default, bond query attributes are not checked for match in substructure
matching, but they are tested in reaction matching.

• chained
If multiple matches are found, matches after the first must be aligned in such a way that they
are adjacent to an atom matched by a previous match. This flag is used to extract polymer
patterns. The use of this flag is explained in more detail in the paragraph on the -chain
option.

• charge
Match the formal charge of atoms. Query charges specified in A_QUERY field or part of a
atom query expression are always matched, but formal charges on atoms in
A_FORMAL_CHARGE are not by default.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 705

CACTVS Tcl and Python Scripting Language Reference
• daylight
Use daylight aromaticity for matching, regardless of the currently configured global
aromaticity system. This is equivalent to using the -daylightaro option and explained in
more detail in its paragraph.

• excludesmartsenvironment
Standard recursive SMARTS matches have no knowledge which atoms and bonds were
already matched in upper recursion levels, and all neighbor atoms are again available for
re-matching in the new recursion level. If this flag is set, atoms which are already matched
by upper recursion level are no longer eligible for re-matching and are effectively removed
from the structure visible to the new level.

• fixedframework
If set, the matched structure part cannot be bonded to unmatched non-hydrogen atoms. See
also terminal for more flexibility.

• generalizeheteroatoms
Any substructure atom which is not carbon or hydrogen matches any structure atom which
is not carbon or hydrogen.

• implicitissinglearo
If set, all bonds which were encoded with an implicit bond order, for example when
decoding SMARTS strings, and where this bond status is registered in B_QUERY(flags), are
matched as if they were explicitly specified as a single_or_aromatic query bond. This
matches the default behavior of Daylight-conforming SMARTS matching.

• isotope
Substructure atoms with an isotope label only match structure atoms with of the same
isotope. By default, isotope labels are ignored in matching.

• kekuleeven
The Kekule bond orders of even-membered aromatic rings must match that of the
substructure. By default, the formal bond order of aromatic systems is not checked. See also
the -kekule option for additional information.

• kekuleodd
The Kekule bond oder of odd-membered aromatic rings must match that of the substructure.
By default, the formal bond order of aromatic systems is not checked. See also the -kekule
option for additional information.

• matchallheavyatoms
If set, the substructure must cover all non-hydrogen atoms of the structure ensemble for a
successful match.

• matchatomringcount
The ring count (in the ESSSR) of the substructure atoms must be the same as that of matched
structure atoms. This prevents matching of substructures that are embedded in larger ring
systems.
706 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• matchbondringcount
The ring count (in the ESSSR) of the substructure bonds must be the same as that of matched
structure bonds. This prevents matching of substructures that are embedded in larger ring
systems.

• matchfullens
Matching substructure must match all atoms in the ensemble, including all hydrogen atoms.

• matchfullmolecule
A matching substructure must match all atoms of a fragment, including all hydrogen atoms.
There may be unmatched fragments present in the structure ensemble.

• matchfullringsystem
If set, the substructure must match any ring systems of the structure completely or not at all,
but not partially. Every ring system is tested independently.

• no3dcoordinatecomputation
When performing a 3D match, no attempt should be made to compute 3D atomic
coordinates of structure ensembles if they do not yet possess them. Instead, the 3D match
immediately fails.

• noaliphaticonaro
If set, aliphatic substructure atoms cannot match aromatic structure atoms, even if the other
match flags indicate that aromaticity should not be checked.

• noalkyllink
This is an additional criterion for the terminal match flag. If it is set, the single allowed
non-hydrogen bond leading from the the matched structure part to the unmatched structure
part cannot lead to an unsubstituted carbon with only carbon and hydrogen neighbors.

• noarobondfg
If set, carbon structure atoms which participate in an aromatic bond are not considered
functional groups. This has an effect on matching special pseudo-atoms, such as insulator
or terminator fragments.

• noatomstereook
If set, query atoms with specified atom stereochemistry, and general stereochemistry match
options active, can match a structure atom without stereochemistry, but not with different
stereochemistry. For individual atoms, this can be configured in A_QUERY.

• nobondstereook
If set, query bonds with specified atom stereochemistry, and general stereochemistry match
options active, can match a structure bond without stereochemistry, but not with different
stereochemistry. For individual bonds, this can be configured in B_QUERY.

• nochainonaro
Substructure bonds that are not ring bonds cannot match aromatic structure bonds.

• nochainbondonring
Substructure bonds that are not ring bonds cannot match structure ring bonds.

• nochainatomonring
Substructure atoms that are not ring atoms cannot match structure ring atoms.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 707

CACTVS Tcl and Python Scripting Language Reference
• nochargepaircollapse
Control the match feature that bonds which connect two atoms with opposite formal charges
+1 and -1 also match an increased bond order, e.g. a substructure ionic nitro group also
matches a pentavalent structure group, and vice versa. This feature is enabled by default,
setting this flag switches it off.

• nodoubleonaro
If set, non-aromatic double query bonds do not match aromatic structure bonds. By default
they do.

• noheterofg
f set, carbon structure atoms which participate in a bond connecting to a hetero atom are not
considered functional groups. This has an effect on matching special pseudo-atoms, such as
insulator or terminator fragments.

• nomultibondfg
If set, carbon structure atoms which participate in a multiple, non-aromatic bonds are not
considered functional groups. This has an effect on matching special pseudo-atoms, such as
insulator or terminator fragments.

• nosingleonaro
If set, single query bonds do not match aromatic structure bonds. By default they do.

• nosmallerring
A matched structure atom cannot be a member of a ring of size 8 or smaller if this ring is
smaller than the smallest ring of the matching substructure atom.

• nosuperatomonh
Superatoms (like Beilstein query atoms) in the substructure cannot match a single hydrogen
in the structure. Expanding superatoms matching multiple structure atoms, such as alkyl,
still match hydrogens attached to inner atoms, such as the hydrogen atoms in a methyl
group.

• nullsubstructureismismatch
If this flag is set, a substructure without any atoms does not match any structure. By default,
it reports a successful match.

• openhcount
If set, all hydrogen ligand count query attributes are interpreted as lower limits, not as
exactly required values.

• openlinkrequiresheavyatom
An open link pseudo-atom can on

• ly match a heavy atom, not hydrogen.

• piaroatoms
If set, structure atoms which possess  electrons and are ring atoms are considered aromatic,
even if they are not a member of a full aromatic system.
708 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• relativestereo
If set, stereo query atoms outside explicit stereo groups can match either enantiomer, but
only in a synchronized fashion, e.g. an R/S or S/R configuration, but not S/S or R/R. This
flags implies setting the stereo flag to switch on general stereochemistry matching.

• relaxedmatchatomringcount
A variant of matchatomringcount. A substructure atom can only match if it has the same
ESSSR ring count in structure and substructure, or if the substructure atom is not a ring atom
and simultaneously a terminal atom. This rather exotic option is used internally for 2D
drawing template alignment.

• relaxedmatchbondringcount
A variant of matchbondringcount. A substructure bond can only match if it has the same
ESSSR ring count in structure and substructure, or the substructure bond is not a ring bond,
and at least one of the atoms of the bond is a terminal atom. This rather exotic option is used
internally for 2D drawing template alignment.

• remembermatches
This is an optimization flag. If set, once a match or mismatch between a substructure and
substructure atom or bond has been established. it is remembered and not re-checked during
atom-by-atom matching. This flag is incompatible with some advanced match options (such
as context-sensitive custom callback functions, or SMARTS environment manipulations),
but safe for standard SMARTS or MDL-style structure matching. In that case, time savings can
be significant especially in match modes returning more than one match.

• restricthydrogenmatches
If set, an explicit hydrogen atom on a substructure fragment can only match hydrogen atoms
on the structure which have the same ligand sphere hydrogen index. This avoids the
permutation of many hydrogen mappings in match modes which return more than one
result. For example, a substructure with two explicit hydrogen atoms bonded to a central
carbon atom matches a structure methyl group in six different mapping without this flag, but
only one with it. In that mapping, the first substructure H ligand matches the first structure
H ligand, and the second substructure H ligand the second structure H ligand. The matching
of hydrogen substructure atoms onto different structure atoms is not affected. When using
this flag, the true equivalence of the matched structure atoms is not tested - so if isotope
labeling of structure H atoms or their 3D coordinates are of significance for the match, it
should not be used.

• restrictanyatommatches
If set, any query atoms occurring simultaneously on the substructure and structure sides
cannot match each other. They each can only match atoms in the other fragment which are
not of the any query type.

• restrictsubstitution
If set, unmatched non-hydrogen portions of the structure can only be linked to substructure
any atoms, or open valences. If open valences are used, the number of open valences linked
to a substructure atom limits the number of unmatched heavy atom continuation atoms on
the structure. Example: A substructure phenyl-any would match benzene (on a hydrogen
substituent), toluene or other mono-substituted benzenes, but not higher-substituted
compounds. A substructure open-C-open would not match tertiary or quaternary structure
carbons.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 709

CACTVS Tcl and Python Scripting Language Reference
• singleattachmentsuperatomsonly
If set, expanding superatoms can only match structure parts which are connected by a single
bond to the matched core.

• singleonany
If set, only multiple, non-aromatic bond s in the query need to match the bond order of the
structure. Single bonds of the substructure match any structure bond order.

• stereo
Match stereochemistry. In the absence of a set flag for relative stereochemistry
(relativestereo) matching this selects matching of absolute stereochemistry. Explicit
absolute/relative stereochemistry match instructions, for example via MDL stereo groups,
are always matched as specified. This flag only applies to specified atomic stereo centers
outside query stereo groups.

• strictexclusion
See -strictexclusion option.

• tautomer
Match tautomeric structure forms. For this, the substructure must contain mobile hydrogens
which can be linked to a tautomeric systems in the substructure. If this is the case, and the
structure also contains tautomeric parts, the bond orders in the tauto systems need only to
match as a sum of bond orders. The hydrogen is not fixed and may match a structure part
which is distant from its original attachment point. This version of tautomer matching does
not allow tautomer systems to traverse and implicitly dissolve or create aromatic systems.
The arotautomer flag is a more aggressive variant which allows this.

• terminal
A successful match has at most as as specified in the maxopenlinks parameter (default is 1)
substructure atoms where its matched structure atom has bonds to unmatched structure parts
that are not simple hydrogen atoms, and there is at maximum one bond to an unmatched
non-H atom on the structure continuation atoms.

• terminalbondorder
If set, bond order matching is only performed for structure bonds which are terminal, i.e.
where one of the atoms of the bonds only participates in a single bond.

• unsetaromaticisaliphatic
Any substructure atom which is neither in a complete auto-identified aromatic system, nor
has an aromatic A_QUERY attribute implicitly bears an aliphatic query attribute.

• useatomtree
heck the full atom attribute query expression tree if present for an atom. If not set, only the
flat MDL-style single-level attribute set without logic is used. This flag should be set for
normal queries.

• usebondtree
Check the full bond attribute query expression tree if present for a bond. If not set, only the
flat MDL-style single-level attribute set without logic is used. This flag should be set for
normal queries.
710 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• varbondglobal
If this flag is set, and a parameter for the maximum allowed deviation of fractional bond
orders in structure property B_ORDER_ESTIMATE is set, the average absolute deviation of the
found structure bond orders in the matched part versus the requested value in non-zero
B_QUERY(varbo) substructure values is checked and the match fails if it exceeds the
threshold. The -varbondglobal command option sets this flag as a side effect. f that option
is not used, the default maximum deviation parameter is 0.0, i.e. it is very strict

• varbondlocal
If this flag is set, and a parameter for the maximum allowed deviation of fractional bond
orders in structure property B_ORDER_ESTIMATE is set, a bond match fails if the absolute
difference of the fractional bond order in structure property B_ORDER_ESTIMATE versus the
requested query bond order in a non-zero B_QUERY(varbo) value exceeds the threshold. The
-varbondlocal command option sets this flag as a side effect. If that option is not used, the
default maximum deviation parameter is 0.0, i.e. it is very strict

• wedge
Match the presence and style of wedge bonds as graphical attributes. This is not the same
as matching stereochemistry, since a common stereochemical configuration can have
multiple valid wedge representations!

-cmpflags2
Another set of comparison flags. The default is an empty flag set. Recognized flags are:

• equivalentonly
If the match mode allows the reporting of multiple matches, and there is more than one
pattern match, the match command returns success only if all matches are topologically
equivalent. If there is any other match, the complete result set is scrapped and the command
returns zero matches, but no error.

• nonequivalentonly
If the match mode allows the reporting of multiple matches, and there is more than one
pattern match, the match command returns success only if all matches are topologically
different. If there is any other match, the complete result set is scrapped and the command
returns zero matches, but no error.

• requirecarbonmatch
The substructure must match at least one simple carbon atom.

• requireheteromatch
The substructure must match at least one simple hetero atom (no carbon, no hydrogen).

• screening
Internal use

-command
-command tcl_command/python_function

Define a TCL or PYTHON callback function which is called when a new match is found and all
property-based constraints have been checked. This function is called with four parameters. The
first two parameters are the handles or references of the substructure and structure ensembles.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 711

CACTVS Tcl and Python Scripting Language Reference
The third parameter is a nested list of label/reference pairs (substructure atom label/structure
atom label or references) for all substructure atoms which are currently matched to a structure
atom. The fourth parameter is a nested list of label/reference pairs (substructure bond
label/structure bond label or references) for all substructure bonds which are matched to a
structure bond. The format of these arguments is the same as that of the match variables of the
match command for single-match modes. Within the callback functions, the match can be
further evaluated in ways not possible by the standard match options.

If the function returns 0, any non-numeric value, or throws an error, the post-processing of
completed matches, such as atom or bond highlighting, is not executed and the match discarded.

While the callback routine is free to perform any additional match analysis, it must neither
delete the structure or substructure, nor change its connectivity (remove or add atoms and
bonds), nor discard or invalidate any property data used in the matching process. The
computation or setting of additional property data on the substructure or structure ensembles is
allowed.

By default, or in case an empty string is passed as callback procedure name, no callback is
executed.

Example:
proc my_match_check {ens_ss ens_st amap bmap} {

puts $amap

return 1

}

match ss -command my_match_check CC CC

This example outputs “{1 1} {2 2}”, which is the atom mapping of the match found.

-creategroup
-creategroup 0/1

If this flag is set, every match creates a new group minor object on the structure ensemble. The
atoms in the group are all those structure atoms which were matched by the substructure. The
group name (property G_NAME) is set to the name of the substructure (property E_NAME). By
default, no groups are generated as side effects of a match.

-daylightaromaticity
-daylightaromaticity 0/1

If the flag is set, the use of DAYLIGHT aromaticity in the matching is enforced both on the structure
and substructure side regardless of the global aromaticity system setting. For the substructure,
this applies to implicitly defined aromaticity, for example the presence of a complete aromatic
ring with all defined bond orders and elements, not explicit query attributes. The option can be
shortened to -daylightaro.

-excludeenvironment
-excludeenvironment 0/1

If this flag is set and a recursive SMARTS expression is processed, all parts of the structure which
are already matched are excluded from the recursive match check. By default, a new recursion
712 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
level does not have any knowledge about previous matches and may match all atoms in the
structure.

Example:
match ss -excludeenvironment 0 {C[$(OC)]} CO

match ss -excludeenvironment 1 {C[$(OC)]} CO

The first example does match, because the carbon of the recursive fragment may match on the
same structure carbon as the first carbon atom in the substructure. In the second case, the
structure carbon is marked as already matched, and there is no place to map the recursive
fragment carbon, so no match is found.

-excludeflags_ss
-excludeflags_ss flag_value

This option allows the exclusion of substructure atoms from the match procedure which have
at least one of potentially several bits set in the A_FLAGS property. The decoded flag values are
used as a bit mask, and all structure atoms which have one or more bits of the mask set are
hidden from further processing.

Example:
match ss -excludeflags_ss [list starred boxed] $ss_handle $st_handle

This example ignores all substructure atoms which have been marked with the starred or boxed
attribute.

All substructure atom exclusion options can be combined, but not repeated, and are cumulative.

-excludeflags_st
-excludeflags_st flag_value

This option allows the exclusion of structure atoms from the match procedure which have at
least one of potentially several bits set in the A_FLAGS property. The decoded flag values are used
as a bit mask, and all structure atoms which have one or more bits of the mask set are hidden
from further processing.

Example:
match ss -excludeflags_st [list starred boxed] $ss_handle $st_handle

This example ignores all structure atoms which have been marked with the starred or boxed
attributes.

All structure atom exclusion options can be combined, but not repeated, and are cumulative.

-excludelabels_ss
-exclude_ss label_list

-excludelabels_ss label_list/aref_sequence

This option allows the exclusion of a set of substructure atoms from the match process. All
atoms which are listed here are completely ignored by the match algorithm. By default, or when
an empty list is passed, all substructure atoms of the ensemble or molecule (if the
handle/molecule label specification was used) are used for matching.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 713

CACTVS Tcl and Python Scripting Language Reference
Example:

match ss -exclude_ss [ens atoms $sshandle hydrogen] $sshandle $sthandle

This example does not use any hydrogens on the substructure for matching. This is more
efficient and stripping and possibly re-attaching the hydrogen atoms from the substructure.

All substructure atom exclusion options can be combined, but not repeated, and are cumulative.

-excludelabels_st
-exclude_st label_list

-excludelabels_st label_list/aref_sequence

This option allows the exclusion of a set of structure atoms from the match process. All atoms
which are listed here are completely ignored by the match algorithm. By default, or when an
empty list is passed, all structure atoms of the ensemble or molecule (if the handle/molecule
label specification was used) are available for matching.

All structure atom exclusion options can be combined, but not repeated, and are cumulative.

-excludelabels_st_root
-exclude_st_root label_list

-excludelabels_st_root label_list/aref_sequence

This set of structure atoms to be excluded is similar to the one specified with -exclude_st. The
difference is that this exclusion only applies to the first level of matching. In deeper match
levels, for example recursive SMARTS expressions, these atoms are no longer blocked.

All structure atom exclusion options can be combined, but not repeated, and are cumulative.

-excludestructures
-excludestructures ens_mol_list

Specify of set of exclusion fragments. These structure fragments are exhaustively matched as
substructures on the structure, and all structure atoms and bonds they match are excluded from
the actual match procedure invoked by this command. The exclusion fragment substructure
match is always performed with the default mode settings - options like -bondorder or -charge
are only applied to the final match. The exclusion fragments may be specified in the same styles
as the main substructure and structure, i.e. as an ensemble handle, a list of an ensemble handle
and a molecule label, or as a SMILES/SMARTS string.

Example:
match ss {[OH]} CC(=O)O

match ss -excludestructures {C(=O)[OH]} {[OH]} CC(=O)O

The first example matches the hydroxyl group of the structure, which is acetic acid. In order to
prevent of match of hydroxyl groups which are part of carboxylic acid groups, carboxylic acid
groups can be ignored on the structure with a statement like in the second example. Of course,
this example could be easily made more generic, such as hiding all groups which have the
hydroxyl group attached to any non-carbon, or carbon with any other hetero atom neighbor, as in
match ss -excludestructures {[!C,C&x{2-}][OH]} {[OH]} $sthandle
714 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
All structure atom or fragment exclusion options can be combined, but not repeated, and are
cumulative.

-exclude_ss_h
-exclude_ss_h 0/1

If this flag is set, all substructure hydrogen atoms are ignored in the match process. By default,
all atoms in the substructure are used.

All substructure atom exclusion options can be combined, but not repeated, and are cumulative.

-exclude_st_h
-exclude_st_h 0/1

If this flag is set, all structure hydrogen atoms are ignored in the match process. By default, all
atoms in the structure are used.

All structure atom exclusion options can be combined, but not repeated, and are cumulative.

-fixedframework
-fixedframework 0/1

If this flag is set, all carbons in the structure are prevented from possessing any unmatched
hetero atom or carbon neighbors. Matched structure hetero atoms may be bonded to unmatched
hetero atoms or carbon atoms. By default, the flag is not set. The acceptability of extra
unmatched hydrogen, carbon, or hetero atom neighbors may be additionally controlled on the
atomic level by setting the appropriate flags in property A_QUERY(flags) on the substructure.

Example:
match ss -fixedframework 1 CC CCO

match ss -fixedframework 1 CCO CCOC

The first example does not match, because in all possible match orientations there is one
matched carbon with bonded to an unmatched hetero atom (the oxygen atom). The second
example does match - the matched hetero atom may possess bonds to unmatched non-hydrogen
atoms - the methyl group in this case.

This match option is useful for locating starting materials for synthesis in vendor catalogs.

-forceringmatch
-forceringmatch no/strict/relaxed/ringsystem

This option controls the matching of the substructure into structure ring systems. If the option
is not specified, or set to no (or 0), the matching is only controlled by explicitly set atom and
query attributes, such as the number of ring bonds, or membership of rings of specific size.

The option value strict allows the matching of substructure atoms or bonds which are members
of rings only onto structure parts in ring systems of the same class, i.e. the same set of rings of
a given size and arrangement, but without consideration of atoms, bond orders, aromaticity, etc.
With this option, a phenyl substructure fragment no longer matches a naphthalene structure, and
acyclic substructure atoms or bonds can only match acyclic structure parts. All other query
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 715

CACTVS Tcl and Python Scripting Language Reference
attributes, such as bond order, element type, aromaticity, etc. are applied in addition to this
constraint.

The relaxed mode has basically the same constraints, but with one small exception: A terminal
substructure atom (an atom which has only a single bond, and thus cannot be a ring member)
may match onto structure atoms in ring systems, if the normal query attributes allow this.The
relaxed mode is automatically enforced if the -align option with value redraw is specified.

The ringsystem mode requires that any structure ringsystem is either completely matched, or not
part of the match at all.

-formula
-formula formulaexpression

Require that the set of structure atoms matched by the substructure also matches a formula
expression (see molfile scan). The matched atom set is tested after full expansion. This means
that multiple structure atoms which are matched by a single query atom (for example, an [ALK]
alkyl superatom group) all count. However, structure atoms which are matched multiple times
(for example, by overlapping fragments with a suitable overlap mode) are only tallied once. The
default other element mode for the formula expression is exact, but that can be changed by the
operator prefix (see again molfile scan).

Example:
match ss -formula C1-2N1-2 {[C,N][C,N][C,N]} $ehstructure

This example will only allow substructure matches where the substructure matches 1-2 carbon
and 1-2 nitrogen atoms but where the relative orientation of the matched atoms is arbitrary. It
disallows a C3 or N3 match, which would be allowed by the SMARTS string.

-fuzz
-fuzz n

If this option is used with a value n larger than zero, fuzzy substructure matching is activated.
In this mode, it is no longer required that all substructure atoms are mapped to structure atoms.
Up to n atoms may fail. Within the A_QUERY property, fields are provided which allow a more
detailed specification whether a substructure atom may be in the fail set, and how much fuzz is
allowed in its immediate neighborhood. The -anchor option is also useful to force the use of
some critical substructure atoms in the found matches.

This match variant is computationally significantly more expensive than the standard match
procedure, and can generate a large set of matches if a match mode which can generate more
than one match is used.

Example:
match ss -fuzz 1 ClCCCl CCCl

match ss -fuzz 1 ClCCCl CCl

match ss -fuzz 1 ClCCCl ClCCl

The first example matches, since there is only a single unmatched substructure atom in the best
mapping - one of the chlorine atoms- , but the second and third do not. The third example
demonstrates that fail atoms are straightforwardly ignored, but their unmatched neighbors are
716 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
not allowed to start new implicit fragments. The second chlorine atom in the substructure cannot
match because it remains tethered to the main fragment, even if the excess carbon atom in the
substructure is designated as the one allowed failure atom. Both example two and three will
however match with a fuzz of 2.

-generalize
-generalize none:heteroatoms

In mode heteroatoms, all atoms except carbon and hydrogen are treated as a generic hetero atom
type and match each other.

-heavyatoms
-heavyatoms any:all

If mode all is selected, all heavy atoms on the structure side must have been matched by
substructure atoms for an overall hit.

-implicit_is_singlaro
-implicit_is_singlearo 0/1

If the flag is set, bonds which were not specified with an exact bond order (for example, in
SMARTS) are handled as „single or aromatic“ query bonds, and not with their effective bond
order or aromaticity status after decoding.

-includeflags_ss
-includeflags_ss flag_value

This option allows the selection substructure atoms for the match procedure which have one of
potentially several bits set in the A_FLAGS property. The decoded flag values are used as a bit
mask, and only those structure atoms which have one or more bits of the mask set are selected
for matching. By default, all substructure atoms are used for matching. If both an inclusion flag
set and exclusion flag set (option -excludeflags_ss) is specified, the inclusion list is processed
first. From the remaining atoms, those which match the exclusion filter are removed.

-includeflags_st
-includeflags_st flag_value

This option allows the selection structure atoms for the match procedure which have one of
potentially several bits set in the A_FLAGS property. The decoded flag values are used as a bit
mask, and only those structure atoms which have one or more bits of the mask set are selected
for matching. By default, all structure atoms are used for matching. If both an inclusion flag set
and exclusion flag set (option -excludeflags_st) is specified, the inclusion list is processed
first. From the remaining atoms, those which match the exclusion filter are removed.

-includelabels_ss
-include_ss labellist

-includelabels_ss label_list/aref_sequence
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 717

CACTVS Tcl and Python Scripting Language Reference
Select substructure atoms for use in matching. By default, all substructure atoms are used. If
both an inclusion list and an exclusion list (option -exclude_ss) are specified, the inclusion list
is processed first. From the remaining atoms, those which are also listed in the exclusion list are
removed.

-includelabels_st
-include_st label_list

-includelabels_st label_list/aref_sequence

Select structure atoms for use in matching. By default, all structure atoms are used. If both an
inclusion list and an exclusion list (option -exclude_st) are specified, the inclusion list is
processed first. From the remaining atoms, those which are also listed in the exclusion list are
removed.

-isotope
-isotope 0/1

This flag determines whether isotopic labeling is used for matching. By default, isotope label
matching is not performed. If this flag is set, substructures with an isotope label must map onto
a structure atom with the same isotope label. Even if this option is not set, explicit references to
property A_ISOTOPE in atom query expressions are always evaluated and used to determine the
match.

-kekule
-kekule none/odd/even/all

By default (value none or 0), the Kekulé bond order of aromatic bonds is not used for matching.
A substructure aromatic bond matches a structure aromatic bond, regardless of whether their
Kekulé bond orders are the same or not. If this flag is set to all (or 3), aromatic bonds are
compared with the drawn bond order. This can be useful for example in order to find a sequence
of atoms for perform a reaction transformation which allows a simple change of bond orders in
the path without a complete rearrangement of the full  system. The modes odd and even are
useful for controlled matching of certain heteroaromatic systems. In mode odd (or 1), the
Kekulé bond order is used for all bonds which are only a member of aromatic rings with an odd
number of atoms, while the order of bonds in even aromatic systems (including those which are
simultaneously a member in an odd aromatic system) is disregarded. Mode even (or 2) is the
complementary counterpart.

-limit
-limit n

Set the maximum number of reported substructure matches to n. Any additional matches which
might be present are ignored. -maxmatch is an alias.

-mapanchor
-mapanchor 0/1

If this flag is set, an anchor set (see option -anchor) is automatically constructed from the values
of the A_MAPPING properties on the substructure and structure. A_MAPPING is the default property
718 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
to encode reaction mapping information. Both substructure and structure must possess valid
A_MAPPING data, otherwise this option is ignored. If this condition is fulfilled, any substructure
atom which has a non-negative mapping number3 is anchored to its counterpart on the structure
side with the same mapping number. If no such number is present, the command immediately
returns zero matches and empty atom/bond/mol mapping variables, if these were specified. This
option can be combined with a normal -anchor option. The anchor tables are cumulative in this
case.

-maxopenlinks
-maxopenlinks n

Limit the number of open links of the substructure embedded in a match. Any continuation of
the structure from the matched substructure into the unmatched parts except by hydrogen atoms
is considered an open link. Example:
match ss -mode distinct CC CCCC

match ss -mode distinct -maxopenlinks 1 CC CCCC

The first example reports three matches, the second only two.

In the latter case, the substructure matches only at either end, because in case of a match in the
middle of the C4 carbon chain there would be two continuation links. The -terminal option is
equivalent to using this mode with an open link count of one.

For substructures which are larger than a single atom, the open link count is the number of
matched structure atoms which have one or more open links. For single-atom substructures, the
match count is directly the number of open links of the single matched structure atom.

This attribute is only checked for the root level of hierarchical substructure matches (e.g. when
using Recursive SMARTS or a similar match mechanism, the match of the recursive fragments
is not tested). Example:
match ss -maxopenlinks 1 {[C;$(*OC=O)]} $eh

This command checks that the matched carbon has only a single non-hydrogen continuation
(necessarily into the ester group, e.g. it cannot match an ethyl or higher ester, only methyl), but
this test does not apply to the ester fragment which is checked in a nested deeper level.

-mode
-mode first/all/canonic/distinctatoms/distinctbonds/distinctfirstatom/
distinctheavyatoms/distinctinneratoms/distinctmols/distinctssatoms/
nocommon/unique/bilateraldistinct/bestscore/bestscores/distinctscores/
bilateralunique/distinctfgatoms/nocommonfgatoms/nocommonheavyatoms/
conditionalnocommonfgatoms

This important option determines the substructure match mode. The default mode is first. In
mode first, only the first, if any, match is returned, and any list variables used to capture the
atom, bond or molecule maps use only a single level of nesting.

Mode all reports all (subject to a potentially set maximum number of results, see -limit option)
all possible matches, which differ in at least one atom mapping relationship to any other
reported match.

3. A zero or negative atom mapping value indicates an unmapped atom.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 719

CACTVS Tcl and Python Scripting Language Reference
Example:
set nmatch [match ss -mode all CC CCC]

returns 4, because the C2 fragment can be embedded in forward and backward direction, and
matched on either the first two or last two carbon atoms of the propane structure.

Mode distinctatoms only reports matches which map onto a different set of structure atoms.
Example:
set nmatch [match ss -mode distinctatoms CC CCC]

returns 2 for the mapping of the substructure onto the first two, and the last two carbon atoms.
The backward matches of the C2 fragment are not reported, because they do not cover a new
set of atoms.

Mode distinctheavyatoms is similar to the distinctatoms mode, but only uses non-hydrogen
substructure atoms for determining whether a match should be considered new and included.

Example:
set nmatch [match ss -mode distinctatoms {CC[#1]} CCC]

set nmatch [match ss -mode distinctheavyatoms {CC[#1]} CCC]

The first example reports an astonishing 10 matches, because the hydrogen atom can be mapped
to either of the three terminal hydrogens, or two central hydrogens, and there are two distinct
embeddings of the substructure C2 fragment. Mode distintheavyatoms reduces the number of
reported hits to 2, because only the atom mappings of the two carbons in the substructure are
considered. In many cases, hydrogens can be considered equivalent, and in these cases this
mode comes in handy.

Mode distinctinneratoms is similar to distinctheavyatoms, but instead of ignoring all hydrogen
atoms on the substructure when determining the novelty of a match, all terminal atoms (those
with less than two bonds) are ignored in filtering new matches.

Mode distinctfirstatom is another mode with a modified view of what are distinct matches. This
mode only looks at the structure atom matched by the first substructure atom.

Mode distinctfgatoms is another variant of distinctheavyatoms where in addition to hydrogen all
carbon atoms which are not a functional group (having four bonded ligands, or being aromatic)
are omitted in the match distinctiveness test.

Mode distinctmols requires that the substructure matches a different molecule in the structure
ensemble in each accepted match.

Mode distinctbonds uses the set of matched structure bonds to determine whether a match is
novel. For cage structures, there may be multiple matches of the same structure atoms, but
matching different bond paths.

Mode unique is a stricter version of mode distinctatoms. Here, the matched atoms must
additionally be topologically different, as determined by hash code property A_HASH (when
matching without stereochemistry) or A_STEREO_HASH (in stereo match mode), or the
isotope-aware variants thereof if isotope labels are checked.

Mode bilateralunique is a variant where pairs of matched substructure/structure atom labels are
used to determine whether a label set is unique, not just the atom label set.
720 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Mode nocommon only reports matches which do not share any common atoms. Example:
set nmatch [match ss -mode nocommon CC CCC]

returns only a single match, because the middle carbon atom in the structure is already matched
by the first match. Unfortunately, the results of this match mode may depend on the numbering
of atoms. If, by change, a C2 substructure fragment is first matched in the middle of a C4 chain,
only a single match is found, but if it matches first at one of the ends, two matches are found,
because the middle match, if found next, is discarded and then the other terminal match is
accepted. The described effect is not a problem in all cases, depending on the nature of the
substructure, but using this mode requires careful analysis.

Variants of this mode are nocommonfgatoms and nocommonheavyatoms. The first disallows
matches which share a functional heavy atom (hetero atom or non-aromatic carbon with a
multiple bond) with a previous match, while the second allows overlap of matched hydrogens,
but not of other atoms. Like the plain nocommon mode, the results can be dependent on atom
numbering. The mode conditionalnocommonfgatoms works like nocommonfgatoms if there are
functionalized atoms in the match. If there are not, the mode is automatically and temporarily
reset to nocommonfgatoms for checking this match for overlap with an existing match.

Mode canonic returns only a single match if one can be found, but uses atom hash codes to
return a canonic match within the structure, regardless of atom order. The exact hash code
properties used to determine the canonic match mirrors whether the match checks for
stereochemistry and/or isotopes, as in mode unique.

Modes distinctssatoms and bilateraldistinctdistinct are only useful in contexts where only a part
the substructure may be matched, for example when using the -fuzz option. Mode
distinctssatoms is essentially the same as mode distinctatoms, only that the matched atoms on
the substructure side are checked, not those on the structure side. Mode bilateraldistinct uses
substructure atom/structure atom pairs instead of simple atom identities as criterion of
distinctiveness.

Modes bestscore, bestscores and distinctscores can only be used if a match scoring mechanism
has been configured. If that is the case, bestscore returns one of the matches with the best score,
bestscores all matches which share the best score, and distinctscores a set of matches with all
have different scores, omitting matches with duplicate scores.

-multihighlight
-multihighlight 0/1

If this option is set, and the options -atomhighlight and/or -bondhighlight are used, and more
than one match is generated, the highlight atom and/or bond attributes are also set for the second
and further matches, resulting in a highlight set which is the union of all matches. By default,
only the first match is highlighted, even if more than one match is generated and reported.

-noaliphaticonaro
-noaliphaticonaro 0/1

If this flag is set, aliphatic bonds do not map on aromatic bonds. By default, and in the absence
of other criteria determining the match of a bond, both single and double (but not triple or
higher) aliphatic substructure bonds match aromatic structure bonds, and vice versa. If the flag
is set, substructure bonds which are not marked aromatic, either by explicit attribute setting or
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 721

CACTVS Tcl and Python Scripting Language Reference
indirectly by aromaticity analysis of the substructure fragment, do not match aromatic structure
bonds. By default, this flag is not set. This option does not influence the processing of bond
query expressions which explicitly reference properties such as B_ORDER or B_ISAROMATIC.
These are evaluated in any case.

-noarobondfg
-noarobondbg 0/1

If this flag is set, aromatic bonds are not considered functional groups. This flag influences the
interpretation of the insulator and separator pseudo-atoms, which are constructs used to
separate functional groups in the match process. By default, aromatic bonds are considered part
of a functional group.

-nochainonaro
-nochainonaro 0/1

If this flag is set, substructure chain bonds (acyclic bonds) do not match on aromatic structure
bonds. By default, and if no options prohibiting this like -nosingleonaro or -nodoubleonaro
are set, single and double chain bonds can match aromatic structure bonds.

-nochainonring
-nochainonring 0/1

If set, substructure chain atoms cannot match ring structure atoms.

-nodoubleonaro
-nodoubleonaro 0/1

If this flag is set, double bonds do not map on aromatic bonds. By default, and in the absence
of other criteria determining the match of a bond, both single and double (but not triple or
higher) aliphatic substructure bonds match aromatic structure bonds, and vice versa. If the flag
is set, substructure double bonds which are not marked aromatic, either by explicit attribute
setting or indirectly by aromaticity analysis of the substructure fragment, do not match aromatic
structure bonds. By default, this flag is not set. This option does not influence the processing of
bond query expressions which explicitly reference properties such as B_ORDER or
B_ISAROMATIC. These are evaluated in any case.

-noheterofg
-noheterofg 0/1

If this flag is set, bonds to hetero atoms are not considered part of functional groups. This flag
influences the interpretation of the insulator and separator pseudo-atoms, which are constructs
used to separate functional groups in the match process. By default, bonds involving a hetero
atom are considered part of a functional group.

-nomultibondfg
-nomultibondfg 0/1
722 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If this flag is set, non-aromatic multiple bonds are not considered part of functional groups. This
flag influences the interpretation of the insulator and separator pseudo-atoms, which are
constructs used to separate functional groups in the match process. By default, non-aromatic
multiple bonds are considered part of a functional group.

-nosingleonaro
-nosingleonaro 0/1

If this flag is set, single bonds do not map on aromatic bonds. By default, and in the absence of
other criteria determining the match of a bond, both single and double (but not triple or higher)
aliphatic substructure bonds match aromatic structure bonds, and vice versa. If the flag is set,
substructure single bonds which are not marked aromatic, either by explicit attribute setting or
indirectly by aromaticity analysis of the substructure fragment, do not match aromatic structure
bonds. By default, this flag is not set. This option does not influence the processing of bond
query expressions which explicitly reference properties such as B_ORDER or B_ISAROMATIC.
These are evaluated in any case.

-nosuperatommultilink
-nosuperatommultilink 0/1

If set, substructure superatoms can only be matched in such a fashion that they have a single link
to other matched parts of the structure.

-nosuperatomonh
-nosuperatomonh 0/1

If set, substructure superatoms cannot match structure hydrogen, even if their usual
specification would allow it.

-omitrecursion
-omitrecursion 0/1

This options influences the way matches of recursive SMARTS fragments are reported.
Internally, the first atom of a recursive fragment is represented by an any atom on the basic
substructure. This placeholder atom and its mapped structure counterpart are reported in atom
maps, and the bonds leading to the placeholder in bond maps. If this flag is set, the placeholder
atom and its bonds are omitted from the maps.

Example:
match ss -omitrecursion 0 {C[$(OC)]} COC amap

match ss -omitrecursion 1 {C[$(OC)]} COC amap

In the first example, the atom map contains the pairs “{1 1} {2 2}”, while in the second example
only “{1 1}” is returned as atom map.

In any case, detailed mapping information about all the atoms and bonds of the recursive
fragment is currently not directly available on the script level.

-openhcount
-openhcount 0/1
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 723

CACTVS Tcl and Python Scripting Language Reference
If this flag is set, all hydrogen counts are considered minimum values. If a matched structure
atom possesses more hydrogens, the match still succeeds, even if the original comparison
operator uses equality as criterion, provided that the compared property value is A_HCOUNT, the
standard hydrogen count property, which is the default used by the various query syntax
decoders of the toolkit. This option is unusual because it is also applied to comparisons in atom
or bond query expressions. By default, this flag is not set.

Example:
match ss -openhcount 0 {[C;H2]} CC

match ss -openhcount 1 {[C;H2]} CC

The first example does not match, because both carbon atoms in the structure possess three
hydrogen atoms, not two, while the second attempt succeeds. Note that the simple specification
match ss -openhcount x {[CH2]} CC

succeeds regardless of the setting of this flag. This is a side effect of the implicit expansion of
SMARTS hydrogen atoms when they appear directly behind the atom symbol in the default
SMARTS decoder mode, which is described in detail in the section about the handling of SMILES
strings.

Alternatively, it is of course possible to either use standard SMARTS or-connected hydrogen count
alternative values, or use the toolkit-specific range extensions, as in
match ss {[C;H2,H3]} CC

match ss {[CH{2-}]} CC

but in many cases this makes the query more complicated than necessary.

-overlap
-overlap none/any/nobonds/noembedding/distinctatoms/distinctmols/

distinctpatterngroups/commonmol

This option controls how potential overlap of multiple substructure fragments on the target
structure is handled. If the substructure contains only a single fragment, this option has no effect.

The default mode is none. In this mode, no overlap of substructure fragments on the target
structure may occur. All fragments must be matched side by side, matching different structure
parts.

Mode distinctmols is even more restrictive than mode none. In this mode, only one substructure
fragment may be matched onto each structure fragment (i.e. molecule).

Mode commonmol is related. With that flag, all substructure fragments must match the same
structure molecule in non-overlapping fashion.

In mode any, every substructure fragment is treated independently of any other substructure
fragment. No information about any match by other fragments is used. Arbitrary overlap of the
fragments on the target structure is allowed.

Mode nobonds allows the overlap of atoms, but not of bonds. In effect, multiple fragments may
overlap at the edges, but not share any larger structure parts.

In mode noembedding, atoms and bonds may overlap, but no substructure fragment may be
completely embedded into the matched structure part covered by another fragment, meaning
724 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
that at least one of any pair of matching substructure fragments must match an atom which is
not matched by the other fragment.

Mode distinctatoms is similar to mode noembedding, but in this mode any pair of matching
substructure fragments at least one structure atom must be matched by each substructure
fragment which is not matched by the other.

Mode distinctpatterngroups is rather special. It expects property M_PATTERNGROUP to be set for
the substructure fragments. The property values are integers which separate the substructure
fragments into groups with the same identifier. All fragments of a specific group value must
match the same structure molecule without overlap. Substructure fragments with a different
group value cannot match a structure molecule which is already matched by a substructure
fragment with a different pattern group number, even if that would be possible without overlap.
If M_PATTERNGROUP is not set, it is computed, where every substructure fragment is simply
assigned a sequential number. This overlap mode is then equivalent to distinctmols.

Because internally bitsets are used to track the mapping of substructure fragments, the
maximum number of fragments which may be used in any mode but none or distinctmols is 64.
The none and distinctmols modes do not have a maximum fragment count.

-pionaro
-pionaro 0/1

If this flag is set, any bond between atoms which are part of a  system can match an aromatic
bond. This option is intended to allow the reproduction of the behavior of the DAYLIGHT toolkit,
which has a much broader idea about which ring systems are aromatic than the CACTVS toolkit
in its default aromaticity mode. The DAYLIGHT toolkit recognizes rings with exocyclic keto
groups, such as purines and pyrimidines, as aromatic, while this toolkit does not. If the option
flag is set, aromatic fragments match on such systems. By default, the flag is not set. This option
is outdated. It is recommended to use DAYLIGHT aromaticity for matching instead.

-queryatomexpansion
-queryatomexpansion 0/1

If this flag is set, query atoms which potentially cover multiple matched structure atoms are
expanded to cover all matched atoms. Query atoms of this class include the MDL Beilstein types
and the EliLilly Spinach types, but not superatoms (see -superatomexpansion). With a set flag,
the matched atoms map potentially contains multiple entries for a single query atom. By default,
such query atoms are only registered to match the first structure atom.

-remembercomplexmatches
-remembercomplexmatches 0/1

If set, any complex match expression that once a substructure atom is found to match an atom
with all its atom match conditions, is assumed to match it again with a different overall
substructure mapping without re-checking. This flag can accelerate matches, but must only be
used if the general match of an atom does not depend on the match status of other substructure
atoms.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 725

CACTVS Tcl and Python Scripting Language Reference
-restrictsubstitution
If set, unmatched non-hydrogen portions of the structure can only be linked to substructure any
atoms, or open valences. If open valences are used, the number of open valences linked to a
substructure atom limits the number of unmatched heavy atom continuation atoms on the
structure. Example: A substructure phenyl-any would match benzene (on a hydrogen
substituent), toluene or other mono-substituted benzenes, but not higher-substituted
compounds. A substructure open-C-open would not match tertiary or quaternary structure
carbons.

-rotateterminals
-rotateterminals 0/1

If set, the 2D bond direction of matched structure-side terminal atoms (i.e. atoms with only a
single bond) is adjusted in property A_XY to match that of the direction of the matched
substructure-side bond. This option is for example useful to force the same orientation of
hydrogens as in a template. Obviously, this option requires for useful results that the general
orientation of the matched structure part is the same as that of the substructure pattern. This is
usually enforced by combining this option with the -align option in the rotate, redraw or
besteffort modes.

-spinachformula
-spinachformula formulaexpression

Define a formula match expression for spinach-class superatoms. The atom set matched by such
an atom must match the formula expression, otherwise the match is rejected. This can for
example be used to restrict the size and type of substituents. If no explicit spinach formula is set,
it is taken from ::cactvs(default_spinach_formula), where it can be globally changed.
Example:
match ss -spinachformula >=C1-2 {smarts:c1ccccc1[[CSPINACH]]} c1ccccc1C

match ss -spinachformula >=C1-2 {smarts:c1ccccc1[[CSPINACH]]} c1ccccc1CC

match ss -spinachformula >=C1-2 {smarts:c1ccccc1[[CSPINACH]]} c1ccccc1CCC

The first two expressions match. The carbon-spinach superatom gobbles up the entirety of the
ring substituent atoms, and it has one or two carbons for the first two examples. The third
example fails, because the substituent has too many carbons.

-stereo
-stereo none/absolute/relative

This option controls the global use of stereochemistry information of the substructure in the
match process. By default, stereochemistry is ignored. If this flag is set, stereochemistry present
in the substructure is checked against the stereochemical features in the structure. Stereo checks
are performed on a pseudo-3D model of the compound and do not use simple descriptor values
such as R and S.

If a stereo center in the substructure is unspecified, any stereochemistry, including unspecified
stereochemistry, is allowed on the structure side in the matching atoms or bonds. If
stereochemistry on an atom or bond of the substructure is specified, it must match the features
found in the structure. Unspecified stereochemistry for the matched bond or center on the
726 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
structure normally leads to a mismatch, except in case a nostereook flag has been set in
A_QUERY(flags) or B_QUERY(flags) for the substructure atoms or bonds. Currently, the
substructure match system handles stereochemistry of tetrahedral centers (including those
which involve free electron pairs), cis/trans double bonds, allenes (both odd and even) and
square planar geometries. Other geometries such as pentagonal bipyramids or octaeders are not
yet supported.

With stereo match mode absolute, the pseudo-3D configuration of substructure and structure
must match at all stereo centers and diastereomeric bonds specified in the substructure. The
alternative mode relative allows the opposite configuration at stereo centers (but not bonds),
provided that all matched stereo centers possess the opposite configuration. For example, an
S,S-substructure would match both an S,S- and R,R-structure, but not the S,R or R,S-isomer. In
effect, only stereo isomers are matched, but not diastereomers. The relative mode is obviously
useful only when more than one stereo center needs to be matched.

Explicit atom stereo groups, such as the MDL stereo groups, override the global absolute or
relative settings for the atoms involved.

Examples:
match ss -stereo none {[Cl,Br,I][C@H](CC)C} {C[C@H](CCC)Cl}

match ss -stereo absolute {[Cl,Br,I][C@H](CC)C} {C[C@H](CCC)Cl}

match ss -stereo absolute {[Cl,Br,I][C@H](CC)C} {C[C@@H](CCC)Cl}

match ss -stereo absolute {[Cl,Br,I][C@H](CC)C} {C[CH](CCC)Cl}

In this example set, the first line matches, because stereochemistry is ignored. The second line
does not match, because the target structure represents the opposite stereo isomer. The third line
does match, and the last line fails again because the substructure requested matching
stereochemistry at a center for which no stereochemical information was available on the
structure.

-strictexclusion
-strictexclusion 0/1

This is an expert option which controls how substructure fragments are handled which
exclusively consist of atoms which bear the attribute that they should not be matched. By
default, an attempt to match these fragments is performed after all other substructure fragments
have been matched, and their matched structure parts are blocked. If at this point a match of any
such fragment succeeds, the match is a failure. However, at this stage, structure parts which
could match the exclusion fragment are potentially covered by other substructure fragments and
thus protected, if the overlap mode disallows overlaps. If the flag is set, the check of these
fragments is performed before the normal substructure fragments are processed. If a match
occurs, the match process is immediately aborted.

-strictsmarts
-strictsmarts 0/1

If set, substructure argument specifications are decoded as strict SMARTS definitions. This
means for example that the non-aromaticity of upper-case elements in SMARTS is enforced.
Atoms for which aromaticity is not relevant need to be encoded with # notation, or as or-ed
uppercase and lowercase element symbol pair. This flag only has an effect if the substructure is
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 727

CACTVS Tcl and Python Scripting Language Reference
decoded within the match command. If the handle or reference of an existing ensemble is used
as substructure specification, its internal representation and match behavior is not changed and
was already defined by whatever decoder options were used when it was created.

-superatomexpansion
-superatomexpansion 0/1

If set, the match of a superatom is expanded to cover all structure atoms its definition
encompasses. In the atom map, all these structure atoms are mapped to the same substructure
superatom. By default, the match register only maps the first substructure/structure atom pair,
and the other structure atoms are not explicitly registered as matched. Superatoms are not the
same as expandable query atoms (see -queryatomexpansion).

-superatommapproperty
-superatommapproperty 0/1

If set, superatom matches are registered in property A_SUPERATOM_SSMATCH. In case there are
multiple matches, each match generates its own property instance. The value for the matched
structure atoms is the matching substructure superatom string copied from property
A_SUPERATOMSTRING.

-tautomers
-tautomers none/basic/advanced

By default, bond orders and location of hydrogen atoms in the structure are fixed. A tautomer
of a compound is considered a different chemical entity and does not match another tautomer.
If the tautomer match mode is explicitly set to none, the match procedure continues to work in
this style.

The alternative tautomer match modes basic and advanced introduce flexibility - at the cost of
longer processing times, and a risk of obtaining matches which are surprising at first glance.

Examples:
match ss -tauto none {C=CO[H]} CC(=O)C

match ss -tauto none {CC=O} C=C(O)C

match ss -tauto basic {C=CO[H]} CC(=O)C

match ss -tauto basic {CC=O} C=C(O)C

The first two sample lines with the substructures of an enol and a keto group do not find a match
with the structures of acetone and its keto form. The second pair of lines does find matches in
both cases.

Atom and bond maps can be used with tautomeric matches, but the results can be surprising. The
bond of a wandering hydrogen atom in the substructure is matched to the bond with the
hydrogen in the original structure. However, since the substructure hydrogen atom may actually
have been matched against a different virtual structure than the one passed to the match routine,
the partner atoms of the bonds to the hydrogens in the substructure and structure may not have
been mapped onto each other!

The difference between the basic and advanced modes is that the basic mode does not disturb
aromatic systems, while the advanced mode considers forms which involve the conversion of
728 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
aromatic systems into quinoids and vice versa, at the cost of extra processing time and less
precisely defined matches.

The option can be shortened to -tauto.

-terminal
-terminal 1/0

This is another expert flag, and equivalent to the -maxopenlinks option with a link count of one.
If it is set, a maximum of one bond, with the exclusion of bonds to hydrogen, may lead from the
matched part of the structure to any non-hydrogen unmatched atoms. Essentially, the
substructure is mapped into peripheral regions of the structure.

Example:
set nmatch [match ss -mode all CO C(O)C(O)C]

set nmatch [match ss -mode all -terminal 1 CO C(O)C(O)C]

In this example, the first line returns two matches, since the CO fragment can be matched onto
both CO groups in the structure. The second line finds only a single match. The substructure
cannot be matched onto the seconds CO group, because in that match the structure carbon atom
has two unmatched non-hydrogen neighbors, one leading to the first CO group, and the other
to the methyl group.

-timeout
-timeout nsecs

Set a time-out for the match operation. By default, or when a value of zero is given, the routine
does not time out. If a time-out occurs, the match procedure is stopped. If any matches have been
found so far, these are reported as results, without raising an error.

-transferstereo
-transferstereo none/atoms/bonds/both

If set to anything but none, which is the default, stereogenic atoms and/or bonds in the structure
that are matched by substructure atoms or bonds with defined stereochemistry, and do not
already possess their own stereochemistry descriptors, inherit stereochemistry from the
substructure. This is done by setting properties A_LABEL_STEREO or B_LABEL_STEREO in such a
fashion that the absolute configuration is the same as in the substructure. Depending on the atom
and bond labeling of the structure vs. substructure, this is not necessarily the same descriptor
value. In order for such a match to succeed, missing atom or bond stereochemistry on the
structure side needs to be allowed (see -allowmissingstereo option).

-useatomtree
-useatomtree 0/1

This flag is set by default, but may be reset with this option. If the flag is set, atom query
expression trees present in property A_QUERY(query) are evaluated and used to determine
match possibilities. If this flag is not set, query trees are ignored and only the flat atom match
attribute set is used.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 729

CACTVS Tcl and Python Scripting Language Reference
-useatomtype
-useatomtype 0/1

This flag is set by default. If it is reset, atom type information is not checked in matching.
-atomtype is an alias.

-usebondorder
-usebondorder 0/1/2

This flag determines whether the bond orders of substructure and structure bonds outside
aromatic systems is used for determining a match. By default this flag is set to 1, but may be
disabled with this option. This option affects only the basic bond match. Bond match query
expressions which explicitly or implicitly refer to property B_ORDER always use their
comparison results to determine matches. In rarely used mode 2, bond order matching is only
used for terminal structure bonds (i.e. those which contain an atom which participates only in a
single bond). -bondorder is an alias.

-usebondtree
-usebondtree 0/1

This flag is set by default, but may be reset with this option. If the flag is set, bond query
expression trees present in property B_QUERY(query) are evaluated and used to determine
match possibilities. If this flag is not set, query trees are ignored and only the flat bond match
attribute set is used.

-varbondglobal
-varbondglobal maxdelta

If this option is used, the global use of approximated fractional bond orders for coordinate
compound hypergraph matching is enabled for bonds with explicit approximated bond order
request values stored in property B_QUERY(varbo). The maxdelta parameter is the maximum
allowed average deviation of the matched structure bonds (with fractional order in
B_ORDER_ESTIMATE) vs. the substructure bonds that have a specified value in B_QUERY(varbo).

-varbondlocal
-varbondlocal maxdelta

If this option is used, the use of approximated fractional bond orders for coordinate compound
hypergraph matching is enabled for bonds with explicit approximated bond order request values
stored in property B_QUERY(varbo). The maxdelta parameter is the maximum allowed
individual deviation of the fractional query bond orders in B_QUERY(varbo) from the
structure-side fractional bond order values of matched bonds stored in property
B_ORDER_ESTIMATE.

-wedge
-wedge 0/1

If this flag is set, matching bonds on the substructure and structure sides must possess identical
wedge attributes (both wedge tip location and up or down direction). This option should only
be used under very specific circumstances. It is not a replacement for stereo center matching,
730 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
since wedges can be placed onto different bonds around a stereo center, and still represent the
same stereo isomer.

Maximum Common Substructure Matching
Maximum common substructures can be found with the mcss mode. Algorithmically, this works
by gradually increasing the -fuzz parameter until a match is found.

Example:
set eh1 [ens create CCC(=O)C]

set eh2 [ens create ClCCC]

match mcss -excludeh all $eh1 $eh2 amap

echo $amap

match mcss -mode all -excludeh all $eh1 $eh2 amap

echo $amap

The first command finds one substructure (first three carbons of the first structure mapping on
atoms 2-4 of the second structure. The second command reports also alternative solutions, all
with three carbons. Excluding the hydrogens from the match is not required, though it
accelerates the process.

All match options can be used for this command variant - including, for example, the -align
variants, which result in the structures being aligned by a common core.

Reaction Substructure Matching
Reaction substructure matching is very similar to simple substructure matching. The
substructure and reaction arguments are required to represent reactions, not ensembles. All
standard configuration options can be used. Configured match options are implicitly applied
both to the reagent and product side substructure matches.

In the normal case, both the reaction pattern and full reaction should be mapped, i.e. both sides
of the reactions should possess property A_MAPPING which contains the label of the atom on the
other side corresponding to the atom bearing the property value, or 0 for atoms which are only
present on one side. This property is automatically set on the reagent and product ensembles
when reading reaction files with mapping information, or decoding a REACTION SMILES with map
IDs. The reaction match algorithm automatically uses the mapping to construct an anchor table
for the second stage matching. This second-stage anchor table is independent of an anchor table
specified as command argument - a custom anchor table will be used only in the first-stage
match if it is set.

Matching happens in two levels of recursion. First, a normal substructure match is attempted
between the substructure ensemble with the reagent E_REACTION_ROLE and the corresponding
reagent ensemble of the full reaction. If that succeeds, the query ensemble with the product
E_REACTION_ROLE is matched in a recursive call against the corresponding full reaction product
ensemble. If both the query and the full reaction have A_MAPPING, an additional constraint is
enforced that the product query atoms with a non-zero A_MAPPING can only match the full
product atoms which have the same A_MAPPING as the full reagent atoms which were matched
by the reagent query atoms with the same A_MAPPING as the current product query atom.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 731

CACTVS Tcl and Python Scripting Language Reference
This mechanism ties the two query sides together and makes a full reaction query different from
a query which only looks for the independent presence of the query patterns in both sides of the
reaction. It is possible to run a reaction query without the implicit A_MAPPING tie by omitting the
mapping, either on the query or the full reaction. In that case, the effect is an independent match
of the patterns on both sides.

A_MAPPING is computable on the full reaction or reaction query pattern, but the current
implementation is comparatively underoptimized, and for more complex query patterns likely
to report spurious results. In general, reaction mapping has a very problematic algorithmic
complexity power law (NP problem). The toolkit implementation only works reliably and with
usable speed for small molecules and simple query patterns. The reaction match command does
not attempt to compute the property (neither on the pattern nor on the full reaction side) if it is
not present.

If match variables are configured to capture detailed information on the match result, reaction
substructure matches utilize two independent sets - one for the reagent-side match and one for
the product-side match. The format of results stored therein is the same as for normal
substructure matches. It is possible to configure any subset of these variables and to ignore other
information.

Examples:
set xh1 [reaction create c1ccccc1C(=O)C>>c1ccccc1C(O)C]

set xh2 [reaction create {[c:1]1[c:2][c:3][c:4][c:5][c:6]1[C:7](=[O:8])[C:9]
>>[c:1]1[c:2][c:3][c:4][c:5][c:6]1[C:7]([O:8])[C:9]}]

Two identical reactions (reduction of phenylketone), without and with atom mapping. The
reactions may of course be created from other formats, such as MDL RXN files, KEGG reaction
IDs, or CHEMDRAW files.
set xss1 [reaction create {[c:1]-[C:2]=[O:3]>>[c:1]-[C:2]-[O:3]}]

echo [match rss $xss1 $xh1] (1)

echo [match rss $xss1 $xh2] (1)

Both match - the first reaction because no reaction mapping is present on the reaction and so this
is a simple double substructure check - while in the second case the atoms match as indicates
by the mapping, and the bonds change as required.
set xss2 [reaction create {[c]-[C]=[O]>>[c]-[C]-[O]}]

echo [match rss $xss2 $xh1] (1)

echo [match rss $xss2 $xh2] (1)

Both match because there is no mapping on the query, and this again is a simple double
substructure match.
set xss3 [reaction create {[c]-[C]=[O]>>[c]-[C]-[c]}]

echo [match rss $xss3 $xh1] (1)

echo [match rss $xss3 $xh2] (1)

Once more: No mapping, simple double substructure match - matching the right-side pattern
substructure on a different location unrelated to the left side is no error.
set xss4 [reaction create {[c:1]-[C:2]=[O:3]>>[c:1](-[C:2])-[c:3]}]

echo [match rss $xss4 $xh1] (1)

echo [match rss $xss4 $xh2] (0)
732 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
But this does not work any longer with mapping present both on the pattern and the full reaction.
The third query atom does not get converted to a carbon in the reaction. Having mapping on both
the full reaction and the query is the standard case for reaction substructure matching.
set xss5 [reaction create {[c:1]-[C:2]-[O:3]>>[c:1]-[C:2]=[O:3]}]

echo [match rss $xss5 $xh1] (0)

echo [match rss $xss5 $xh2] (0)

Here the pattern is for the reverse reaction, not the forward direction. Since the direction of the
reaction is encoded in the reaction object, this does not work. See the reaction reverse
command for a possibility to reverse the encoding of a reaction.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 733

CACTVS Tcl and Python Scripting Language Reference
Commands for Structure-unrelated Objects

The CACTVS system maintains a set of objects which are not directly connected with chemical
entities. These objects do not participate in the standard property scheme. Rather, they are
configurable only through a set of fixed attributes, which is not extensible.

The following commands are currently used to manage non-chemical objects:

• cmdx

TCL extensions similar to standard TCL packages, but with more metadata

• dbase

perform interaction with database servers

• dbx

manage database interface modules

• factory

manage chemical data processing workspaces

• filex

manage handler modules for chemical structure and reaction file formats

• filter

manage property filters

• lhasa

manage LHASA/CHMTRN-style chemical reaction rule processing

• knode

manage KNIME node objects.

• keyx

handler modules for associating property data with keys from database tables

• netx

manage handler modules for network file formats

• prop

manage property definitions

• repx

manage interface modules for handling alternative representations of chemical objects

• soap

manage SOAP communication and XML parsing

• station

manage pipelined chemical structure data processor objects

• tablex

manage handler modules for table file formats

• typex

manage handler modules for extended data types
734 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The cmdx Command

The cmdx command is used to manage TCL command extensions. CACTVS TCL command extensions
are an upward-compatible extension to standard TCL packages. It is possible to load them by means
of the standard TCL commands load or package require, but if loaded in that fashion, the additional
metadata and attributes are not accessible.

This command is not supported in the PYTHON interface.

The following subcommands exist:

cmdx defined
cmdx defined cmd

Check whether a module for the specified command is either already loaded, or available. If a
module can be found, and it not yet loaded, it is automatically loaded.

The return value is a boolean status code. No error is generated when the command cannot be
resolved to a module.

cmdx exists
cmdx exists cmd

Check whether a module for the specified command is already loaded. No attempt is made to
auto-load a module if it is not already loaded.

The return value is a boolean status code. No error is generated when the command cannot be
resolved to a module.

cmdx get
cmdx get cmd attribute
cmdx get missed

Query the value of an attribute of the extension module. Tcl command extension modules are static.
There are no cmdx create or cmdx set commands to define command extensions in a script, or to
modify the attribute set of a module. The following attributes can be queried:

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author works for.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 735

CACTVS Tcl and Python Scripting Language Reference
• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of a command extension, as free text.

• authorurl
A URL with information on the author, or an empty string if unset.

• category
A category string to be used if the module is stored in a repository.

• classuuid
The base class UUID of this module.

• comment
A free-form comment.

• date
The date of the last change of the module source code.

• doi
A digital object identifier for the module, if defined.

• email
An email address of the author to facilitate contact.

• infourl
A URL with information on the module, or an empty string if unset.

• keywords
A list of keywords associated with the module.

• license
The license class associated with this module.

• licenseurl
A URL with details about the module license.

• literature
A free-form literature reference.

• name
The name of the command.

• objectfile
The full path name of the loaded object file.

• orcid
The ORCID code of the author (see www.orcid.org).

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.
736 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• references
Cross references of the module. This is a nested list of class UUIDs and reference type tags.

• regid
In case this is a registered module, its official ID. Unregistered modules report zero.

• sourcefile
The name of the source file of the module, if available.

• version
Version information. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The version UUID associated with this module.

The second variant with the missed special command name lists all commands which could not be
resolved via load subcommands - which could have occurred implicitly via the standard (but
extended to include cmdx load attempts) TCL external command executable lookup function. The
cmdx command maintains a cache of such misses in order to avoid searching the command extension
path repeatedly, which can generate significant network traffic if this happens frequently. On the
other hand, it also means that it is not possible to supply a cmdx module late during a script run when
a command load attempt has already failed.

cmdx list
cmdx list ?pattern?

Get a list of all currently loaded CACTVS TCL command extensions. This list does not include standard
TCL extensions. If desired, the list can be filtered by a string match pattern.

cmdx load
cmdx load cmd ?objectfile?

Explicitly load a command extension module. If the module is already loaded, the current version
is unloaded first. If no specific object file (a shared library on Unix/Linux, a DLL on Windows, a
bundle file for MacOSX) is specified, the standard name of the module file is automatically
generated from the data type name, and then the file searched in the directories in the data type
handler module path. The module path can be customized in the control variable
::cactvs(cmdxpath).

After loading, the cmd command is available in the interpreter which executed the script command.
It is essentially indistinguishable from built-in commands. Command extensions are global and
automatically available both in TCL slave interpreters (for scripted property computations) and
forked threading TCL interpreters, provided that these interpreters are created after the extension has
been loaded into the main interpreter. Pre-existing interpreters of these types do not retroactively
obtain access to the command when it is loaded into the main interpreter. Loading extensions
directly into slave interpreters or thread interpreters is not possible, because these do not support the
cmdx command. Because of these complications, command extensions should preferably be loaded
at the very beginning of a script, before threads are forked or property slave interpreters are
instantiated.

The return value of the command is the slot in the command extension table the module has been
loaded into.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 737

CACTVS Tcl and Python Scripting Language Reference
cmdx subcommands
cmdx subcommands

Return a list of all subcommands of the cmdx command.

cmdx unload
cmdx unload ?cmd?..

Unload one or more TCL extension modules. It is an error to specify the name of a module which is
not loaded. It is not advisable to unload a command extension which has already been exported to
slave or thread interpreters, because this can lead to crashes if these interpreters attempt to use the
extension after it has been unloaded.
738 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The dbase Command

The dbase command is used to interact with database servers. While the command provides a
generic, database-independent set of features, the actual interaction is performed via loadable
database driver modules. These are either loaded explicitly (via the dbx load command) or
automatically be referring a known database type name.

The dbase command provides the following subcommands:

dbase close
dbase close all
dbase close ?dbhandle?...
db.close()
Dbase.Close(?dbref/dbhandle?,...)
Dbase.Close(“all”)

Close open database connections held by the specified database access objects and destroy the
connection manager objects. The handles passed to this command are no longer valid after the
command has been executed.

The magic handle name all can be used to close all currently opened database connections.

Example:
dbase close all

The return value is the number of closed database objects. For the sake of consistency with other
object commands, the command dbase delete is an alias to this command. Both commands do not
delete any database on the server.

dbase columnquery
dbase columnquery dbhandle sqlstatement ?tablehandle|new?
db.columnquery(query=,?table=?)

This command is a variant of the dbase query command. By default, the command returns a nested
list of rows and columns. This command only returns the first result column, if any are produced,
and omits the outer nesting level. This can make the processing of results easier. Example:
set smileslist [dbase colquery $dbhandle “select smiles from moltable”]

If a table handle is specified as target, or a table was created, the return value is the table handle or
reference.

The command can also be accessed under the shortened name colquery.

dbase connect
dbase connect dbhandle
db.connect()

Establish a connection to the database server. An error is thrown if the connection does not succeed.
This statement is primarily useful to verify the correctness of the attributes set by means of dbase
create and dbase set commands. For the execution of database commands it is not required. In
case a database connection was not yet established when communication with the server is required,
an attempt to open the connection is made automatically.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 739

CACTVS Tcl and Python Scripting Language Reference
If the dsn (data source name) attribute has been set, it has precedence over the connection parameters
defined by the database host, port, database, user etc. attributes.

The command returns the original database connection handle or reference.

dbase create
dbase create ?attribute value?...
dbase create dict
Dbase(?attribute,value?,...)
Dbase(dict)
Dbase.Create(?attribute,value?,...)
Dbase.Create(dict)

Create a new database access object. Any number of database access objects can be in existence at
the same time, and be connected to the same or different databases, potentially using different
database drivers. If no attributes are specified, a default database object is created. Some of the
default values can be modified via elements in the ::cactvs() control array:

• default_database
The name of the database. The default is the user name.

• default_database_host
The database host. The default is localhost.

• default_database_options
An option string for drivers which support this. Empty by default.

• default_database_password
The database password, if required. Empty by default.

• default_database_type
The database type. Set to mysql by default. The default port is automatically set to the
default communication port of the database type (3306 for the mysql case).

• default_database_user
The user name used to connect to the database. By default, this is the same as the user name.

The attributes which may be set by this command the same as in the dbase set command and
explained there. The return value of the command is the database object handle, which is used to
identify the object in all further operations.

Example:
dbase create dbtype mysql database samples host db3 user beaker password muppet

Note that this command only sets up the database interface configuration, but does not immediately
open a connection. A connection to the database is only opened the first time there is a need to
communication with the database server, of the dbase connect command is executed. Until then,
it is for example possible to set additional parameters via the dbase set command which are used
when the connection is finally established.

dbase open is an alias.
740 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
dbase disconnect
dbase disconnect dbhandle
db.disconnect()

Close the connection to the database established via a dbase connect command or implicitly by
data retrieval commands. The interface object remains valid and can, potentially after a change of
attributes, reconnect to a database.

In case the interface object was not yet connected, the command does nothing.

The command returns the original database connection handle or reference.

dbase dup
dbase dup dbhandle
db.dup()

Duplicate the attributes of an existing database interface object into a new object. The return value
is the handle or reference of the new interface object.

This command only copies the configuration options, but does not inherit the database connection,
or any related state information. The new interface object is in the same state as if it were created
via a dbase create statement with a complete set of attribute and value pairs.

dbase exec
dbase exec dbhandle sqlstatement ?tablehandle?
db.exec(query=,?table=?)

This command is a variant of the dbase query command. The difference is that any returned results
are discarded and the return value is the current boolean value of the iserror database connection
attribute. In case of severe errors. a TCL or PYTHON error is generated.

dbase exists
dbase exists dbhandle ?database?
db.exists(?database=?)
Dbase.Exists(connection=,?database=?)

Test whether the specified database is visible via the current connection or not. If no database name
is specified, the current value of the database attribute of the interface object is used for the test. The
return value is the boolean test result. If the connection cannot be established, an error is generated.

dbase flush
dbase flush ?dbhandle?
db.flush()
Dbase.Flush()

This command flushes the internal database caches globally or only those associated with the
connection. The toolkit remembers certain information, such as database and table names, or
database column types, in order to accelerate processing. In case the database content was modified
by deleting, adding or altering tables, or full databases have been deleted, renamed, or created, it is
advisable to use this command to make sure that the cached information does not become outdated
and a source of error.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 741

CACTVS Tcl and Python Scripting Language Reference
In circumstances where a database my be accessed via more than one connection, it is best to flush
the caches globally, or on all connections which operate on that database if the exact set of affected
interface objects is known. Extraneous flushing of the caches does not change any valid results, but
can lead to performance degradation.

dbase get
dbase get dbhandle attribute
db.get(attribute)
db.attribute
db[attribute]

Read a database interface object attribute. The list of attributes is explained in the paragraph on the
dbase set subcommand.

Example:
set id [dbase get $dbhandle insertid]

dbase itemquery
dbase itemquery dbhandle sqlstatement ?tablehandle|new?
db.itemquery(query=,?table=?

This command is a variant of the dbase query command. By default, the query command returns
a nested list of rows and columns. This command only returns the first result item, from the first row
and first column, if any are returned, and omits the standard two layers of list wrappers. This can
make the processing of results easier. Example:
set size [dbase itemquery $dbhandle “select count(*) from moltable”]

If a table handle is specified as target, or a table was created, the return value is the table handle or
reference.

dbase list
dbase list ?pattern?
Dbase.List(?pattern=?)

Return a list of all currently defined database connector handles.

dbase query
dbase query dbhandle sqlstatement ?tablehandle|new?
db.query(query=,?table=?)

Execute an SQL statement on the database server. The allowed SQL syntax is dependent on the
capabilities of the connected server.

The default return value is, in the absence of the optional table handle argument, a nested list of rows
and columns, with the rows as the outer list level. The maximum number of returned rows can be
controlled by means of the maxrows interface object attribute. If table column data type information
is available, the internally used TCL or PYTHON result objects are matched to the column type for
increased performance. Otherwise, the returned items are strings.

This command is not limited to the execution of SQL select statements. Any supported statement
can be executed. In case it does not return a result tuples, an empty set is returned.
742 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
In case the optional target table handle argument is supplied, the result data is directly stored in the
specified table object. When the argument is present and explicitly set to an empty string, or the
magic value new, a new table is created, which is automatically destroyed in case the command fails.
An attempt is made to map existing table columns to the names of the database query result columns.
In case no matching table object columns can be found, they are added automatically to the right
with suitable data types, names, precision, width, and so on. Existing table columns which do not
receive data from the result set are set to NULL values in the new rows. Existing table object rows
are not deleted when the command is run. The retrieved rows from the database result set are
appended. In this mode, the return value of the command is the table handle.

Example:
set th [table create]
dbase query $dbhandle \

“select smiles,name from moltable where logp between 5.0 and 6.0” $th
set nrows [table get $th nrows]

For convenient handling of single-row, single-column and single-item queries, there are the
command variants rowquery, columnquery and itemquery which omit one or two levels of list
nesting, and only retrieve a single row, column or item, ignoring any additional data returned by the
database.

dbase matrixquery is an alias for this command which emphasizes the relationship of this
command to the rowquery, columnquery and itemquery command variants.

Earlier versions of the toolkit returned not just the table handle, but a list of the handle and the row
and column counts if the query result data destination was a new or existing table. This was changed
in version 3.4.6.18 because it was not found useful for practical scripting.

dbase queryloop
dbase queryloop dbhandle sqlstatement varname ?offset? ?maxrows? body

Execute a loop over a result set returned by the SQL query. For every result row, the row values are
stored in a list variable and then the body code is executed. The row variable is locally visible from
within the body code. Within the body code, standard loop control statements like continue and
break can be used in the normal fashion. Optionally, an offset into the result set may be specified
(default 0) and a maximum number of iterations (default -1, no limit).

Example:
dbase queryloop $dh “select * from molecules” row {

puts $row
}

dbase read
dbase read dbhandle ?sqlfile?...
db.read(?sqlfile?,...)

Open the specified file(s) and extract SQL commands one by one. Every SQL command is then
processed by the equivalent of a dbase exec statement. Processing stops if an error is encountered.

Individual SQL statements in the file may span multiple lines, and the file may contain empty lines
or SQL-compatible comments, which are skipped. Extended $-quoting (as in nested a vs. b
sections) is currently not handled as explicit quoting which temporarily suspends the detection of
the end of a statement. Only standard single-character quoting and $$ quoting (as well as their
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 743

CACTVS Tcl and Python Scripting Language Reference
escaping within quoted sections) is explicitly parsed, so extended quoting must only be used within
standard-quoted sections if their contents could be misconstrued as containing statement ends.

The command returns the original database connection handle or reference.

dbase ref
Dbase.Ref(dbhandle)

PYTHON-only method to get a reference of the connector from its handle.

dbase rowquery
dbase rowquery dbhandle sqlstatement ?tablehandle|new?
db.rowquery(query=,?table=?)

This command is a variant of the dbase query command. By default, that command returns a nested
list of rows and columns. This command only returns the first result row, if any are received, and
omits the column nesting level. This can make the processing of results easier. Example:
dbase rowquery $dbhandle “select smiles,weight from moltable where cas=’71-43-2’”

If a table handle is specified as target, or a table was created, the return value is the table handle or
reference.

dbase set
dbase set dbhandle ?attribute value?
dbase set dbhandle dictionary
db.set(?attribute,value?,...)
db.set(dict)
db.attribute = value
db[attribute] = value

Set one or more attributes of the database interface object. Not all attribute changes have an effect
after the database connection has been established. Generally, attribute changes which would
necessitate the closing and re-opening of the database connection to a different host, or with
different access credentials, are ignored after the connection has become active. If such a change is
needed, a dbase reset command should be issued, or the current interface object should be
discarded and a new one created.

Some attributes are read-only. They are listed here nevertheless, because the dbase get command
refers to this section.

The following attributes are currently supported:

• appname
The application name, which may be of interest to the database interface driver. By default
it is set to an empty string, and most database interfaces ignore this attribute.

• blocksize
The transmission block size used for database communication. The default, and in anything
by exceptional circumstances the only value ever needed, is -1, which means to use the
driver-specific default. This attribute is only of interest to database drivers which support
this concept, for example the TDS driver for connecting to MS SQL SERVER databases.
744 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• clientinfo
The client-info string provided by the database interface library, if it has such a feature. This
attribute is read-only.

• clientname
The client name, which may be of interest to the database interface driver. By default it is
set to an empty string, and most database interfaces ignore this attribute.

• connected
A boolean read-only value indicating whether the connection to the database server has been
established or not.

• connectionstring
For database interface libraries which support this concept, a connection string encapsulates
all required access information into a single string. If it is not set, an attempt is made to
construct a suitable connection string from the basic host, port, user, password etc. attributes
if the interface requires it. An explicitly set connection string is reset if the host, port etc.
attributes of the interface object are changed.

• database
The name of the current database. If it is changed between calls to the database server,
interface commands are automatically issued to synchronize the name of the current
database before the next SQL command is executed. The name of the initial database is
copied from the value of the control variable ::cactvs(default_database) if it has not
been set explicitly by means of dbase create or dbase set statements. In case of the
Oracle interface, the value is a service/schema name from the Oracle tnsnames.ora
configuration file, since Oracle does not have a simple concept of a database.

This attribute is not the same as databases (plural).

• databases
This is a read-only attribute. It returns a list of the databases which are visible via the current
connection. In case of Oracle, the list only contains the current service/schema name. No
attempt is made to parse the tnsnames.ora configuration file.

This attribute is not the same as database (singular).

• dbtype
The type of the database to connect to. The default is copied from the value of the control
variable ::cactvs(default_database_type). If a driver for the specified database type is
not yet loaded, an attempt is made to auto-load it. The possible values for this attribute
depend on the set of available database interface modules. Examples are mysql, odbc, tds (to
connect to MS SQL SERVER), postgres and oracle.

• description
A free-form string which can be used to add a descriptive text. The default is an empty
string.

• domain
The database domain, if the database driver uses this concept. The default is an empty string.

• driver
The name of the driver module for meta-interfaces such as ODBC.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 745

CACTVS Tcl and Python Scripting Language Reference
• dsn
For the ODBC driver, the data source name. In a properly configured ODBC environment,
this name is used to look up other required connection data, such as host name and
applicable driver module, via a single identifier. In a CACTVS installation, the database source
name definition file resides in the odbc subdirectory of the data directory (control variable
::cactvs(data_directory)). The DSN string is reset when the host, port, user, password
or database attributes are modified.

• host
The name of the database host. The default database host is copied from the value of the
control variable ::cactvs(default_database_host).

• hostinfo
The host-into string provided by the database interface library, if it has such a feature. This
attribute is read-only.

• insertid
The last automatically generated id received from the database, for example from inserts
into database tables with auto-increment columns. This is not supported on all database
interfaces - for example, ORACLE requires you to query sequence data explicitly. The value
is read-only.

• iserror
A read-only boolean flag to indicate that the last database operation resulted in an error or
warning. Not all database operation problems are translated into TCL script language errors.
In order to become aware of non-critical problems, is flag should be checked in robust
applications.

• language
The language used for database interface messages, if the interface library supports this.

• lastquery
The last SQL query executed on the database. This attribute is automatically updated when
dbase query/exec/rowquery/columnquery/itemquery commands are run, but there are
also some conditions when implicitly assembled SQL commands are run which are also
tracked here. Setting this attribute is possible, but not very useful in normal script
environments.

• logfile
The name of a file to use logging for this connection, if the database interface library
supports such a feature.

• maxrows
The maximum number of rows read in a result set from a query. If the database interface
supports this function, this is enforced on the server side. In any case, the dbase query
command variants honor this attribute on the client side. If this attribute is set to zero or a
negative value (the default), no row limit applies.

• message
The last message string received from the database. This attribute is read-only. msg is an
alias for this attribute.
746 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• null
The string value used to represent NULL database values in TCL return results. By default, it
is am empty string, but this is indistinguishable from zero-length strings and therefore it is
sometimes useful to change it to something else, such as the string “NULL”. For PYTHON,
None values are always used.

• options
An option string which is passed to the database driver, if it supports this concept. The
default option string is copied from the value of the control variable
::cactvs(default_database_options).

• password
The password sent to the database server as part of the credentials. If no password is needed,
use an empty string. The default password is copied from the value of the control variable
::cactvs(default_database_password).

• port
The communication port used to talk to the database server. When the database type is set,
it is automatically set to the default port for that database (i.e. 3306 for mysql). If a custom
port is used, you therefore need to set it after the database type has been specified.

• protocolinfo
The protocol-info string provided by the database interface library, if it has such a feature.
This attribute is read-only.

• protocolversion
The protocol version used by the interface library, if it can supply this information. This
attribute is read-only.

• serverinfo
The server-info string provided by the database interface library, if it has such a feature. This
attribute is read-only.

• socket
A the name of an Unix domain named socket, if it is used by the database interface. This
attribute should be considered read-only except for database wizards who need to cope with
non-standard database server installation settings on the local host.

• table
The current table of interest. This is used for example in constructing database URLs. It has
no direct influence on SQL query or command execution, and is not automatically updated
when running SQL commands.

• tables
This is a read-only attribute. It returns a list of the database tables visible in the current
database via the current connection.

• textsize
The maximum text block size used in database communication. The default, and in anything
by exceptional circumstances the only value ever needed, is -1, which means to use the
driver-specific default. This attribute is only of interest to database drivers which support
this concept, for example the TDS driver for connecting to MS SQL SERVER databases.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 747

CACTVS Tcl and Python Scripting Language Reference
• trace
A boolean flag which is used to enable or disable SQL statement execution tracing. By
default tracing is off. The output is written to the file specified in the tracefile attribute.

• tracefile
The name of a file to write database access trace information to. The default is sql.log.

• timeout
The time-out value in seconds. If a database response it not received in time, an error results.
If the value is set to 0 (the default), no time-out is active.

• url
A database URL constructed from the currently set database object attributes (host, port
where applicable, database/schema/service name, user, password, table of interest, query).
This argument is read-only.

• user
The user name used to provide credentials to the database server. By default, it is the
database user set in ::cactvs(default_database_user), which again by default is the
same as the login user name.

dbase tablequery
dbase tablequery dbhandle sqlstatement
db.tablequery(query)

This is a short form of dbase query with the optional table argument set to #new. The command
returns the handle or reference of a new table with the result data, and the query expects multiple
rows and columns of data.

dbase subcommands
dbase subcommands
dir(Dbase)

This command returns a list of all the defined subcommands of the dbase command.
748 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The dbx Command

The dbx command is used to manage database driver extensions. The command has the following
subcommands:

dbx defined
dbx defined dbtype
Dbx.Defined(dbtype)

Check whether a driver module for the specified database type is either already loaded, or available.
If a module can be found, and it not yet loaded, it is automatically loaded.

The return value is a boolean status code. No error is generated when the database type cannot be
resolved to a module.

Example:
dbx defined mysql

dbx exists
dbx exists dbtype
d.exists()
Dbx.Exists(dbtype)

Check whether a driver module for the specified database type is already loaded. No attempt is made
to auto-load a module if it is not already loaded.

The return value is a boolean status code. No error is generated when the database type cannot be
resolved to a module.

Example:
dbx exists postgresql

dbx get
dbx get dbtype attribute
d.get(attribute)
d.attribute
d[attribute]
Dbx.Get(dbtype,attribute)

Get an attribute the database driver module. The following attributes can be queried:
• aliases

A list of recognized alias names of the database type.
• builtin

A flag indicating whether this driver module is built-in. Built-in module cannot be unloaded.
• address_city

The city part of the author contact address.
• address_country

The country part of the author contact address, following the ISO3166 standard.
• address_state

The state part of the author contact address. Empty if not applicable.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 749

CACTVS Tcl and Python Scripting Language Reference
• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the module, as free-format text.

• authorurl
A URL with information on the author, or an empty string if unset.

• blobsize
The default maximum binary blob size.

• category
A category string to be used if the module is stored in a repository.

• classuuid
The base class UUID of this database interface module

• comment
A free-form comment

• date
The date the module source code was last changed.

• doi
A digital object identifier for the module, if defined.

• email
An email contact address of the developer of the module.

• flags
A collection of flags indicating special capabilities of the module. The only flag currently
used is sqlarrays, indicating support for arrays as column data types.

• history
Module history data

• infourl
A URL with information on the module, or an empty string if unset.

• keywords
A list of keywords associated with the module.

• license
The license class associated with this module. Setting the license to a standard type updates
the associated URL with a standard location.
750 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• licenseurl
A URL with details about the module license.

• literature
A free-form literature reference.

• name
The official name of the module. Since the information may be queried via an alias name,
this can be different from the command argument.

• objectfile
The name of the currently loaded object or shared library file implementing the functions
of the selected database interface module.

• orcid
The ORCID code of the author (see www.orcid.org).

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• port
The default TCP/IP port used for communication with database servers.

• protocolversion
The primary protocol version this module supports.

• references
Cross references of the module. This is a nested list of class UUIDs and reference type tags.

• regid
For officially registered data driver modules handlers, this is the assigned registration ID.
Unregistered modules report zero.

• slot
The driver table slot this module is loaded into.

• sourcefile
The name of the source file for the database interface module.

• textsize
The default maximum text blob size.

• version
Version information for the module.This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The UUID associated with this module version.

Example:
dbx get mysql version

dbx list
dbx list ?pattern?
Dbx.List(?pattern=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 751

CACTVS Tcl and Python Scripting Language Reference
Return a list of all currently loaded database driver modules. The output may be filtered by a string
pattern. Its syntax is the same as in standard TCL command string match.

dbx load
dbx load dbtype ?objectfile?...
dbx load all
Dbx.Load(dbtype,?objectfile?,...)
Dbx.Load(“all”)

Load or re-load a database interface module. If no object file name is specified, the name of the
shared library, DLL or bundle is automatically constructed from the database type name, and the
module is located by traversing the database module path, which is accessible via the control array
element ::cactvs(databasepath), but this mechanism can be overridden by specifying an explicit
object file with or without a path.

The all command variant locates all currently available database interface modules in the module
search path and loads these. This is primarily useful for automatic database interface attribute
documentation.

Example:
dbx load mysql

Above statement locates and loads the standard driver for interacting with MYSQL and MARIADB

databases. Depending on the platform, the object file would be named dbx_mysql.so, dbx_mysql.dll,
etc.. It is located in the module directory of a standard Cactvs distribution.

In case the interface module is already loaded, the current module is unloaded first, so this command
can be used to update a driver in a running application. Nevertheless, swapping a driver while
database access objects which rely on this driver are in existence in the current process is usually
not a good idea, though the details on whether this is possible or not depend on the module
implementation.

For TCL, the return value of the command is the slot in the handler module table the module has been
loaded into. This corresponds to the value of the slot attribute which can be queried via dbx get.
For PYTHON, the return value is a module reference.

dbx ref
Dbx.Ref(dbtype)

PYTHON-only method to get a reference of the module, which allows terser attribute retrieval
commands and other operations.

dbx subcommands
dbx subcommands
dir(Dbx)

This command returns a list of all the defined subcommands of the dbx command.
752 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The filex Command

The filex command manages chemical structure and reaction file I/O modules. In many cases,
actively loading of I/O modules is not required because of the built-in auto-load mechanism. If the
toolkit encounters a file of unknown type, an attempt is made to load a suitable module by
constructing the name of the module from the file suffix. However, that mechanism fails in case the
file does not have a suffix, or a non-standard suffix, or the data source is not a file but some other
stream, such as a network connection, a pipe, or a standard I/O channel. In these cases, explicit
managing of I/O modules is required.

The filex command has the following subcommands:

filex defined
filex defined format
Filex.Defined(format)

A check to determine whether the specified format is supported by an I/O module. In case the
appropriate handler is not yet loaded, an attempt at auto-loading is made. For the equivalent
command without auto-loading, see filex exists. The result value is a boolean status code.

filex exists
filex exists format
Filex.Exists(format)

A check to determine whether an I/O module for the specified format is currently loaded. This
command variant does not attempt auto-loading. The format name may be either the primary name
of a loaded module, or any of alias format name aliases the module recognizes. For the equivalent
command with auto-loading, see filex defined. The result value is a boolean status code.

filex get
filex get format attribute
fx.get(attribute)
fx.attribute
fx[attribute]
Filex.Get(format,attribute)

Query the value of an attribute of the I/O module. The list of attributes is detailed in the paragraph
on the filex set command.

In case the format argument cannot be resolved by an active module, an attempt to auto-load a
suitable module is made.

filex list
filex list ?pattern?
Filex.List(?pattern=?)

List the names of all currently loaded I/O modules. A string match pattern may be used to filter the
result list. The variant filex modules is an alias to this command.

filex load
filex load format ?objectfile?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 753

CACTVS Tcl and Python Scripting Language Reference
filex load all
Filex.Load(format,?objectfile?,...)
Filex.Load(“all”)

Explicitly load an I/O module. If the module is already loaded, the current version is unloaded first.
If no specific object file (a shared library on Unix/Linux, a DLL on Windows, a bundle file for OSX)
is specified, the standard name of the module file is automatically constructed from the format name,
and then the file searched in the directories in the I/O module path. The module path can be
customized in the control variable ::cactvs(filexpath).

For TCL, the return value of the command is the slot in the module table the module has been loaded
into. This corresponds to the value of the slot attribute which can be queried via filex get. For
PYTHON, the return value is a module reference.

The second form of the command scans the currently set I/O module extension search path and loads
all accessible modules which are not yet in memory. Modules which are already active in the running
application are not unloaded, and only a single instance of each I/O module, even if present under
various alias names in the module directories, is loaded. This form of the command does not return
a value.

filex modules
filex modules ?pattern?
Filex.Modules(?pattern=?)

This is an alias for filex list.

filex ref
Filex.Ref(format)

PYTHON-only method to get a reference of the module, which allows terser attribute retrieval
commands and other operations.

filex reload
filex reload format ?objectfile?
Filex.Reload(format,?objectfile?,...)

A variant of the filex load command which fails if the I/O module was not previously loaded.
There is no all variant of this command.

filex set
filex set format ?attribute value?...
filex set format dict
fx.set(?attribute,value?,...)
fx.set(dict)
fx.attribute = value
fx[attribute] = value
Filex.Set(format,?attribute,value?,...)
Filex.Set(format,dict)

Set attributes of the I/O module. Compared to other classes of modules, there are rather few
attributes in a module which can be set in a meaningful manner. Some of the listed attributes are
754 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
read-only. They are included in this section because it is cross-referenced from the filex get
command. These are the supported attributes:

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author of the module works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• aliases
A list of alternative names of for the formats the module supports.

• author
The author of the module.

• authorization
An authorization string, for example a service login URL. This is for example used in the
dropbox meta I/O module. In that case, it is a Web URL generated by the module from the
compiled-in application secret. Using that URL, the user must log into a DROPBOX account
and approve access to the files of that account by the application. Only after this has been
performed, opening DROPBOX files with a molfile open command succeeds.

• authorurl
A URL with information on the author, or an empty string if unset.

• builtin
A boolean read-only boolean flag indicating whether the module is built-in.

• capabilities
A list of features and behaviors the I/O module supports. Only a few of the flags which can
be found here can be changed in a productive fashion. These include:

disabled
Temporarily disable this module, without unloading it

nommap
Never attempt to memory-map files of this format
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 755

CACTVS Tcl and Python Scripting Language Reference
• category
A category string to be used if the module is stored in a repository.

• classuuid
The base class UUID of this module.

• comment
A free-form string comment on the module.

• date
The data the module source was last modified.

• doi
A digital object identifier for the module, if defined.

• email
The email address of the author of an I/O module.

• ensproperty
The name of a property which is used to store structure information in the file. This is only
used for file formats where storing structure data is a minor objective, not for standard
chemical structure exchange formats.

• functions
This attribute is a read-only list of the classes of available functions in the function table of
the module. Developers can use this information to determine whether a module is
input-only or output-only, or supports acceleration methods for scanning structure files.

• id
The internal format ID of the module in the current program run. This is usually identical
to the slot in the extension table for module was loaded or compiled into.

• infourl
A URL with information on the module, or an empty string if unset.

• keywords
A list of keywords associated with the module.

• license
The license class associated with this module. Setting the license to a standard type updates
the associated URL with a standard location.

• licenseurl
A URL with details about the module license.

• literature
A free-form literature reference.

• mimetype
The MIME type associated with the file format, for example chemical/x-mdl-molfile. This
information is used for constructing HTTP headers for data transfer in Web environments
and similar tasks.
756 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• name
The primary name of the format the I/O module handles.

• nitrostyle
The style of nitro groups and similar groups in the file, i.e. whether these are preferably
encoded with pentavalent nitrogen or a charge pair. Possible values are asis (does not matter,
or unknown), ionic, neutral, xionic and xneutral. If this value is not asis, structures written
to the file are automatically adapted. This is performed on duplicates of the output
structures, so the objects used in a molfile write or similar command does not change.
On the other hand, the requirement to duplicate the object, manipulate the duplicate, and
destroy it after it has been used can be time-consuming.

• objectfile
The full path name of the loaded object file or dynamic library. This attribute is read-only.

• orcid
The ORCID code of the author (see www.orcid.org).

• parameters
A dictionary of format-specific keyword/value pairs which are not represented as a general
molfile object attribute. When a file of a specific format is opened, the data from the
corresponding I/O module is copied to the parameters attribute of the molfile object,
where it may be further customized by molfile set commands before an input or output
operation. Changing this attribute in the I/O module modifies the initial content of the
parameters attribute of all molfile objects associated with this format created in the future.
Explicitly changing the format of a molfile object refreshes the parameter set.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• reactionproperty
The name of a property which is used to store reaction information in the file. This is only
used for file formats where storing reaction data is a minor objective, not for standard
chemical structure exchange formats.

• readflags
A list of flags to adjust input behavior. Not all flags are supported for all I/O modules.
Unsupported flags are silently ignored. The flag set is copied as default to any molfile
object which uses the I/O handler module. The flag set is the same as for the molfile
readflags attribute, but only a subset of these flags make sense as presets. The flags can be
modified on the I/O module level if desired:

• none
The same as an empty list; no flags are set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 757

CACTVS Tcl and Python Scripting Language Reference
• aroresolver
If set, resolve bonds marked in the file as aromatic into a Kekulé system. This includes
resolution of bonds which are explicitly marked as query bonds (i.e. bond type 4 in MDL
Molfiles). This is very useful to fix frequently seen MDL Molfiles which encode
structures, not queries, but nevertheless use an aromatic bond type in violation of the file
format specification. Aromatic system resolution works much more robustly for
structures with a complete set of hydrogens. It is advisable to combine this flag with
automatic hydrogen addition.

• autowrap
If set, the file is automatically rewound if the end of the file is reached, and the start
record of the operation has not yet been encountered again. This behavior only applies
to the molfile scan command, not to normal record input. Wrapping is not possible
on data source which cannot be rewound.

• basiconly
Only read basic connectivity information, but not additional properties. Supported only
on formats which use the native CACTVS structure data storage system (cbin, cbs, bdb).

• chargebalancer
If set, perform a charge balancing step after reading, in an attempt to obtain a neutral
structure.

• chargecombiner
If set, perform a charge combination step after reading, in an attempt to obtain a neutral
structure.

• complexresolver
If set, try to resolve a purely VB-based structure representation into a representation
which utilizes complex bonds for bonds between ligands and metal centers which cannot
be described well with electron-counted VB bonds.

• fixdoublespace
If set, this flag instructs I/O modules with support for this feature to read structure files
which contain one spurious empty line after each data line, which unfortunately appears
to happen sometimes when DOS-encoded files are transferred to Apple systems. This is
not the same as reading CR/LF files on CR-only or NL-only platforms, or vice versa, which
is always possible and fully automatic. This flag addresses the problem that, due to
mishandling by obscure transfer software, duplicated EOL-markers are introduced in the
file (two identical CR/LF, or CR, or NL pairs after each data line).

• fixstereo
If set, remove spurious atom and bond stereo descriptors assigned to non-stereogenic
centers.

• fixwedges
If set, invert wedge bonds encoded with the base at the stereo center to the
IUPAC-conforming style with the tips at the stereo center.

• ignoreempty
If set, records which do not contain any atoms are silently ignored and the next record
with atoms is returned instead.
758 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• ignoreerrors
If set, ignore records with raise errors on file input. Instead, silently attempt to
re-synchronize the read pointer and proceed with the next record, until the end of the file
has been reached, or an undamaged record could be read successfully.

• ignorevisibility
Ignore any object visibility information in the file and read all data as visible objects.

• ignorecr
Allow an isolated carriage return (ASCII 13) character without following NL (ASCII 10)
character as data content instead of examining it as potential line break symbol. This flag
is necessarily ignored on Mac-style input files which only use CR as EOL markers.

• ignoreeitherdb
If set, ignore the either flag for double bonds when reading MDL MOLFILES. The default
is to translate it into the crossed bit of the B_FLAGS property.

• keepcoords
If set, always keep atomic 2D layout coordinates, even if they are, for example in
reactions, overlapping on the reagent and product sides. By default the coordinates of
molecules are adjusted if necessary to be non-overlapping. This is done by moving
molecules only, not by scaling the coordinates, and never by recomputing any
coordinates.

• latehprocessing
If set, hydrogen modification (addition, deletion) is performed after standardization
operations (see various resolver attributes). By default, hydrogen addition is performed
before these routines are called.

• mergedata
If this flag is set, multi-line input from SD file data lines into a simple string property is
merged into a single string value, with tab characters indicating the newlines in the file.
By default, in such cases every line of a multi-line data item is stored as a new property
instance. This is equivalent to the property attribute mergedata (see prop set
command).

• multibondcheck
If set, attempt to intelligently resolve any atoms with excessive multiple bonds
consuming bond electrons in excess of the available number by recoding such bonds as
charge pairs.

• nocoordinatecheck
If set, no attempt is made to add missing coordinates, for example for automatically
added hydrogen atoms, to the 2D and 3D coordinate sets, if such coordinates were
present in the original record.

• noimplicith
Do not add implicit hydrogen. This flag only applies to file formats which exactly define
a default number of hydrogens (for example, SMILES) as implicit part of the structure .
It has no effect in file formats which just tend to omit hydrogen (for example, MDL
Molfiles).
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 759

CACTVS Tcl and Python Scripting Language Reference
• nometal
Assert to the file input routine that the input does not contain any metal atoms. In that
case ambiguous atom symbols, for example CA or CD in PDB files, are interpreted as
carbon (in alpha and delta position), and not as calcium or cadmium.

• nometalh
Assert that none of the metal atoms in the structure has any missing hydrogen ligands.
If set, hydrogen addition, if selected, skips the processing these atoms.

• noorigin
By default, every ensemble or reaction read from a file is augmented with a property
E_FILE or X_FILE, indicating the origin of the record by recording the file name, record
number and other information in the automatically attached property. If this information
is not of interest, this wasteful step can be suppressed by setting the flag.

• noradicals
Assert that the file does not contain any radicals. This can for example be helpful in the
resolution of aromatic systems (see aroresolver attribute).

• pedantic
Strictly adhere to the format specification and flag any deviation as error. This is feature
is only well implemented for MDL MOLFILES. It is intended to be used for strict format
checking.

• radicalcharger
Edit radicals which are typically formed by reading a file without formal atomic charge
information by adding standard formal charges, for example replacing NR4 with N(+)R4
and OR with O(-)R. This only works reasonably well if the file contains a complete
hydrogen set.

• readas2d
Force interpretation of the atomic coordinates in the record as 2D display coordinates
(property A_XY), even if syntax or data items in the file indicate the presence of 3D
coordinates. This is useful for simple reading of records where 3D coordinate fields were
abused for storing display coordinates.

• readparity
For MDL MOLFILES, read the parity information. By default, as recommended by MDL, this
information is not read and parity is instead computed from wedges if needed.

• simpleradicals
Assume that any radical encountered is a singlet, and not anything more complex such
as triplets etc., regardless what the file encodes.
760 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• tautoresolver
Perform a tautomer standardization on the read structure. This operation invalidates
numerous atom and bond properties, such as coordinates, but in this special case all
ensemble properties which were attached to the processed structure are retained,
regardless of their sensitivity toward atom and bond changes. Tautomer resolution
requires a complete hydrogen set, so either these must be present in the input file, or a
suitable hydrogen addition mode must have been set on the file handle. The processing
behind this input option is comparatively expensive. For normal input, when speedy
input and maximum fidelity of the data to the original file is desired, this flag should not
be set.

• regid
A numerical registration ID assigned to registered modules.

• references
Cross references of the module. This is a nested list of class UUIDs and reference type tags.

• slot
The slot the module was loaded into. This attribute is read-only.

• sourcefile
The name of the source file of the module. This attribute is read-only.

• suffixes
A list of the file suffixes this module recognizes as typical for the implemented format. If a
file with a suffix is opened for writing without specifying an explicit format, the last loaded
module which has the suffix in its list determines the automatically assigned format.
Suffixes are ignored as format identifier for file input and updates. In these cases, the file
contents are analyzed to determine the format. This attribute is read-only.

• version
The version of the module. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The version UUID associated with this module version.

In case the format argument cannot be resolved by an active module, an attempt to auto-load a
suitable module is made.

filex subcommands
filex subcommands
dir(Filex)

List all supported subcommands of the filex command in an installation.

filex unload
filex unload ?format?...
fx.unload()
Filex.Unload(?format?,...)

Unload zero or more I/O modules. It is an error to specify the name of a module which is not loaded.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 761

CACTVS Tcl and Python Scripting Language Reference
Built-in I/O modules cannot be unloaded. If the use of one of these needs to be switched off, it is
possible to set the disabled flag of the capabilities module attribute via the filex set command.

The command returns the number of unloaded I/O modules.
762 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The filter Command

The filter command is used to manage filter objects. Filter objects are a convenient method to
quickly access subsets of objects, for example subsets of atoms or bonds with specific properties.

A filter basically consists of the name of a property which is used as foundation for the comparison.
It also defines a comparison operator and one or more comparison values. Objects whose property
values of the filter property pass the test are passed on to further processing.

The filter command has the following subcommands:

filter create
filter create filtername ?attribute value?...
filter create filtername dict
Filter(filtername,?attribute,value?...)
Filter(filtername,dict)
Filter.Create(filtername,?attribute,value?...)
Filter.Create(filtername,dict)

Create a new filter. In case the filter already exists, this is the same as filter set. A default filter
without any other configured attributes does nothing and lets everything pass. The supported
attributes and values are explained in the paragraph on the filter set command.

The return value is the filter name or reference.

filter defined
filter defined filtername
Filter.Defined(filtername/fref)

A boolean check whether the filter is available. In case it is not yet in memory, an attempt is made
to auto-load or auto-instantiate it. For a command variant without auto-loading, see filter exists.

filter exists
filter exists filtername
f.exists()
Filter.Exists(filtername/fref)

A boolean test whether the filter is current defined and loaded. No attempt is made to auto-load it.
For a command with auto-loading, see filter defined.

filter delete
filter delete ?filtername?..
f.delete()
Filter.Delete(?filtername/fref?,...)

Delete zero or more filters. Note that it is possible to delete built-in filters. An attempt to delete a
non-exiting filter raises an error. The return value of this command is the number of deleted filters.

filter get
filter get filtername attribute
f.attribute
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 763

CACTVS Tcl and Python Scripting Language Reference
f[attribute]
f.get(attribute)
Filter.Get(filtername/fref,attribute)

Query an attribute from a filter definition. The supported attributes are detailed in the paragraph on
the filter set subcommand.

If the specified filter is not yet loaded, an attempt to auto-load a definition file is made.

filter list
filter list ?pattern?
Filter.List(?pattern=?)

Get a list of all currently loaded filters, including the built-in filter definitions. If desired, a string
match pattern can be supplied to filter the reported set.

filter load
filter load filtername
filter load all
Filter.Load(filtername)
Filter.Load(“all”)

Attempt to explicitly load a filter via the auto-loader mechanism. If the filter is already in memory,
the command has no effect. In case auto-loading fails, an error results. The return value is the filter
table slot index the filter is loaded into for TCL, or a filter reference for PYTHON.

The second form of the command scans the currently set filter search path and loads all accessible
filters which are not yet in memory. Filters which are already active in the running application are
not unloaded, and only a single instance of each I/O filter, even if present under various alias names
in the filter directories, is loaded. This form of the command does not return a value.

filter query
filter query keyword ?objectclass? ?mode? ?casesensitivity?
Filter.Query(keyword=,?objclass=?,?mode=?,?casesensitivity=?)

Search the internal filter database by matching the keyword against a standard set of filter attributes,
such as name, description, keywords, category, comment and UUIDs. Only the current memory
database is checked, no auto-loading or repository checks are performed.

By default all filter definitions are matched. The object class argument (such as atom) can be used
to limit the search to filters using a property of a specific property class. Providing an empty
argument is the same as omitting the argument.

The optional mode argument changes the string comparison mode. The default is equal, other
possibilities are substring, left (match beginning of string), right (match end of string), like (as the
SQL operator), glob or regexp.

The final argument can be case (case-sensitive matching) or nocase (case-insensitive comparison,
this is the default).

The return value is a list of the names or references of the matched filters.
764 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
filter read
filter read filename/dirname
filter read all
Filter.Read(filename=)
Filter.Read(“all”)

Read a filter definition file with one or more filter definitions, a directory containing such definition
files, or the filter definition files contained in all accessible directories found in the filter auto-load
path. In case a filter is already defined in the current interpreter, its definition is overwritten by what
is found in the input file.

The return value is a list of two elements. The first element is the total number of filter definitions
read from the file. The second element is the name (TCL) or reference (PYTHON) of the first filter read.

filter readblob
filter readblob datablob
Filter.Readblob(data=)

Read a filter definition from an in-memory XML blob. This blob can only contain a single filter
definition. In the PYTHON case, the data blob can be either a UNICODE string, or a byte array.

The return value is the name (TCL) or reference (PYTHON) of the newly read filter definition.

filter ref
Filter.Ref(filtername)

PYTHON-only method to get a reference of the filter, which allows terser attribute retrieval commands
and other operations.

filter set
filter set filtername ?attribute value?...
filter set filtername dict
f.set(?attribute,value?,...)
f.set(dict)
f.attribute = value
f[attribute] = value
Filter.Set(filtername/fref,?attribute,value?,...)
Filter.Set(filtername/fref,dict)

Set one or more filter attributes. Some of the attributes listed below are read-only. They are included
here because the filter get subcommand refers to this section. The following attributes are
supported:

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 765

CACTVS Tcl and Python Scripting Language Reference
• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author of the filter definition works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• aliases
A list of alias names for the filter.

• author
The name of the author of the filter definition as free text.

• authorurl
A URL with information on the author, or an empty string if unset.

• category
A category string to be used if the filter is stored in a repository.

• classuuid
The base class UUID of this filter.

• comment
A free-form comment string.

• date
The date of the last change in the filter definition.

• description
A short single-line description of the filter, suitable for use in menus and similar
circumstances.

• doi
A digital object identifier for the filter, if defined.

• email
An email contact address of the author of the filter.

• field
The name of a field of the filter property. In case the complete property is used, which is the
default, this is an empty string. This field may also be set directly by using field notation in
the property attribute.

• fieldindex
In case a only a field of the filter property is used for comparison, this is the numerical index,
starting with 0, of the field in the property. This is a read-only attribute and automatically
updated then setting the field attribute. If the complete property data is used, by the filter,
the value of this attribute is -1.
766 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• file
The full path name of the file the filter definition was read from, or an empty string if the
filter is built-in or defined in the script. This is a read-only attribute.

• flags
Various flags to modify the operation of the filter. The flag set can be any combination of
words from the set

• notavail_fail
If set, the filter fails if the filter property cannot be computed, but no error is raised

• notavail_pass
If set, filter always passes if the filter property cannot be computed, but no error is raised

• nocompute
If set, do not attempt to compute the filter property on the filtered object, if it is not yet
present, this condition is treated as a failed computation

• recompute
If set, the filter property is recomputed once when the filter data is prepared for a filter
operation. For example, the property of an atom filter is re-computed once before an ens
atoms command, but not for the filter test of each individual atom.

The get variant of this command can additionally return several flag words describing the
current internal state of the filter definition.

• infourl
A URL with information on the filter, or an empty string if unset.

• keywords
A list of keywords associated with the filter.

• license
The license class associated with this filter Setting the license to a standard type updates the
associated URL with a standard location.

• licenseurl
A URL with details about the filter license.

• literature
A free-form literature reference.

• mode
The filter operation mode. This is an important, but complex attribute. The default value is
simple, and this is what is needed in almost all standard applications. The possible values
for this attribute are:

• simple
Straightforward application of the filter. The property values of the filtered chemistry
objects are directly compared to the filter values. In case the filter property has a width
of more than one slot (see width attribute of property definitions), it is sufficient if any
of the multiple values passes the filter.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 767

CACTVS Tcl and Python Scripting Language Reference
• all
Only usable for properties with a width of more than one. In this mode, all of the multiple
property slot values of a chemistry object must pass the filter.

• diff
Only usable for properties with a width of more than one. In this mode, among the
multiple property slot values on a tested object there must be some which pass, and some
which fail.

• allatoms
Instead of using the filtered chemistry object, use all atoms the chemistry object
contains. All atoms must pass the filter condition.

• someatoms
Instead of using the filtered chemistry object, use all atoms the chemistry object
contains. Some atoms must pass the filter condition.

• noatoms
Instead of using the filtered chemistry object, use all atoms the chemistry object
contains. No atoms must pass the filter condition.

• diffatoms
Instead of using the filtered chemistry object, use all atoms the chemistry object
contains. There must be atoms which pass the filter as well as atoms which fail.

• allneighbors
Instead of using the filtered chemistry object, use all neighbor objects of the same type.
All neighbors must pass the filter condition. Currently, neighborship is only defined for
atom and bond objects.

• someneighbors
Instead of using the filtered chemistry object, use all neighbor objects of the same type.
All neighbors must pass the filter condition. Currently, neighborship is only defined for
atom and bond objects.

• noneighbors
Instead of using the filtered chemistry object, use all neighbor objects of the same type.
All neighbors must pass the filter condition. Currently, neighborship is only defined for
atom and bond objects.

• diffneighbors
Instead of using the filtered chemistry object, use all neighbor objects of the same type.
There must be neighbors that pass the filter condition as well as neighbors which fail.
Currently, neighborship is only defined for atom and bond objects.

• name
The primary name of the filter. Since alias names are also used to resolve a filter reference,
this may be different from the argument supplied in the command.

• operator
The operator used for comparing the filter value(s) to the property values of the compared
chemical objects. It can be one of
768 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• exact
object and primary filter value must match

• smaller
object value must be smaller than the primary filter value

• larger
object value must be larger than the primary filter value

• range
object value must be between the primary and secondary filter values

• not
object and primary filter value must not match

• bitset
object value must have all on bits in the primary filter value also set

• bitunset
object value must not have any bit of the on bits in the filter value set

• alternative
object value must be equal to the primary or secondary filter value

• neither
object value must be different both from both filter values

• le
object value must be larger or equal to the primary filter value

• ne
object value must be smaller or equal to the primary filter value

The standard mathematical operator notation >, >=,== etc. may also be used to identify
the operator.

• orcid
The ORCID code of the author (see www.orcid.org).

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• property
The name of the property associated with the filter. In the context of the filter create or
filter set commands, the property name argument may include a field component. If a
field is specified as part of the name, the propertyfield and propertyfieldindex attributes are
also set as a side effect. Example:
filter create alphac property A_RESIDUE(atomtag) value “CA” operator =
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 769

CACTVS Tcl and Python Scripting Language Reference
This defines a filter alphac which selects all atoms which have the value CA in the field
atomtag of the A_RESIDUE property, which is for example filled when reading PDB files.
With a filter get command, the reported property name is still only A_RESIDUE. The field
information can be obtained via the propertyfield attribute.

• propertyfield
This is a read-only attribute. It reports the name of the field of the filter property, if such a
field was specified. For filters which do not use fields, the result is an empty string.

• propertyfieldindex
This is a read-only attribute. It returns the index of the field of the filter property, if such a
field was specified. For filters which do not use fields, the result is minus one.

• references
Cross references of the filter. This is a nested list of class UUIDs and reference type tags.

• regid
If the filter is registered, this is its registration ID. Unregistered filters have a zero
registration ID.

• slot
This is a read-only attribute. It reports the index of the filter definition in the filter table. This
is useful for debugging only.

• value1
The primary filter comparison value. This may also be simply written as value without the
rank indicator. The value can be specified in any notation which can parsed as data value of
the filter property. Changed filter values are parsed after the filter set or filter get
command has processed all its arguments. The order of arguments does not matter, but at the
end of the command, the property and data value must be compatible.

• value2
The secondary filter comparison value. The same restrictions apply as for the primary filter
comparison value.

• value3
The auxiliary filter comparison value. The same restrictions apply as for the primary filter
comparison value. This value is not used directly in conjunction with any of the scriptable
comparison operators, but it does have a role in some internal functions.

• values
Return a list of the filter comparison values (individually accessible as value1..3 attributes)
which are actually used in this filter definition. This is a read-only attribute.

• version
The version of the filter definition. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The version UUID associated with this filter version.

If the filter argument is not yet loaded, an attempt to auto-load the definition file is made.
770 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
filter string
filter string filtername
f.string()
Filter.String(filter=)

Encode the filter as XML blob and return the blob as result. The blob format is the same as output
by the filter write command.

filter subcommands
filter subcommands
dir(Filter)

Get a list of all supported subcommands of the filter command in this particular application.

filter write
filter write filtername ?filename?
f.write(?filename=?)
Filter.Write(filter=,?filename=?)

Write the current definition of the filter to a file in XML format. The file can be loaded into future
script interpreters explicitly (see filter read command) or implicitly via the filter definition
auto-load mechanism. If no file name is given, the name of the file is automatically constructed from
the filter name in lower case and the suffix .fil. In addition to normal file names, the magic names
stdout and stderr may be used, as well as already opened TCL or PYTHON socket and file handles, plus
pipes indicated by a file name which starts with “|”. Writing to TCL channels is not supported on the
MS Windows platform.

The command returns the (possibly auto-generated) file name.

It is possible and sometimes useful to write out built-in filter definitions.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 771

CACTVS Tcl and Python Scripting Language Reference
The json Command

The json command is used to facilitate network communication by means of exchanging JSON-RPC
messages. JSON message objects are also useful to parse other styles of JSON-formatted data which
are not really JSON-RPC but use basic JSON encodings.

JSON objects are created like other toolkit objects, and have internal state, so it is possible to
communicate with multiple sources simultaneously by creating a JSON object for every channel.

JSON objects share many characteristics with SOAP objects, and many commands are identical or
at least very similar.

Only interpreters compiled with JSON support contain this command.

These are the currently supported JSON object commands:

json append
json append jsonhandle ?attribute value?...
json append jsonhandle dict
j.append(?attribute,value?,...)
j.append(?attribute=value?,...)
j.append(dict)

This is a variant of the json set command. The difference is that the supplied data is appended to
the current attribute value instead of replacing it. In case appending is not a possible operation, the
result is the same as using json set.

The set of supported attributes is explained in the paragraph on json set.

The command returns the original handle or reference.

json create
json create ?attribute value?...
json create dict
Json(?attribute,value?,...)
Json(dict)
Json(?attribute=value?,...)
Json.Create(?attribute,value?,...)
Json.Create(dict)
Json.Create(?attribute=value?,...)

Create a new JSON object. The return value is the object handle or reference. If no additional
attributes are specified, an object with default settings is created. Processing of specified optional
attribute/value pairs is performed in as an identical fashion to the json set command.

json delete
json delete ?jsonhandle?...
json delete all
j.delete()
Json.Delete(?jsonhandle/jref?,...)
Json.Delete(“all”)
772 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Destroy one or more JSON objects. The special handle all can be used to remove all JSON objects
currently existing in the application.

For the sake of consistency with commands of similar objects, json close is an alias to this
command.

The return value is the number of successfully deleted JSON objects.

json error
json error jsonhandle ?errormessage? ?channel? ?errorcode? ?errordata? ?id?
j.error(?errormessage=?,?channel=?,?errorcode=?,?errordata=?,?id=?)

Assemble and potentially send a properly formatted JSON-RPC error message. The formatted
message is stored in the result attribute of the JSON object, returned as command result, and also sent
via the channel if either the argument is a valid TCL or PYTHON channel handle, or the object has an
associated channel in the internal attribute set.

All message parameters are taken from the internal object attribute set if they are not explicitly set
in the arguments. If arguments are set, the corresponding object attributes are also updated. Any
arguments must be properly formatted - the error code and ID are an integer, the error message a
simple string, and the error data a complete JSON object encoding.

Since this command is a reply to a specific message ID, the internal object ID attribute is not
incremented, as in the json request command.

json get
json get jsonhandle attribute
j.get(attribute)
j.attribute
j[attribute]

Query the value of an attribute of a JSON object. The list of recognized attributes is explained in the
paragraph on the json set command.

The return value of the command is the value of the attribute.

json list
json list ?pattern?
Json.List(?pattern=?)

Return a list of the handles of all currently existing JSON objects in the application. If desired, the
list can be filtered by a string pattern.

json parse
json parse jsonhandle ?data?
j.parse(?data=?)

Parse a JSON-RPC message. If the data argument is set, its value is used. Otherwise the parsed data
is the value currently stored in the body object attribute, which is for example set by the json read
command. The command does not replace the body attribute of the object if an explicit argument is
set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 773

CACTVS Tcl and Python Scripting Language Reference
The command resets the ID, error code, error message, error data and result attributes of the object
and then re-populates those object fields for which data is found in the message.

The return value of the command is one, if the message was a valid result reply, and zero if the
message was an error report. In case of a syntax error in the parsed data, a TCL or PYTHON error is
generated.

After parsing, the result and errordata object attributes, if they were set during the parse, are still
JSON object encodings. In most cases these are further dissected by the application of a decode
-json command.

json read
json read jsonhandle ?channel?
j.read(?channel=?)

Read one JSON-RPC message from the channel. If no channel argument is supplied, the internal
channel handle of the object is used. It the channel argument is set, the internal attribute is also
updated.

The command recognizes HTTP headers in the input stream and stores these separately from the
message body in the internal header object attribute. Only a single message is read from the channel,
so in case there are multiple messages queued, the command must be repeatedly invoked. The
complete message text, without header if there was one, is stored in the body object attribute.

The command returns the full message text, which is the same as the body attribute. It is not parsed
or analyzed further. This command does not alter the errorcode, errormessage, errordata or result
fields of the object. In most cases, the next step after reading a message is to analyses it with a json
parse command.

json ref
Json.Ref(identifier)

PYTHON-only method to get a reference of the JSON object from its handle.

json request
json request jsonhandle ?method? ?channel? ?parameterdict?
j.request(?method=?,?channel=?,?parameters=?)

Assemble a properly formatted JSON-RPC request and potentially send it. The formatted message
is returned as command result, and also sent via the channel if either that argument is a valid TCL or
PYTHON channel handle, or the object has an associated channel in the internal attribute set.

All parameters are taken from the internal object attribute set if they are not explicitly set in the
arguments. If arguments are supplied, the corresponding object attributes are also updated. Any
arguments must be properly formatted - the method name is a simple string, and the parameters are
a dictionary.

The internal message ID attribute of the object is incremented when this command is run, and the
new value is transmitted. The first message ID of a newly created JSON object is one. To send a
message without an ID, use the json send command.
774 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
json respond
json respond jsonhandle ?message? ?channel? ?id?
j.respond(?message=?,?channel=?,?id=?)

Assemble and potentially send a properly formatted JSON-RPC result message. The formatted
message is stored in the result attribute of the JSON object, returned as command result, and also sent
via the channel if either the argument is a valid TCL or PYTHON channel handle, or the object has an
associated channel in the internal attribute set.

All parameters are taken from the internal object attribute set if they are not explicitly set in the
arguments. If arguments are supplied, the corresponding object attributes are also updated. Any
arguments must be properly formatted - the message argument is a JSON object encoding and the
ID is an integer.

Since this command is a reply to a specific message ID, the internal object ID attribute is not
incremented as in the json request command.

The command can also be spelled as json reply.

json send
json send jsonhandle ?method? ?channel? ?parameterdict?
j.send(?method=?,?channel=?,?parameters=?)

This command is essentially the same as json request, except that this is a notification for which
no response is expected. The ID value in the message text is therefore always NULL, and internal ID
attribute of the object is not incremented.

json set
json set jsonhandle ?attribute value?...
json set jsonhjandle dict
j.set(?attribute,value?,...)
j.set(dict)
j.set(?attribute=value?,...)
j.attribute = value
j[attribute] = value

Set one or more attributes of a JSON object. Since this paragraph is also referenced from the json
get subcommand, the attribute set listed here includes attributes which cannot be set, or for which
setting them to a scripted value does not usually make sense.

The currently supported set of attributes is:

• body
The body part of the last received or sent JSON-RPC message. This attribute is not usually
set.

• bodylength
The length of the body in bytes. This is a read-only attribute.

• channel
The communication channel associated with the JSON object. This is a standard TCL channel
handle. It is possible to set it to an empty string, which indicates that no channel is set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 775

CACTVS Tcl and Python Scripting Language Reference
• errorcode
The error code from the last JSON parsing step as integer value. If no error occurred, the
value is 0.

• errormsg
The message of a JSON error, either as extracted from a JSON-RPC message, or set in
preparation of sending an error message. If set, it must be formatted as a simple string.

• errordata
Auxiliary informative data in an JSON error message, as per the JSON-RPC specification.
This information is either extracted from a JSON message, or set in preparation for sending
an error report. If set, it must be a properly formatted JSON object.

• handle
A read-only attribute to get the TCL handle of the object.

• header
The header part of the last received JSON-RPC message. This attribute is not usually set.

• headerlength
The length of the header in bytes. This is a read-only attribute.

• host
The host the JSON object communicates with.

• id
The JSON-RPC message ID. For sent messages, this is automatically incremented. If a
received message contains a NULL ID, the value is set to zero.

• method
The method name extracted either from the last received JSON-RPC message, or set in
preparing to transmit a message.

• parameters
The JSON-RPC method parameters. If queried, this is a dictionary of name/value pairs. In
order to set these, a properly formatted dictionary must be supplied. The formatting is the
same as for the parameters attribute of property definitions.

• port
The port the JSON object uses for network communication. The default is 80, the standard
HTTP port.

• result
The method invocation result data extracted from the last received JSON-RPC message, or
the data which is sent with the next response. If set, its format must be a properly formed
JSON object. For further analysis, this value is usually decoded with a decode -json
statement.

• uri
The URI associated with a JSON-RPC service.

json subcommands
json subcommands
776 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
dir(Json)

This command returns a list of all the defined subcommands of the json command.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 777

CACTVS Tcl and Python Scripting Language Reference
The keyx Command

This command is deprecated and intentionally undocumented.
778 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The knode Command

The knode command manages KNIME nodes implemented as Cactvs scripts.

knode addparam
knode addparam khandle dialogtype name ?attribute value?..
knode addparam khandle dialogtype name attributedict
k.addparam(dialog,name,?attributedict?)
k.addparam(dialog,name,attribute=value,...)

Add a user-configurable parameter to the node definition. The first argument after the handle is the
type of interface widget which should be used on the KNIME node configuration panel. It can be one
of:

• boolean
The parameter is a boolean value and can be set or unset via a checkbox.

• columnselector (or colselector)
The parameter is a string which corresponds to a column name of a connected data table of
the associated port.

• colorchooser
The parameter is a color specification which can be selected via a color chooser widget.

• diropen
The parameter is the name of a directory from which data will be read. This currently does
only work if the node processor and a KNIME workbench share the file system.

• dirsave
The parameter is the name of a directory from where data will be written. This currently does
only work if the node processor and a KNIME workbench share the file system.

• double
The parameter is a floating point value which can be set via a text line.

• doublerange
The parameter is a floating point value pair. Its lower and upper boundaries can be set via
text line widgets.

• doublespinner
The parameter is a floating point value and can be adjusted via a spinner widget.

• fileopen
|The parameter is the name of a file opened for reading via a file selector widget. Its contents
are either transported via RPC to the node processor, or, if it has been indicated that the node
server and the KNIME workbench share a file system, can be directly read by the processing
script.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 779

CACTVS Tcl and Python Scripting Language Reference
• filesave
The parameter is the name of a file opened for writing via a file selector widget. The file
name refers to a name in the file system visible to the KNIME workbench and is not
necessarily directly accessible by the node processor. Instead of the specified remote file
name, the node server sees the name of a local temp file it should use to save its data if it has
not been indicated that workbench and node server share the file system. When processing
has finished, these files are automatically sent to the remote workbench client via RPC and
stored there under the originally specified name. The temporary file on the server side is
deleted.

• int
The parameter is an integer which can be set via a text line.

• intspinner
The parameter is an integer and can be adjusted via a spinner widget.

• label
The parameter has no value and cannot be modified, but, by setting a label text attribute, it
still is shown on the configuration panel as text annotation.

• multiline
The parameter is a string which can be input via a multi-line text box.

• multistringselector
The parameter is a list of strings which can be selected from a set of predefined strings.

• none
The parameter is not configurable via an interface widget. It still has a (string) value which
can be queried in the processing script.

• password
The parameter is a string which can be set via a text line where the content is hidden.

• radiobutton
The parameter is a string which can be switched between various predefined values via a
radio button widget.

• string
The parameter is a string which can be set via a text line.

• stringselector
The parameter is a string which can be chosen from various predefined strings.

The next argument is the name of the parameter. It is used to retrieve the parameter value or other
attributes via the knode param command. It must be unique within a node. The maximum number
of parameters for a node is 128. After configuration, querying the value attribute of a parameter by
means of knode param returns the default value. Node that you cannot explicitly configure the value
attribute.

The rest of the arguments are processed after the two mandatory initial arguments have been parsed.
The additional attributes which can be set for a parameter depend on its data type and dialog widget
class. These are all recognized attributes:
780 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• addnone
If set, add a none option to the selection. This attribute is unique to the column selector
widget. If this option is chosen from the interface widget, an empty table column name is
reported.

• allowempty
If set, an empty string is an allowable parameter value. The attribute is value only for string
and multiline dialog widgets.

• columntypes (or coltypes)
A list of the cell data type classes which can be selected from an input table by a column
selector widget. Possible values are any (the default), structure (any chemistry structure data
cell type which encodes a complete structure, excludes smarts), reaction (any reaction data
cell type), number (integer, long or double), boolean, int, long, double, complex, string, xml,
bitvector, blob, image, png, sdf, mol2, sln, smiles, smarts, mol, ctab, pdb, cml, inchi, cdxml,
rxn, mrv, structure1d (any structure notation without 2D or 3D coordinates, such as SMILES),
structure2d (any structure cell type which can and is expected to store 2D coordinates),
structure3d (any structure cell type which can and is expected to store 3D coordinates),
structureorstring (any structure cell or a string cell assumed to hold structure data), simple
(elementary data type, can be int, long, double, boolean or string), simpleorstructure1d
(simple data or structure line notation) or substructure (any chemistry structure data cell type
which can encode a substructure, includes smarts cells).

• default
The default value which is preset and reported if the user configures nothing. The specified
value must be parseable according to the parameter data type. For the doublerange type, the
default must be a list of one or double floating point values. If only one value is given, it
applies both to the lower and upper bound. For numerical values, an unspecified default is
equivalent to a zero default value, and for strings an empty string.

• description
A free-form parameter description text. It is used in the automatically written node
documentation.

• editable
A boolean flag indicating whether this value is user-editable. It only applies to string selector
interface widgets. If set, the user can override the default choice set and enter a custom string
instead.

• extensions
A list of file extensions (with the dot) which is used to filter displayed file lists. Only
supported for file and directory input and output dialog widgets.

• group
The name of a group the dialog element is a member of. All dialog widgets on the same tab
which share a common named group are laid out in a box with a frame. An empty string as
name (the default) indicates that the dialog widget is not part of group.

• height
The height of the dialog widgets in text lines. It only applies to multiline and
multistringselector dialog widgets.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 781

CACTVS Tcl and Python Scripting Language Reference
• horizontal
If set, the dialog widget is laid out in horizontal direction from the previous widget. By
default, widgets are laid out top to bottom.

• label
A text label displayed next to the interactive widget.

• max
The maximum allowed value. Applicable to the integerbounded and doublebounded settings
types.

• min
The minimum allowed value. Applicable to the integerbounded and doublebounded settings
types.

• name
The parameter name. Should not be set this way.

• portassociation
The input port index or input port name a column selected is associated with. The default is
0 for the first input port.

• property
A name of a toolkit property the parameter is related to. This is used for automatically
generated node documentation.

• required
A boolean flag whether a selection must be made by the user. Only applicable to column
selectors.

• settings
The settings Java class type used for this parameter. A suitable default settings class is
automatically selected when the dialog type is set. In some cases, it may be useful to override
it:

• The int dialog defaults to the integer settings class. An alternative is integerbounded,
which enforces minimum and maximum values.

• The double dialog defaults to the double settings class, An alternative is doublebounded,
which enforces minimum and maximum values.

• The intspinner dialog default to the integerbounded settings class. An alternative is
integer, which does not enforce minimum and maximum values.

• The doublespinner dialog default to the doublebounded settings class. An alternative is
double, which does not enforce minimum and maximum values.

• step
The step size for the intspinner and doublespinner dialogs.

• stringset
A list of strings which define choice options. This is used by stringselector,
multistringselector and radiobutton dialogs.
782 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• stringset2
A list of strings which defined choice options. Currently unused, reserved for columnfilter
dialogs which are not yet supported.

• tab
The name of an additional tab in the configuration panel. Widgets for parameters without a
tab name are placed on the primary tab. All parameters which share a common tab name are
placed on an additional named tab in the order of definition. Multiple additional tab panes
may be specified.

• tablecolname
A table column name associated with the parameter. Used primarily for internal purposes.
This is not the selected table column configured by a column selector widget - that is
provided as value attribute like all other configuration values.

• tooltip
A string displayed at the configuration widget if the mouse pointer hovers over it.

• width
The widget width in characters. Applicable to int, double, intspinner, doublespinner, string,
password and multiline widgets.

The command returns the current number of parameters on the node.

knode addport
knode addport khandle direction ?name? ?attribute value?...
knode addport khandle direction name attributedict
k.addport(direction,?name?,?attributedict?)

Add a port to the node definition. The first argument is either input or output and defines the port
direction. The second argument it the port name. If the name is omitted, a name following the
schema input0...n or output0..n is automatically generated. Without additional attributes, the port
class is datatable. The maximum number of ports for a node is 16.

Additional attributes may me specified as attribute/value pairs or as a dictionary. The following
attributes are recognized:

• class (or type)
The port class. It can be either datatable (the default), network/graph or image. Other KNIME
port types are currently unsupported. If this attribute is set, it should be the first in the
attribute list because it influences the applicability or interpretation of other attributes.

• description
A free-form test describing the role of the port. This is used for the automatically written
node documentation which can be viewed for connected node in a KNIME workspace.

• imagename
The name of the port image object. It is of little consequence for toolkit data processing, but
is shown when the data ports of a connected node are viewed in the KNIME node menu. This
attribute is only applicable to image ports.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 783

CACTVS Tcl and Python Scripting Language Reference
• mimetype
The mime type of the port data encoding. It is only used for image ports and identifies the
image format. Typical values are image/png, image/gif or image/svg+xml. When result
image data is set for a port, its encoding must match the pre-configured mime type.

• optional
If set, KNIME workbench connections to this (input) port are optional. The node can be
executed from the workbench with or without active connections to the port. When a table
or network port object handle is queried for an unconnected optional port (see knode port
command), an empty string is reported instead of the object handle.

• networkname
The name of the port network object. It is of little consequence for toolkit data processing,
but is shown when the data ports of a connected node are viewed in the KNIME node menu.
This attribute is only applicable to graph ports, and it is not the same as a network object
handle.

• streaming
A boolean flag indicating if this port is streaming. The attribute has an effect only for data
table ports. If it is not set (the default), all input table data is transmitted from a connected
KNIME workspace before execution, and all result table data is sent after the execution has
finished. In this model, the full input table content is immediately available, and previously
added output table rows can be inspected. The disadvantage of this model is that all cell data
needs to be kept in memory at the same time.

With streaming data table ports, only a partial input row block has been sent when execution
starts, and further data transfer overlaps with processing. Execution scripts usually remove
input table rows from the top of the table (see table pop or table poploop commands) to
keep it from growing. Determining whether all table data has been sent is possible by
checking the eod table attribute. The same flag is internally tested by the standard table row
loop commands.

Rows added to streaming output tables are regularly sent back to the KNIME workspace and
removed thereafter. There is no guarantee that a previously added output row can be
revisited before it is sent and disappears. Execution scripts must be careful to add each
output row and associated row information with a single, automatically synchronized
statement. The advantage of streaming ports is that only a small part of the full table data
needs to be kept in memory at any time. They can also be faster to run because transfer and
computation are performed in concurrent threads. It is possible to mix streaming and
non-streaming ports in a single node in arbitrary combinations.

• tablename
The name of the port data table. It is of little consequence for toolkit data processing, but is
shown when the data ports of a connected node are viewed in the KNIME node menu. This
attribute is only applicable to data table ports and it is not the same as a table object handle.

knode bglisten
knode bglisten ?port?...
Knode.Bglisten(?port?,...)
784 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Add one or more background RPC communication listener threads. If no port is specified, a lister
on the standard port is configured. It can be examined and set via control variable
::cactvs(knimenode_default_port), its default is 16570.

An interpreter with an active background listener can receive and process RPC commands, for
example from a KNIME workbench.

It is currently not possible to process PYTHON node scripts in background threads due to PYTHON
multi-threading limitations.

The command has no return value.

knode bgunlisten
knode bgunlisten ?port?...
Knode.Bgunlisten(?port?,...)

Cancel listener threads active on specific ports. If no port is specified the standard port is assumed.
The standard port can be examined and set via control variable ::cactvs(knimenode_default_port),
its default is 16570.

Trying to cancel non-existing listener threads is silently ignored. If a thread is currently processing
a RPC request, the cancellation happens after the current request has been served.

It is currently not possible to process PYTHON node scripts in background threads due to PYTHON
multi-threading limitations.

The command has no return value.

knode clearparameters
knode clearparameters khandle
k.clearparameters()

Delete all currently defined parameters from the node.

The command can be shorted to knode clearparams.

The return value is the original node handle or reference.

knode clearports
knode clearports khandle
k.clearports()

Delete all currently defined ports from the node.

The return value is the original node handle or reference.

knode compile
knode compile khandle ?jarfile?
k.compile(?jarfile=?)

Compile the node definition into a KNIME workspace node. The result is a JAR file which can be
copied into the drop-in directory of a local KNIME installation. By default, the name of the JAR file
is constructed from the vendor domain, node name (or explicit Java class name, if set) and version,
but it is also possible to request a custom JAR file name. A typical auto-generated JAR file name
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 785

CACTVS Tcl and Python Scripting Language Reference
looks like com.xemistry.ExcelSaver_1.1.jar. After a KNIME program restart, the new node
automatically shows up in the node browser.

The JAR file contains RPC interface code for communication with a node execution server, a
normal-looking KNIME workspace node with ports, a configuration panel automatically assembled
from the defined configuration parameters , auto-generated node documentation, node browser
location and icon data, and the node definition code. When a node in a KNIME workspace connects
to a node server, the node definition is transmitted and the node instantiated on the server. This node
is then executed in the configuration and execution phases in response to normal KNIME workflow
actions. Parameter configuration information is extracted from the configuration panel and sent in
the configuration phase, together with column definition information of data cell ports. Port contents
are either sent before execution, or, in streaming mode, parallel to execution. Likewise, result data
from the node server is sent back either when the node execution has finished, or streamed in parallel
to its execution.

Within the scripted node environment, data table port data appear as toolkit tables, graph port data
as port objects, and image data as byte blob.

KNIME can be finicky about Java compiler versions. It may be necessary to configure the javac
attribute so that the right compiler release is picked up.

knode configure
knode configure khandle ?paramname paramvalue?...
knode configure khandle paramdict
k.configure(?paramname,paramvalue?,...)
k.configure(paramdict)

Invoke the configuration script of the node, optionally with a custom set of configuration options.
The value attribute of the named parameters are persistently changed to the new values, if this is
allowable with respect to parameter type, minimum/maximum values, etc. If the setting of a
parameter fails, an error is reported.

This command is typically used during node development, without a KNIME workspace connection.
If a node is connected to a KNIME workspace, its configuration procedure is automatically invoked
at the proper times.

Note that this command does not set input port data, which is at least partially defined when
connected to a KNIME workspace via the output ports of connected nodes. During debugging outside
of KNIME, suitable input port data for processing must be provided by script commands which either
set the data explicitly, (see knode port command) or by setting input port filenames. In the latter
case, their content is automatically loaded and transfered to the input ports before the configuration
code is run.

If the configuration succeeds, the node is ready for execution by knode exec in debug mode.

The return value of the command is a list of the table handles or references, network handles or
references and image bytes on the input ports in port index order.

knode config is a command alias.

knode create
knode create ?attribute value?...
786 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
knode create ?attributedict?
Knode(?attribute,value?,...)
Knode(attributedict)
Knode.Create(?attribute,value?,...)
Knode.Create(attributedict)

Create a new KNIME node object. Without any arguments an unconfigured default object is created.
Additional arguments can be used to set attributes. The recognized attributes are the same as for the
knode set command.

The return value is the handle or reference of the new KNIME node object.

knode delete
knode delete ?khandle?...
knode delete all
k.delete()
Knode.Delete(?khandle/kref?,...)
Knode.Delete(“all”)

Delete specific or all KNIME node objects from the toolkit interpreter instance. The return value is
the number of successfully deleted KNIME node objects.

In case the node is actively connected with a KNIME workspace, the connection is cut and a network
error is reported in the workspace. Generally, nodes actively connected to a workspace should only
be deleted from there, which is performed by RPC communication from the workspace to the toolkit
interpreter. This command is still useful for example in node development and compilation
environments.

knode execute
knode execute khandle
k.execute()

Execute a KNIME node by invoking its execution procedure. It is assumed that the node has been
successfully configured (see knode configure command).

This command is typically used during node development, without a KNIME workspace connection.
If a node is connected to a KNIME workspace, its execution procedure is automatically invoked at
the proper times.

If the execution succeeds, output port result data may be accessed by knode port commands.

The return value of the command is a list of the table handles, network handles and image bytes on
all the output ports in port index order.

The command may be abbreviate to knode exec.

knode exists
knode exists khandle
k.exists()
Knode.Exists(handle/ref)

Check whether a node handle is valid.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 787

CACTVS Tcl and Python Scripting Language Reference
knode get
knode get khandle attribute
k.get(attribute)
k.attribute
k[attribute]

Retrieve the current value of a node object attribute. All attributes which can be set can also be read
(see knode set command). In addition, there are a couple of read-only attributes:

• errorflag
A flag indicating the status of the last invocation of the configuration or execution procedure
of this node. The flag is reset before any of these functions are called.

• errormessage
The error message reported by the last invocation of the configuration or execution
procedure of this node. The message is reset before any of these functions are called, and it
is empty if there was no error.

• inputportcount
The number of input ports on this node.

• inputports
A list of the names of all input ports, in port index order.

• inputtables
A list of the table handles or references of all input ports which are table ports, in port index
order. If a port is not a data table port, or its table has not yet been configured, an empty string
is reported for that port.

• inrpc
A flag indicating weather the current commands are executed in the context of an RPC
operation, or by a locally run script or interactive commands.

• issafe
A flag indicating whether the current interpreter is safe (restricted) or not. By default, node
interpreters are restricted node-specific slaves of the main interpreter.

• handle
The handle of the current node. This is useful in case the node is addressed via its instance
UUID.

• lastrun
The time stamp of the last time the execution function of the node was called.

• lastruntime
The number of seconds spent running the execution function of the node the last time.

• log
A list of all log messages accumulated in the last run. Every list element is a nested list with
the log level and the log message text.

• nodetype
The general type of the node (source, sink, manipulator or other).
788 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• outputportcount
The number of output ports on this node.

• outputports
A list of the names of all output ports, in port index order.

• outputtables
A list of the table handles or references of all output ports which are table ports, in port index
order. If a port is not a data table port, or its table has not yet been configured, an empty string
is reported for that port.

• parameters
A nested list of the setting of all node configuration parameters. Every list element is a
dictionary with all applicable attributes of a parameter. Its exact content is dependent on the
dialog widget configured for the parameter. Dictionary entries supported for all parameter
types are description, dialog, label, group, horizontal, name, property, settings, tab, tooltip,
tablecolname and value. Other dialog-dependent entries are addnone, allowempty,
columntypes, default, editable, extensions, height, min, max, portassociation, required, step,
stringset and width.

• params
A short alias for parameters.

• ports
A nest list with the most relevant general port information. Every list element contains the
port name, its direction (input or output), its port class (datatable, image or network), the port
description string, the streaming flag, the optional flag, the configreset flag, the port table
name, and the port table handle, if it is a data table port and it is already configured.

• scriptlanguage
The language used in the configuration and execution script blocks. It is either TCL or PYTHON.
Its type is implicitly defined by which commands the script source is set.

• tmpdir
The temporary directory to be used by this node. Depending on the server configuration, this
can be either the normal system directory, or a specially protected node-specific directory.
Nodes should not assume that they have access to the system tmp directory, or any other
file-system location, except this location.

• totalprocessedinrows
The total number of rows in input tables this node instance has so far received from a
connected KNIME workbench..

• totalprocessedoutrows
The total number of output table rows this node instance has so far sent to a connected KNIME
workbench.

• totalruntime
The total execution time this node instance has accumulated so far.

knode list
knode list ?pattern?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 789

CACTVS Tcl and Python Scripting Language Reference
Knode.List(?pattern=?)

Return a list of all currently existing KNIME object handles. If a filter pattern is specified, only
handles matching it are listed. The pattern syntax is the same as in the standard TCL command string
match.

knode listen
knode listen ?port?
Knode.Listen(?port=?)

Start a foreground RPC listener. If no port is specified, the standard port is assumed. It can be
examined and set via control variable ::cactvs(knimenode_default_port), the default is 16570.

This command does not return except on error or the listener loop has been canceled by outside
actions.

knode log
knode log khandle ?level? message
k.log(?level=?,?message=?)
k.log(message)

Add a log message to the node state. The level may be one of debug, info, warning, error or fatal.
The default level is info. The message text is a free-form string. If the message is empty, no actual
log entry is written.

Log messages are transmitted to a connected KNIME workspace and show up in the console window.

The command returns the original node handle or reference.

knode parameter
knode parameter khandle parametername ?attribute?
k.parameter(name=,?attribute=?)

Retrieve an attribute or the current value of a node configuration parameter. Within the context of
a live KNIME workbench connection, these are automatically extracted from the configuration panel
settings and available both in the configuration and execution procedures.

The current parameter values (but not other attributes) can also be accessed from within a node
configuration or execution script as global array variable ::params.

If no attribute is specified, the parameter value is retrieved.

Parameters may be accessed via the parameter name or the 0-based parameter index.

knode getparam, knode getparameter and knode param are command aliases.

The following attributes are recognized:

• addnone
A boolean flag indicating whether the parameter dialog contains an additional none option.

• allowempty
A boolean flag indicating whether the parameter dialog field may be left unfilled.
790 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• columntypes (or coltypes)
A list of native KNIME table column types a column selector may be applied to.

• default
The default value of this parameter.

• description
A free-form descriptive string.

• dialog
The type of dialog widget associated with this parameter in the configuration panel of the
Java interface class.

• editable
A boolean flag indicating whether the value is editable in the configuration panel.

• extensions
A list of allowed or display-filtered file extensions for file I/O selector widgets.

• filecontent
The file bytes from a file input selector widget. For this widget, the value attribute returns
the file name. If no file was specified, an empty result is returned.

• filecontentlen
The length of the file content from a file input selector widget in bytes. If no input file was
specified, or it could not be opened, the attribute value is minus one. This allows distinction
between empty, but readable input files and unspecified or unreadable files.

• group
The name of the widget group this parameter is part of, or an empty string if it is not. Widget
groups are rendered within a frame in the KNIME configuration panel.

• horizontal
A boolean flag. If set, the layout of the dialog widget is performed in horizontal and not
vertical direction.

• index
The 0-based parameter index value.

• label
The text label used to name the widget in the configuration panel.

• max
The maximum value of the parameter. Only defined for bounded integer and double settings.

• min
The minimum value of the parameter. Only defined for bounded integer and double settings.

• name
The parameter name. Useful if the parameter was identified via its index.

• portassociation (or port)
For column selector widgets, the input port index this selector applies to.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 791

CACTVS Tcl and Python Scripting Language Reference
• property
The name of a toolkit property this parameter is associated with. If there is no association,
this is an empty string. This attribute is used in the auto-generated node documentation.

• required
A boolean flag indicating whether this parameter must have been set by the user.

• settings
The enumerated class name of the settings object associated with the parameter. This
implicitly defines the datatype of the parameter and is interdependent with the associated
dialog type.

• stringset
A list of strings, for example defining possible values of a string selector widget.

• stringset2
A second list of strings. Used only in column filter dialogs.

• tab
The name of an additional tab in the configuration panel the widget for this parameter is
placed on. Parameters on the default tab report an empty tab name.

• tablecolname (or colname)
The name of a table column selected by a column selector widget.

• tooltip
The tooltip string displayed by the KNIME configuration panel if the user hovers with the
mouse over a configuration widget.

• value
By far the most important attribute - this is the currently configured value of the parameter.

knode port
knode port khandle portname attribute
knode port khandle portname table ?tablehandle|#new? ?isowner?
knode port khandle portname imageblob ?imagebytes?
knode port khandle portname imagefile ?filename?
knode port khandle portname network ?networkhandle|#new? ?isowner?
knode port khandle portname expectedrows ?count?
k.port(name=,attribute=,?value=?,?isowner=?)

Retrieve information about a a specific port, or set it. Ports can be identified by their name, or by
their 0-based port index. Some port attributes can be modified. In this case, one or two additional
parameters for the new attribute value follow the attribute name argument.

The following attributes are recognized:

• buffersize
The buffer size of the port.

• class
The port class (datatable, image or network).
792 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• configreset
If set to 0, the output port table configuration is not reset before the configuration procedure.
By default, all tables associated with output ports are deleted before the function is called.

• description
Free-format description string.

• direction
Port direction (input or output).

• expectedrows
The number of table rows this port is expected to receive until end-of-data. For input ports,
this information is transmitted via RPC from the KNIME workbench in case the size of the
input table is known. The value can be set, typically from the configuration procedure, and
this influences for example automatic node execution progress reporting in some progress
reporting modes.

• filename
Specify the name of a file which contains data to be loaded into an input port, or the name
of a file to which port contents should be written after execution for output ports. This is
either a table data file (for data table ports, usually in native KNIME table format), a network
data file (for network ports, usually in native KNIME table format), or a image for for image
ports. The purpose of this attribute is to facilitate node debugging outside of KNIME. Input
ports are loaded when the node configure command is executed, but not when a node is
configured from within a server listener thread. Likewise, port contents are written when a
node exec command has successfully completed execution, but again not when the
execution was performed in a server thread.

• imageblob
On retrieval, this returns the currently set image bytes for the port, which is defined only for
image ports. This attribute can be set on image ports with data bytes representing a GIF, PNG
or SVG image. The image content is transmitted back to the KNIME workspace when the node
execution has finished.

• imagefile
On retrieval, this returns the name of a temporary file filled with the currently configured
image bytes for this port, which is defined only for image ports. This attribute can be set on
image ports with the name of a file storing a GIF, PNG or SVG image. The file bytes are read
and stored as image bytes. The name of the input file is not remembered. The image content
is transmitted back to the KNIME workspace when the node execution has finished

• imagename
The name (not handle or reference) of the image associated with this port, as shown in the
port menu on nodes in a KNIME workspace.

• index
The port index. The port index is assigned in the order of port definitions (see knode
addport command).

• mimetype
The mime type associated with the port. This is useful only for image ports.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 793

CACTVS Tcl and Python Scripting Language Reference
• name
The port name.

• optional
A boolean flag indicating whether this port may remain unconnected in the KNIME
workspace. In configuration procedures, unconnected optional input ports do not possess an
associated automatically set up table or network object, or image bytes.

• network
On retrieval, return the handle or reference of the network object associated with the port,
or an empty string if no such network exists. If the port is a non-optional or output network
port, and no network object has yet been configured, retrieval results in implicit creation of
an empty network object and its association with the port. This attribute may be set for
network ports. The argument is either the handle of an existing network object, an empty
(also None for PYTHON) string (which destroys any existing network on the port) or the
magical string #new, which creates a new empty network and associates it with the port.
After association, the network life-cycle is managed by the node and cannot be deleted via
its handle. When the node is destroyed, or the network replaced, it is automatically deleted,
except when the optional isowner flag is also specified when the port network is set. With
this flag set, the script writer remains responsible to delete the network when it is no longer
needed, but this can be done only after the node association has been broken.

• networkname
The name (not handle or reference) of the network associated with this port, as shown in the
port menu on nodes in a KNIME workspace.

• processedrows
The number of rows which have been received from or sent to a connected KNIME
workspace, via this port during the current node execution run.

• streaming
A boolean flag indicating that transfer of input table rows, or sending of result table rows,
should proceed in parallel with node execution for this port. If the flag is not set, input tables
are fully filled when node execution begins, and output tables are only sent after node
execution finishes. Otherwise, these operations overlap. If streaming is active, specific node
execution code patterns must be followed. Streaming can only be used on data table ports.

• table
On retrieval, return the handle or reference of the table object associated with the port, or an
empty string if no such table exists. If the port is a non-optional or output data table port, and
no table object has yet been configured, retrieval results in implicit creation of an empty table
object and its association with the port. This attribute may only be set for data table ports.
The argument is either the handle of an existing table object, an empty (or None for PYTHON)
string (which destroys or dissociates any existing table on the port) or the magical string
#new, which creates a new empty table and associates it with the port. After association, the
table life-cycle is managed by the node and cannot be deleted via its handle. When the node
is destroyed, or the table replaced, it is automatically deleted, except when the optional
isowner flag is also specified when the port table is set. With this flag set, the script writer
remains responsible to delete the table when it is no longer needed, but this can be done only
after the node association has been broken.
794 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• tablename
The name (not handle) of the table associated with this port, as shown in the port menu on
nodes in a KNIME workspace.

knode read
knode read filename
Knode.Read(filename)

Create a node by reading an XML-based node definition file. The default node file suffix is .knd
(KNIME node definition), but this is not enforced.

The return value is the handle or reference of the new node.

knode readblob
knode readblob blobdata
Knode.Readblob(blobdata)

Create a new by reading an XML-based node definition file directly from string data.

The return value is the handle or reference of the new node.

knode reset
knode reset khandle
k.reset()

Reset the node so that its state is the same as after a knode create command. All result data, port
and parameter definitions as well as accumulated log messages are deleted and the basic node
attributes are reset to default values.

The command returns the original node handle or reference.

knode resetlog
knode resetlog khandle
k.resetlog()

Reset the accumulated log information of the node. When connected to a KNIME workspace, log
messages which have been transferred to the workspace are automatically deleted. Also, any new
call to the node configuration or execution functions resets the log.

The command returns the original node handle or reference.

knode set
knode set khandle ?attribute value?...
knode set khandle dict
k.set(?attribute,value?,...)
k.set(dict)
k.attribute = value
k[attribute] = value

Set zero or more node object attributes. The recognized attributes are:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 795

CACTVS Tcl and Python Scripting Language Reference
• adaptercells
A boolean flag indicating whether the node should use the new multi-encoding Adapter cell
KNIME table cell classes for storing structure data. If set, structure data cells sent back to a
KNIME workspace will be automatically backed up by a native toolkit version of the
structure, which makes decoding faster and retains computed structure data directly on the
structure object. If a backing native toolkit encoding is present when a cell with structure data
is decoded, it is used preferably over other encodings such as SMILES or MDL Molfile which
might also be present. It is recommended to set this attribute if your KNIME installation is
sufficiently recent.

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author of the node works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the node. This is a free-form string.

• authorurl
A URL with information on the author, or an empty string if unset.

• beta
A boolean flag indicating beta status of the node. If set, the node character is indicated in the
auto-generated node documentation which can be viewed within a KNIME workspace.

• cancelrequest
A boolean flag. If set, it indicates the desired to cancel the currently executing RPC command
on the node. This is primarily useful for debugging and not used in normal programming.
The cancellation request flag is automatically reset if the cancellation has been performed.

• category
A category string to be used if the node definition is stored in a repository. The default
category is CactvsNodes. This is the section under which in a KNIME workbench the node is
listed after installation.
796 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• categorydescription
A free-form text describing the category defined above.

• categoryiconfile
A PNG icon file associated with the node category. It should be size 16x16. The icon is
displayed in the node browser of KNIME workbenches with the category name. The default
icon is a small green flowering cactus.

• classuuid
The base class UUID of this node definition.

• comment
A free-form text comment.

• configproc
The name of the TCL procedure which handles the node configuration phase as initiated from
a KNIME workspace. The function is passed the handle of the node to configure as a single
argument. The most important task of a config procedure is to set the columns of node output
tables, usually after inspecting the settings of configuration options and the column
definitions of connected input tables. The option and input table column definition data is
available at configuration time, but not input table cell (or other input port) content. The
default name for the configuration procedure is config.

• configscript
A body of TCL code containing the procedures handling node configuration. Often this is just
a single procedure. The name of one of the procedures defined in this block must match the
value of the configproc attribute. This procedure is called as entry point. Other procedures
defined in the block are visible, but otherwise the configuration script executes in a restricted
slave interpreter which is instantiated on a per-node basis. tclconfigscript is an alias.

• configscriptfile
The name of a file which contains the TCL source code of the configuration section. The file
content is read and processed like the more commonly used in-line configscript attribute.

• configtrace
A boolean flag which, if set, requests command tracing of the configuration procedure. This
applies only to TCL code. The trace output is visible only on a local interpreter instance, not
from a KNIME workbench.

• date
This attribute stores the date of the node definition compilation. It is used for information
purposes only. If a new node is compiled, it is initialized to the current date.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 797

CACTVS Tcl and Python Scripting Language Reference
• deadmantimeout
Set a node-specific deadman timeout. The attribute is an integer with milliseconds as unit.
A non-zero value set here overrides a globally set general KNIME node deadman timeout. If
the execution of the configuration or execution script on this node exceeds the timeout, the
application server process is summarily killed. This feature is primarily used to protect node
servers from scripts maliciously hogging resources. A killed node server process results in
errors on all connected KNIME workspace clients, but nodes linked to a server can
automatically re-connect if the server process is re-started (which is done automatically in a
standard node server set-up), and node result data already transferred to a workspace is not
compromised.

• defaultlanguage
The default language for automatically generated set-up and test scripts in the absence of
other indicators, such as suffixes in the names of output files. It can be either TCL or PYTHON.

• deprecated
A boolean flag indicating deprecated status of the node. If set, the node character is indicated
in the auto-generated node documentation which can be viewed within a KNIME workspace.

• doi
A digital object identifier for the node, if defined.

• editurl
The default node designer URL to export the node definition to via the configuration panel
button of a node, if the node was compiled with an open definition. The default is
https://xemistry.com/nodedesigner.

• email
The email address of the creator of the node, useful in case a definition file is distributed and
anybody has questions.

• execproc
The name of the TCL procedure which handles the node execution phase as initiated from a
KNIME workspace. The function is passed the handle of the node to configure as a single
argument. The function is called after a successful configuration phase. Usually, all input
and output ports have already been set up, and at least an initial data portion is already
present in the input tables or other input port objects.The execution procedure then reads the
input table rows or other input data and, usually depending on configuration panel settings,
appends output table rows. In case of streaming input tables, new input data continues to
arrive while the procedure executes, and input rows are usually popped from the input tables
during processing to avoid accumulating large amounts of table data. For streaming output
tables, result rows which have been transmitted to a connected workspace are automatically
removed..The default name for the execution procedure is exec.

• execscript
A body of TCL code containing the procedures handling node execution. Often this is just a
single procedure. The name of one of the procedures defined in this block must match the
value of the execproc attribute. This procedure is called as entry point. Other procedures
defined in the block are visible, but otherwise the execution script executes in a restricted
slave interpreter which is instantiated on a per-node basis. tclexecscript is an alias.
798 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• execscriptfile
The name of a file which contains the TCL source code of the execution section. The file
content is read and processed like the more commonly used in-line execscript attribute.

• exectrace
A boolean flag which, if set, requests command tracing of the execution procedure. This
applies only to TCL code. The trace output is visible only on a local interpreter instance, not
from a KNIME workbench.

• expertflag
A boolean flag indicating expert status of the node. If set, the node character is indicated in
the auto-generated node documentation which can be viewed within a KNIME workspace.

• fork
A boolean flag indicating that the node should be configured and executed in a forked node
server instance, which automatically terminates when execution is complete. For
PYTHON-based nodes, this is automatically enforced because of the severe multi-threading
limit of PYTHON interpreters and their dangerous lack of intra-interpreter isolation.

• fulldescription
A long description text. It is displayed in the auto-generated node documentation which can
be viewed in a KNIME workbench.

• keywords
A free-form list of keywords associated with the node.

• id
The official registration ID of the node. regid is an alias.

• infourl
A URL with information on the node, or an empty string if unset.

• instanceuuid
The UUID of this node instance. It is usually not recommended to set or change this by script
commands, since it is essential for RPC communication.

• javac
The path to the Java compiler to use for the compilation of the Java code auto-generated for
the KNIME-side node interface object. If it is not set, an attempt is made to find a Java
compiler in the normal executable path. Note that KNIME can be finicky about Java compiler
version mismatch. Even if you find a javac by normal path search, it may not be the right one
among multiple installation.

• keepjavasource
If set, the Java source automatically generated for the KNIME-side node interface class is
retained after compilation. This is a debug option.

• knimeplugindir
The standard directory for user-defined nodes in the local KNIME installation. If is is set,
newly compiled nodes are automatically copied to this location.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 799

CACTVS Tcl and Python Scripting Language Reference
• lenient
A boolean attribute. If it is set, the applicability of parameter attributes with respect to their
dialog type is not checked. For normal scripting the flag should not be used, but it is helpful
when setting up automatic processing of node definitions.

• license
The license class associated with this node. Setting the license to a standard type updates the
associated URL with a standard location.

• licenseurl
A URL with details about the node license.

• listcells
If set, this node may use list cells for data communication with a KNIME workbench, for
example for array- and compound-class property data. List cells are only available in more
recent KNIME versions.

• literature
A free-form literature reference.

• localfs
If set, this indicates that the KNIME workbench and the node server share a common file
system. This means that file data from configuration panels or data cells does not need to be
transferred via the RPC connection. Instead, file names can be sent, which makes processing
more efficient for larger files.

• mintoolkitversion
A version number in 1.2.3.4 or shortened notation indicating the minimum toolkit version of
a node server which is able to execute this node, for example because the node uses features
or properties which were introduced only in recent toolkit versions. If an older node server
receives node code with a higher version requirement, execution is denied.

• msglogfile
The name of a file which captures all messages generated by a node. Messages also appear
in the console of a connected KNIME workbench. On servers, custom message file logs are
usually not allowed, so this is primarily a debug feature for local node development. Magic
file names stdout and stderr may be used, and an empty log file name disables per-node
message logging. This attribute cannot be queried.

• name
This is the name of the node. If this is changed, the node class root name and default JAR
file name are also implicitly changed.

• naptime
The number of microseconds to sleep in transfer threads if no data is available to be sent or
received. The default are 25000 microseconds. A lower value decreases processor load, a
higher value make nodes appear less responsive.

• nodeclassroot
The root Java class name of the KNIME workbench interface object. This is usually not set
directly, but auto-derived from the node name.
800 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• nodeiconfile
A file which contains a custom node icon as PNG file. The standard icon size are 16x16
pixels. This icon is displayed in the node browser of a KNIME workbench. The default icon
is a small green flowering cactus.

• orcid
The ORCID code of the author of the node (see www.orcid.org).

• path
The menu path associated with the node.

• phone
A contact phone number of the author.

• pluginjarfile
The file name of the compiled Java node interface class for use in a KNIME installation.
Usually, this is not set ad the JAR file name is auto-derived from the node name.

• progressmessage
A free-form string which is used as component of node execution progress messages.

• progressmode
The method to report node execution progress to a connected KNIME workbench. The default
is none, and no progress updates are sent. Other supported modes are:

• scripted - the progress indicator is updated from within the execution script.

• portrows - the progress value is the percentage of input and output rows of all table ports
which have been read or written vs. the expected total row count.

• porteods - the progress value is the portion of all ports which have reached end-of-data
status.

• inportrows - like portrows, but computed only for input table ports.

• inporteods - like porteods, but computed only for input ports.

• outportrows - like portrows, but computed only for output table ports.

• outporteods - like porteods, but computed only for output ports.

• inportrows0 - like inportrows, but computed only for input port 0.

Modes inportrows[0-2], inporteods[0-2], outportrows[0-2] and outporteods[0-2] follow the
same schema.

• property
The name of a single toolkit chemical data-related property which is computed by this node.
This information is used for the auto-generation of node documentation. Setting this attribute
appends a property to the node property register. It does not overwrite previous entries. The
maximum size of the property register is 32 entries. Multiple properties can be set at once,
or the register reset, with the properties attribute. This attribute cannot be queried.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 801

CACTVS Tcl and Python Scripting Language Reference
• properties
A list of toolkit chemical data-related properties which are computed by this node. This
information is used for the auto-generation of node documentation. The maximum size of the
property register is 32 entries.

• pyconfigscript
Essentially the same as tclconfigscript/configscript, except that the configuration procedure
block is expected to be a PYTHON function collection, not a TCL procedure block. Note that the
use of configuration or execution scripts written in PYTHON is currently limited, insecure and
burdened with mandatory fork overhead compared to the TCL counterpart.

• pyconfigscriptfile
Essentially the same as tclconfigscriptfile/configscriptfile, except that the configuration
source code file is expected to be a PYTHON function collection, not a TCL procedure source
file. Note that the use of configuration or execution scripts written in PYTHON is currently
limited, insecure and burdened with mandatory fork overhead compared to the TCL
counterpart.

• pyexecscript
Essentially the same as tclexecscript/execscript, except that the configuration procedure
block is expected to be a PYTHON function collection, not a TCL procedure block. Note that the
use of configuration or execution scripts written in PYTHON is currently limited, insecure and
burdened with mandatory fork overhead compared to the TCL counterpart.

• pyexecscriptfile
Essentially the same as tclexecscriptfile/execscriptfile, except that the execution source code
file is expected to be a PYTHON function collection, not a TCL procedure source file. Note that
the use of configuration or execution scripts written in PYTHON is currently limited, insecure
and burdened with mandatory fork overhead compared to the TCL counterpart.

• pyscript
This attribute allows the definition of both the configure script and the execution script in one
blob of PYTHON source code. See pyconfigscript and pyexecscript attributes.

• pyscriptfile
This attribute allows the import of both the configure script and the execution script from one
file with PYTHON source code. See pyconfigscriptfile and pyexecscriptfile attributes.

• renderproperty
The name of a single toolkit chemical rendering-related property which is computed by this
node. This information is used for the auto-generation of node documentation. Setting this
attribute appends a property to the node property register. It does not overwrite previous
entries. The maximum size of the property register is 32 entries. Multiple properties can be
set at once, or the register reset, with the renderproperties attribute. This attribute cannot be
queried.

• renderproperties
A list of toolkit chemical rendering-related properties which are computed by this node. This
information is used for the auto-generation of node documentation. The maximum size of the
property register is 32 entries.
802 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• rowblocksize
The number of table data rows which are transferred within one RPC message block, if that
much data is available. The default is 50. Changing this parameter is not advised under
normal circumstances.

• rpcflags
A set of flags influencing the RPC communication between node server and KNIME
workbench. Bit positions of this flag are usually set by dedicated script commands.
Recognized flags include none, localfs, secure and structureexport.

• rpchost
The name of the host this node communicates with. This is usually not set manually but
transmitted as part of the credentials of a KNIME workbench node interface object.

• rpclogfile
The name of a file which logs debug information about the RPC communication with a
KNIME workbench. Magic file name stdout and stderr are supported, and an empty filename
(or None for PYTHON) disables RPC logging. RPC logging on remote servers is usually
disabled, so this is primarily a debug feature for local node development.

• rpcpassword
The RPC password. This is usually not set manually but transmitted as part of the credentials
of a KNIME workbench node interface object.

• rpcport
The port for RPC communication. This is usually not set manually but transmitted as part of
the credentials of a KNIME workbench node interface object.

• rpcuser
The remote user of this node. This is usually not set manually but transmitted as part of the
credentials of a KNIME workbench node interface object.

• script
This attribute allows the definition of both the configure script and the execution script in a
single blob of TCL source code. See configscript and execscript attributes.

• scriptfile
This attribute allows the import of both the configure script and the execution script from a
single file with TCL source code. See configscriptfile and execscriptfile attributes.

• shortdescription
A free-form short node description string. It is used as part of the auto-generated node
documentation which can be viewed in a KNIME workbench.

• showxmlsource
If set, the compiled Java interface node contains an extra tab in the configuration panel which
contains the source of the node definition in XML format (see knode write command). This
text can be copied&pasted for easy sharing of the node source code and further third-party
modification of the node.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 803

CACTVS Tcl and Python Scripting Language Reference
• structureexport
This flag can be set to values never, parameterdependent and always. If set to anything but
never, the node may, or always does, send (potentially sensitive) structure information to 3rd
party sites, for example for the lookup of structure data from Internet sites. If that is the case,
the user must approve this operation by checking an automatically provided checkbox in the
node configuration panel on the KNIME workbench. Otherwise, the node will not export
structure data and fail.

• tclconfigscript
See configscript, this is an alias.

• tclconfigscriptfile
See configscriptfile, this is an alias.

• tclexecscript
See execscript, this is an alias.

• tclexecscriptfile
See execscriptfile, this is an alias.

• tclscript
See script, this is an alias.

• tclscriptfile
See scriptfile, this is an alias.

• unrestricted
If this flag is set, the node requires an unrestricted TCL interpreter for execution. with file
system and network access. Whether a server honors this request, is a server configuration
issue. Public servers will generally refuse execution of such nodes because this is a severe
security risk. PYTHON does not support restricted interpreters and such nodes are therefore
always considered unrestricted (and not executed on public servers).

• vendordomain
The domain of the vendor or developer of the node. This is used as part of the Java class
configuration. The default is xemistry.com.

• version
The version of the node. This is a string in a 1.2.3 (or shortened) style. If the version changes,
the default JAR file name is automatically updated.

• versionuuid
The version UUID associated with this node version.

• workdir
The name of a directory for temporary files assembled and compiled during the assembly of
a Java JAR file. The directory is created if it is not yet present. It must be writable. By default,
a random directory in the system-dependent temporary files directory is created and
automatically deleted after JAR file generation. If a custom work directory is used, it is not
auto-deleted, but internal cleanup still proceeds except in case Java sources are retained (see
keepjavasource attribute).
804 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
knode subcommands
knode subcommands
dir(Knode)

List all subcommands of the knode command.

knode write
knode write khandle ?filename?
k.write(?filename=?)

Write the node definition to an XML-based file which is suitable for reading with the knode read
command.

If no filename is specified, its name is derived from the node name with a .knd (KNIME node
definition) suffix. If an explicit empty filename is specified (including None for PYTHON), an
in-memory string blob is produced, without writing to a file.

The definition file only saves the node definition with all attributes, ports and parameters, but no
execution state or execution result information.

The return value is the file name, or, in case of blob output, the definition file contents.

knode writeconfig
knode writeconfig ?filename?
Knode.Writeconfig(?filename=?)

Write the current system configuration regarding the KNIME node subsystem to a file. If no file name
is given, the default configuration filename csconfig.xml in the current directory is used.

Files of that name are automatically read on start-up if they are in the current working directory, or
in a standard location such as the home directory or the CACTVS installation directory, or passed as
a program option when the interpreter is started. This makes it easy to maintain a custom node
execution environment without explicitly setting many custom configuration variables.

The return value is the file name.

knode writedoc
knode writedoc khandle ?filename?
k.writedoc(?filename=?)

Write a HTML file for a node which looks very much like the contents of the node description panel
in the KNIME workbench. The original documentation compiled into the node JAR files is
XML-coded, so this is not exactly the same data. The constant contents of the RPC and Source tabs
are omitted.

If no node name is specified, a name is automatically constructed from the node name and a .html
suffix. If an explicit empty filename is specified (including None for Python), the output is an
in-memory string blob, not a file

The return value is the file name, except in case of blob output, when it is the HTML file contents.

knode writescript
knode writescript khandle ?filename?
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 805

CACTVS Tcl and Python Scripting Language Reference
k.writescript(?filename=?)

Write a TCL or PYTHON script which, when run, faithfully recreates the node definition and writes out
a new XML node definition file and a new KNIME JAR file. Editing these scripts in the context of
custom node development is much more convenient than manipulating the content of the native
XML-based node definition file. For simple node source code distribution, the XML format is more
suitable.

If the file name has a .tcl suffix, the output is a TCL script. The script language is automatically
switched to PYTHON if the file name has a .py suffix. If none of these suffixes is used, the script
language configured via the defaultlanguage node attribute is used. If that is also unset, TCL is the
default. If no file name argument is used, the file name is constructed from the node name and the
appropriate language suffix. If an explicit empty filename is specified (including None for Python),
the output is an in-memory string blob, not a file.

The return value is the file name, except in case of blob output, when it is the script file contents.

knode writetest
knode writetest khandle ?filename?
k.writetest(?filename=?)

Automatically generate a TCL or PYTHON test script for a node. The command line arguments for the
script are port data file names for all non-optional input ports, optionally file names to store the
output of ports, and a parameter dictionary. The script contains readable comments to self-document
its use.

If the file name has a .tcl suffix, the output is a TCL script. The script language is automatically
switched to PYTHON if the file name has a .py suffix. If none of these suffixes is used, the script
language configured via the defaultlanguage node attribute is used. If that is also unset, TCL is the
default. If no file name argument is used, the file name is constructed from the node name with a
_test name modification and the appropriate language suffix. If an explicit empty filename is
specified (including NONE for PYTHON), the output is an in-memory string blob, not a file.

The return value is the file name, except in case of blob output, when it is the script file contents.
806 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The lhasa Command

The lhasa command manages LHASA objects. A LHASA object is able to read and utilize the original
LHASA transform files as source of detailed reaction knowledge.

The command has the following subcommands:

lhasa append
lhasa append lhandle ?property value?...
l.append({?property:value,?...})
l.append(?property,value,?...)

Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

lhasa assign
lhasa assign lhandle srcprop dstprop
l.assign(srcproperty=,dstproperty=)

Assign property data to another property on the same Lhasa object. Both properties must be
associated with the Lhasa object class. This process is more efficient than going through a pair of
lhasa get/lhasa set commands, because in most cases no string or TCL/PYTHON script object
representations of the property data need to be created.

Both source and destination properties may be addressed with field specifications. A data
conversion path must exist between the data types of the involved properties. If any data conversion
fails, the command fails. For example, it is possible to assign a string property to a numeric property
- but only if all property values can be successfully converted to that numeric type. The reverse
example case always succeeds, out-of-memory errors and similar global events excluded.

The original property data remains valid. The command variant lhasa rename directly exchanges
the property name without any data duplication or conversion, if that is possible. In any case, the
original property data is no longer present after the execution of this command variant.

Examples
lhasa assign $lh L_IDENT L_NAME

lhasa classify
lhasa classify lhandle ehandle ?fgclass?

Sub-classify functional groups in the structure according to the LHASA definition. This is used for
checking compatibility of standard reaction conditions with functional groups outside the reaction
path.

This command is currently not fully implemented.

lhasa collection
lhasa collection
Lhasa.Collection()
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 807

CACTVS Tcl and Python Scripting Language Reference
Look into the LHASA transform directory and identify pre-compiled transform files stored therein.
The command returns a tuple of the found transform IDs, which are valid identifiers for the lhasa
read command.

lhasa create
lhasa create ?ruledata? ?subroutinedata?..
lhasa create -fromfile/-fromfiles rulefilename ?libfilename?...
Lhasa(?ruledata?,?subroutinedata?,...)
Lhasa.Create(?ruledata?,?subroutinedata?,...)
Lhasa.CreateFromFile(rulefilename,?libfilename?,...)

Create a new LHASA object and return its object handle. Usually, the content of a transform source
file and any required subroutine file contents are specified at creation time. These are directly parsed
into an internal byte code representation.

The first command variant expects the rule source code as Latin1 or UTF8 (with BOM) string blob
data, while the second version expects a set of file names, with the file containing Latin1 or UTF8
(with BOM) source code. The first version is useful in contexts where, for example, the rule source
is extracted from a database or other non-file source. The second variant automatically sets the
sourcefiles attribute, which is not possible for the first version because the file name is not directly
known.

The rule data can either be the source code for a single transform (with one set of 1D and optionally
2D and New1D PATRAN patterns), or a concatenation of one or more classification rules (for
example, for the determination of subclasses of functional groups). It is not possible to load more
than one transform into a LHASA object, but any number of these objects, with the same or different
rule sources, may be instantiated at any time.

If subroutine source code is used, every subroutine source block must be passed as its own argument.
It is neither possible to concatenate transform sources and subroutine sources, nor to used merged
subroutine source files. Empty subroutine data blobs or filename arguments, or, for filename input,
file names which are actually directories are silently skipped. When reading a rule, an attempt is
made to automatically load missing library files by trying to locate a file named, in lowercase, like
the subroutine name with a .csr suffix along the directory path specified in ::cactvs(lhasapath)
or its PYTHON dictionary equivalent. This only succeeds if the subroutine name to source file mapping
follows this scheme - this is the case for most of the original LHASA library files, but not all of them.

Certain object metadata components, such as the transform name and ID, or the substructure match
patterns, are automatically extracted from the rule source during parsing and set as object attributes.

The lhasa react subcommand requires the presence of one or more 2D or New1D retro-reaction
patterns in the rule source, and these should, on the left - retro-reaction reagent - side, correspond
to the 1D patterns as closely as possible, but without excluding any structure motifs which are
matched by the somewhat more expressive 1D patterns. Many original LHASA rules to not provide
2D patterns. If that is the case, they must be manually added before a rule becomes fully usable.

The 2D patterns which can be parsed by the toolkit are an extension of the original LHASA
implementation. There is no requirement that the path is encoded on the reaction arrow line with the
offpath components drawn above or below this line. Also, aromatic systems are automatically
detected if a full ring with proper VB bond orders is drawn. Diagonal double bonds can be encoded
as // or \\ character pairs where one of the characters is one position to the left or right of the normal
808 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
bond continuation. The 2D patterns become subject to a reaction mapping analysis. For performance
reasons, it is advisable to use tagged substituent groups like R1, R2 etc instead of anonymous carbon
atoms for large patterns.

Example:
set lh [lhasa create [read_file huisgen.src]]
set lh [lhasa create -fromfile huisgen.src]

lhasa dataset
lhasa dataset lhandle ?filterlist?
l.dataset(?filters=?)

Return the dataset handle or reference of the dataset the Lhasa object is a member of. It the object
is not member of a dataset, or does not pass all of the optional filters, an empty string or None for
PYTHON is returned.

Putting Lhasa objects into datasets is primarily intended for use with the multi-threading dataset
threadexec command.

Example:
lhasa dataset $lhandle

lhasa defined
lhasa defined lhandle property
l.defined(property)

This command checks whether a property is defined for the Lhasa object. This is explained in more
detail in the section about property validity checking. Note that this is not a check for the presence
of property data! The lhasa valid command is used for this purpose.

lhasa delete
lhasa delete ?lhandle?...
lhasa delete all
l.delete()
Lhasa.Delete(?lhandle/lref?,...)
Lhasa.Delete(“all”)

Delete specific or all Lhasa objects from the toolkit instance. The return value is the number of
deleted Lhasa objects.

lhasa dget
lhasa dget lhandle propertylist ?filterset? ?parameterdict?
l.dget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

lhasa exists
lhasa exists lhandle ?filterlist?
l.exists(?filters=?)
Lhasa.Exists(lref=,?filters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 809

CACTVS Tcl and Python Scripting Language Reference
Check whether a table handle or reference is valid. The command returns boolean 0 or 1. Optionally,
the table may be filtered by a standard filter list, and if it does not pass the filter, it is reported as not
valid.

lhasa filter
lhasa filter lhandle filterlist
l.filter(filters)

Check whether the Lhasa object passes a filter list. The return value is 1 for success and 0 for failure.

lhasa get
lhasa get lhandle propertylist ?filterset? ?parameterdict?
lhasa get lhandle attribute
l.get(property=,?filters=?,?parameters=?)
l.get(attribute)
l.property/attribute
l[property/attribute]

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For the use of the optional property parameter list and filter arguments, refer to the documentation
of the ens get command.

In addition to retrieving property data, this command is also used to retrieve a large set of attribute
values from the Lhasa object. All attributes which can be set (see lhasa set command) can also
be queried. In addition, there are a number of attributes which cannot be set by script commands but
are automatically updated when a rule is compiled, or a lhasa react or lhasa score command
is executed. These are:

• 1dpatterns
A list of the ensemble handles or references of the 1D patterns defined as part of the
transform.

• 2dpatterns
A list of the reaction handles or references of the 2D patterns defined as part of the transform.

• baserating
The base rating of the transform. If individual rating factors are defined in the rule
(TYPICAL*YIELD, etc.), the base rating is computed from a weighted average of these factors,
as per the official LHASA formula. This supersedes any value defined by a RATING statement.
If only a RATING statement is part of the rule, its value is returned. If neither rating factors
not a plain rating are specified, the default base rating of 50 is substituted.

• codetable
The command returns the handle or reference of a newly generated table object which
contains a human-readable representation of the compiled source. When writing this table as
a tab-separated file (or directly as an EXCEL file), this is a useful tool to debug compilation
issues. The table is not associated with the Lhasa object. It must be managed and discarded
independently.
810 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• conditional*flexibility (or conditionalflexibility)
The enumerated value of the base rating factor as defined in the rule, or undefined.

• coverage
The count of opcodes which were evaluated at least once as result of lhasa score
commands during the lifetime of the LHASA object. This number is less than or equal to the
total number of opcodes (opcodecount attribute) and the same as the number of set bits in the
coveragevector attribute.

• coveragevector
A bit vector with the length equal to the number of byte-compiled opcodes indicating if an
opcode has been evaluated at least once during the lifetime of the Lhasa object as the result
of running lhasa score commands. This information is used to help constructing test data
sets exercising all relevant aspects of a transform.

• cost
The enumerated value of the base rating factor as defined in the rule, or undefined.

• debugtable
The table handle or reference of the integrated table object which stores scoring execution
trace data if the debugtable flag is set in the execflags attribute. The table only exists if a trace
was executed, and it is re-used for further traced scoring executions. The table is an integral
part of the LHASA object and is fully managed by it. If no table has been set up, and empty
string for TCL or None for PYTHON is returned. The table is used in the CHMTRN Web tool for
debugging and explaining transform execution.

• delta
The reaction-specific delta value added to the Hammet electrophilic substitution reactivity
function value when using such Hammet equation. The value is specified via a DELTA
statement in the source.

• description
Free-form text extracted from the transform rule source header.

• forwardtests
Get the information from the FORWARD*REACTION*VERIFICATION block, if one is present in
the transform. This is a list, where each list contains in nested fashion a list of the numbers
of reagent molecules from the scan verification block starting with number one, and a second
list of all expected forward reaction products as ensembles generated from the forward
reaction of the indicated reagents.

• generalrefs
A list of the general (not conditional) literature references defined in the transform.

• handle
The object handle.

• heteroselectivity
The enumerated value of the base rating factor as defined in the rule, or undefined.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 811

CACTVS Tcl and Python Scripting Language Reference
• history
A nested list/tuple of the authors and dates of transform source code changes, as encoded by
written*by and changed*by statements. The simpler author attribute contains the name of
the first author only.

• homoselectivity
The enumerated value of the base rating factor as defined in the rule, or undefined.

• intermol_reagentquery1
Return CACTVS query for molfile scan and variants which checks for the presence of a
suitable reagent pattern of the first reagent. The exact match mode depends on the setting of
the countedreagentquery and exclusivereagentquery flags in the execflags parameter.

• intermol_reagentquery2
Return CACTVS query for molfile scan and variants which checks for the presence of a
suitable reagent pattern of the second reagent.The exact match mode depends on the setting
of the countedreagentquery and exclusivereagentquery flags in the execflags parameter. If no
second reagent is defined, the returned query never matches.

• intermol_reagentquery3
Return CACTVS query for molfile scan and variants which checks for the presence of a
suitable reagent pattern of the third reagent. The exact match mode depends on the setting
of the countedreagentquery and exclusivereagentquery flags in the execflags parameter. If no
third reagent is defined, the returned query never matches.

• intermol_reagentquery4
Return CACTVS query for molfile scan and variants which checks for the presence of a
suitable reagent pattern of the fourth reagent. The exact match mode depends on the setting
of the countedreagentquery and exclusivereagentquery flags in the execflags parameter. If no
fourth reagent is defined, the returned query never matches.

• intramol_reagentquery
Return a CACTVS query for molfile scan and variants which checks for the presence of a
suitable reagent pattern within a single record. Any ensemble which simultaneously contains
a pattern for any variant of the first, second ... up to the number of reagents in a reaction is
a match.

• keywords
A free-form list of keywords associated with the transform.

• killline
The transform source code line of the statement which terminated the last rule execution, or
the special string values scoretoolow and wrongfragmentcount if the execution was stopped
outside the compiled transform code due to these conditions. The value is 0 if the run was
not terminated. It is automatically reset before processing any pattern match in a lhasa
score command.

• max2dfragments
The maximum number of fragments on the product side of 2D or New1D patterns defined
in the transform source.
812 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• mechblock
A list of the opcode indices of the first and last CHMTRN statements defining the mechanism
block.

• min2dfragments
The minimum number of fragments on the product side of 2D or New1D patterns defined
in the transform source.

• new1dpatterns
A list of the reaction handles of all New1D patterns defined as part of the transform.

• newbaserating
The computed transform base rating as defined by the rating factors (see baserating). If the
rule does not define rating factors, an empty string is reported.

• opcodecount
The number of compiled opcodes.

• opcodes
A sequential list of all opcodes byte-compiled from the transform text. Each list element is
a dictionary with all attributes applicable to the specific opcode.

• optionalrefs
A list of all optional (conditional) literature references defined in the transform source.

• orientational*selectivity (or orientationalselectivity)
The enumerated value of the base rating factor as defined in the rule, or undefined.

• productpatterns
A list of all ensemble handles for the product patterns defined by 2D or New1D patterns in
the transform. Note that in the original rule text these are written on the left side of the
reaction scheme because transforms work in retro-synthetic direction!

• reactiondataset
The handle of the dataset object embedded in the LHASA object which contains reaction
products after running a lhasa react command.

• reactionproducts
A list of all product ensembles generated by the last lhasa react command.

• reactions
A list of the reaction handles of all 2D and New1D patterns defined as part of the transform.

• reagentcount
The maximum number of reagents defined in in any 2D or New1D pattern of the transform.
This defines also the last supported reagent query (intermol_reagentquery[1234]) for a
given transform.

• reagentpatterns
A list of all ensemble handles for the reagent patterns defined by 2D or New1D patterns in
the transform. Note that in the original rule text these are written on the right side of the
reaction scheme because transforms work in retro-synthetic direction!
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 813

CACTVS Tcl and Python Scripting Language Reference
• reliability
The enumerated value of the base rating factor as defined in the rule, or undefined.

• reputation
The enumerated value of the base rating factor as defined in the rule, or undefined.

• rho
The reaction-specific multiplier value applied to the Hammet electrophilic substitution
reactivity function when using such Hammet equation. The value is specified via a RHO
statement in the source.

• ruleflags
An enumerated list of all the descriptive rule flags set in the transform source code, or none.
The recognized set is subgoals*allowed, subgoals*not*allowed, fga*allowed,
fga*not*allowed, unmasking, symmetrical, reconnective, simplifying, disconnective and
student. None of these currently has an effect on the execution of the rule code.

• safety
The enumerated value of the base rating factor as defined in the rule, or undefined.

• scantests
Get the data from a REAGENT*SCAN*VERIFICATION blob, if it is present in the transform. The
result is a list of ensembles. In property E_REAGENT_SCAN_VERIFICATION these ensebmels
contain information about their expected reagent roles (intramolecular reagent,
intermolecular reagent 1, etc.).

• scoredataset
The handle of the dataset embedded in the LHASA object which contains scored reactions after
running the lhasa score command.

• scoreduplicatecount
The number of score pattern matches in the last lhasa score command which executed
without rejection by KILL or DISCONTINUE statements in the transform evaluation code, but
which were then removed from the scored result set because they were a structural duplicate
of an earlier result.

• scorekillcount
The number of score pattern matches which were killed during the execution of the transform
evaluation code by the last lhasa score command. The count includes implicit kills by
scores decreasing below the kill threshold and similar events.

• scorematchcount
The number of topologically distinct score pattern matches found by the last lhasa score
command.

• scoredreactions
A list of the scored reactions generated as result of the last lhasa score command.
814 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• scoretests
Get the contents of the RETRO*SCORING*VERIFICATION block as a list, if such a block is
defined in the transform. Each list element consists of a list of the expected outcome (killed
or scored) and the test ensemble handle or reference. If the expected result is a kill, the next
list element contains the opcode index (zero-based) of the statement which caused the kill.
If the expected result is a successful score, the next element is the final score, followed by
another nested list, where each element consists of the zero-based opcode index which
produced a score modification (ADD or SUBTRACT), followed by the score delta.

• standardreagentsdataset
Get the handle or reference of the dataset object which holds the simple standard reagents
collection for Lhasa operations. This is a collection of about 85 bulk chemicals which are
used in some Lhasa transforms, but are not usually contained in starting material catalogs.
This includes reagents such as water, chlorine gas, ozone, or methanol. The dataset is
instantiated and filled with the default set when the first Lhasa engine object is created. It is
shared between all Lhasa objects. It can be manipulated by adding, removing or editing the
contained structures. If a Lhasa forward reaction reagent set fails to explicitly include any of
those small molecules when they are required for the reaction, they are automatically added.
See also the lhasa react command.

• superatomattachment
A boolean value indicating whether the current transform may create leaving groups with
superatom components, such as generic alkyl groups. This is extracted from the specifics of
the bytecodes of the compiled transform. Not all transform executions with the potential to
generate such compounds will do so under all circumstances due to the possibility of
encoding multiple reaction paths in the transform.

• thermodynamics
The enumerated value of the base rating factor as defined in the rule, or undefined.

• typical*yield (or typicalyield)
The enumerated value of the base rating factor as defined in the rule, or undefined.

Variants of the lhasa get command are lhasa new, lhasa dget, lhasa jget, lhasa jnew,
lhasa jshow, lhasa nget, lhasa show, lhasa sqldget, lhasa sqlget, lhasa sqlnew,
and lhasa sqlshow. These commands only work on property data and cannot be used to access
engine attributes.

lhasa getparam
lhasa getparam lhandle property ?key? ?default?
l.getparam(property=,?key=?,?default=?)

Retrieve a named computation parameter from valid property data. If the key is not present in the
parameter list, an empty string is returned (None for PYTHON). If the default argument is supplied, that
value is returned in case the key is not found.

If the key parameter is omitted, a complete set of the parameters used for computation of the
property value is returned in dictionary format.

This command does not attempt to compute property data. If the specified property is not present,
an error results.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 815

CACTVS Tcl and Python Scripting Language Reference
lhasa jget
lhasa jget lhandle propertylist ?filterset? ?parameterdict?
l.jget(property=,?filters=?,?parameters=?)

This is a variant of lhasa get which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects. The command is usable only for property data, not attribute
retrieval.

lhasa jnew
lhasa jnew lhandle propertylist ?filterset? ?parameterdict?
l.jnew(property=,?filters=?,?parameters=?)

This is a variant of lhasa new which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

lhasa jshow
lhasa jshow lhandle propertylist ?filterset? ?parameterdict?
l.jshow(property=,?filters=?,?parameters=?)

This is a variant of lhasa show which returns the result data as a JSON formatted string instead of
TCL or PYTHON interpreter objects.

lhasa list
lhasa list ?pattern?
Lhasa.List(?pattern=?)

Return a list of all currently existing Lhasa object handles or references. If a filter pattern is
specified, only objects matching it are listed. The pattern syntax is the same as in the standard TCL
command string match.

lhasa metadata
lhasa metadata lhandle property ?field ?value??
l.metadata(property=,?field=?,?value=?)

Obtain property metadata information, or set it. The handling of property metadata is explained in
more detail in its own introductory section. The related commands lhasa setparam and lhasa
getparam can be used for convenient manipulation of specific keys in the computation parameter
field. Metadata can only be read from or set on valid property data.

Valid field names are bounds, comment, info, flags, parameters and unit.

lhasa move
lhasa move lhandle ?datasethandle? ?position?
l.move(?target=?,?position=?)

Make the Lhasa object a member of a dataset, or remove it from a dataset. If the dataset handle or
reference parameter is omitted, or is an empty string, or None for PYTHON, the object is removed from
its current dataset.

If a target dataset handle or reference is specified, the object is added to the dataset, if allowed by
the acceptance bits of the dataset, and removed from any dataset it was member of before the
execution of the command. By default the object is added to the end of the dataset object list, but
816 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
the final optional parameter allows the specification of a dataset object list index. The first position
is index zero. If the parameter value end is used, or the index is bigger than the current number of
dataset objects minus one, the object is appended as per the default. It is legal to use this command
for moving objects within the same dataset.

Another special position value is random or rnd. This value moves to the object to a random position
in the dataset.

The dataset handle cannot be a transient dataset.

The return value of the command is the dataset of the object prior to the move operation. It is either
a dataset handle/reference, or an empty string (TCL) or None (PYTHON) if it was not member of a
dataset.

lhasa mutex
lhasa mutex lhandle mode
l.mutex(mode)

Manipulate the object mutex. During the execution of a script command, the mutex of the major
object(s) associated with the command are automatically locked and unlocked, so that the operation
of the command is thread-safe. This applies to builds that support multi-threading, either by
allowing multiple parallel script interpreters in separate threads or by supporting helper threads for
the acceleration of command execution or background information processing. This command locks
major objects for a period of time that exceeds a single command. A lock on the object can only be
released from the same interpreter thread that set the lock. Any other threaded interpreters, or
auxiliary threads, block until a mutex release command has been executed when accessing a locked
command object. This command supports the following modes:

• lock
Increase the recursive mutex lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock.

• reset
Release all persistent locks on the object, if they exist.

• test
Return the current persistent lock count on the object. This excludes the transient
per-command lock.

• unlock
Decrease the recursive lock count on the object. The command returns the current lock
count after the command, excluding the transient single-command lock. Unlocking an
object which has not been persistently locked results in an error.

There is no trylock command variant because the command already needs to be able to acquire a
transient object mutex lock for its execution.

The command returns the current lock count.

lhasa need
lhasa need lhandle propertylist ?mode? ?parameterdict?
l.need(property=,?mode=?,?parameters=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 817

CACTVS Tcl and Python Scripting Language Reference
Standard command for the computation of property data, without immediate retrieval of results.
This command is explained in more detail in the section about retrieving property data.

The return value is the original table handle or reference.

lhasa new
lhasa new lhandle propertylist ?filterset? ?parameterdict?
l.new(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the lhasa get command. The difference between lhasa get and lhasa new
is that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

lhasa nget
lhasa nget lhandle propertylist ?filterset? ?parameterdict?
l.nget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the lhasa get command. The difference between lhasa get and lhasa nget
is that the latter always returns numeric data, even if symbolic names for the values are available.

lhasa nnew
lhasa nnew lhandle propertylist ?filterset? ?parameterdict?
l.nnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data and attributes. It is explained in more
detail in the section about retrieving property data.

For examples, see the lhasa get command. The difference between lhasa get and lhasa nnew
is that the latter always returns numeric data, even if symbolic names for the values are available,
and that property data re-computation is enforced.

lhasa properties
lhasa properties lhandle ?pattern? ?noempty?
l.properties(?pattern=?,?noempty=?)

Return a list of the valid properties on the Lhasa object. If desired, the property list can be filtered
by the optional string match pattern. Since Lhasa objects incorporate no minor objects, only true
Lhasa object properties (standard prefix L_) are listed.

If the noempty flag is set, only properties where at least one data element is not the property default
value are output. By default, the filter pattern is an empty string, and the noempty flag is not set.

The command may also be written as short form lhasa props.

lhasa purge
lhasa purge lhandle propertylist/table ?emptyonly?
818 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
l.purge(?properties=?,?emptyonly=?)

Delete property data from the Lhasa object. In contrast to performing property deletions on, for
example, ensembles this operation does not branch out to properties which are stored on objects
embedded in the Lhasa objects.

This command only deletes proper Lhasa object properties (usually starting with L_). If the object
class name lhasa is used instead of a property name, the data of all Lhasa object properties is deleted.

The optional boolean flag emptyonly restricts the deletion to those properties where the value of a
property is identical to the default.

lhasa react
lhasa react lhandle ehandle/ensspec ?ehandle/ensspec?...
l.react(ehandle/eref/espec,?ehandle/eref/espec?,...)

Generate a comprehensive set of forward reaction products of starting materials according to all
matching 2D or New1D patterns from the current transform. If New1D patterns are present, only
these are used for matching. The starting materials need to match the right side of the patterns, and
the number of specified starting material ensembles must be the same as the number of fragments
in the pattern. Every substructure pattern fragment must match on a different starting material
molecule from the merged input ensemble in the default intermolecular reaction mode, or be part
of the same molecule (intramolecular mode, see forwardmode attribute of the LHASA object). The
order of the input structures vs. the left/right sequence of patterns in the transform code is arbitrary.
All possible, but symmetry-filtered pattern match variants of all eligible patterns with respect to the
input structure set are evaluated.

The starting material structures can either be normal persistent ensemble handles/references or a
decodable structure specification (see ens create). In the latter case, the decoded input structures
are transient and are automatically deleted after the command completes.

The result is a list of all possible duplicate-filtered reaction product ensemble handles or references
which could be generated by checking all applicable patterns in all possible match orientations and,
upon any successful match, performing the atom and bond changes encoded in the pattern, going
from the right side of the pattern to the left. Duplicate result structure filtering is performed
according to the configured hash code (see hashproperty LHASA object attribute). The reaction
products reside in a dataset object embedded in the LHASA object (see reactiondataset attribute) and
may be further manipulated there, or moved out by additional script commands. The reagent
structures, if they are not transient objects, are not consumed.

When this command is run, any existing product ensembles in the reaction dataset are deleted before
the execution commences.

If there is no match, this is not an error. The result structure set is simply empty in that case.

The reagent structures used with this command are usually structures found by scanning a starting
material catalog with automatically extracted reagent queries (see reagentquery[1234] attribute).

A successfully performed reaction does not guarantee that the reverse reaction scoring arrives at the
same starting materials. There can be alternative retro-synthetic pattern matches, additional
potential starting materials like Cl/Br/I alternative leaving group substitutions, starting materials
with generic superatoms like „alkyl“ instead of a specific group, markers for required functional
group protection, etc. The products generated by this command are only to be used as starting points
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 819

CACTVS Tcl and Python Scripting Language Reference
for retro-synthetic evaluation. The reagent structures returned by lhasa score need to be matched
again vs. a starting material catalog (potentially after attaching protective groups where required,
etc.), and the matches from that operation are the real starting materials to be stored in a
LHASA-scored synthetically accessible structure catalog, not the input structures used in this
command.

lhasa read
lhasa read bytecodefilename/trafoid
Lhasa.Read(bytecodefilename/trafoid)

Create a LHASA object by reading a compiled byte code file (see lhasa write command). The
argument is either a single file name or transform ID. Any library subroutine files which are required
and were specified when the transform was compiled from source (see lhasa create) are part of
the single byte code file.

It is possible to specify input pipes (with a leading vertical bar in the name) and stdin as input. If the
file is not specified as full path name, and not readable in the current directory, an attempt is made
to find it in the standard transform directory. If the filename is missing the standard .clb suffix, it is
automatically appended. If the file name is a simple integer transform ID, a short file name is
constructed from this identifier and searched. The default transform collection contains links from
the transform ID short file name to the corresponding fully named transform file with the highest
version number.

The return value is a new LHASA object handle or reference.

lhasa ref
Lhasa.Ref(identifier)

PYTHON-only method to get a reference of the LHASA object from its handle.

lhasa rename
lhasa rename lhandle srcproperty dstproperty
l.rename(srcproperty=,dstproperty=)

This is a variant of the lhasa assign command. Please refer the command description in that
paragraph.

lhasa reset
lhasa reset lhandle
l.reset()

Reset the Lhasa object from an empty state. All result structures and reaction currently associated
with the object are deleted, and the transform definition is purged.

The command is not used in normal processing. Both lhasa react and lhasa score automatically
clear their respective result sets when the command is started and can thus be invoked any number
of time without resetting.

The command returns the original object handle or reference.
820 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
lhasa score
lhasa score lhandle ehandle/ensspec
l.score(ehandle/eref/ensspec)

This command performs a full retro-synthetic evaluation of a product structure according to the
CHMTRN script commands encoded in the rule source.

Usually the input structure is one from the result set generated by lhasa react from potential
starting materials, but this is not required. The examined structure may either be a normal persistent
ensemble handle, or a decodable structure specification (see ens create). In the latter case, the
structure is decoded transiently and automatically deleted when the command finishes.

The command exclusively uses the 1D reaction path specifications encoded in the transform code.
All possible, symmetry-filtered matches are found and processed. The result is a duplicate-filtered
set of forward reactions, which contain newly created potential reagents and a duplicate of the target
structure. Sometimes, transform rules may also encode intermediates. These also become part of the
reaction with a suitable E_REACTION_ROLE property value, usually intermediate. These result
reactions reside in the dataset embedded in the LHASA object (see scoredataset attribute) and may be
further processed there. Existing score result reactions associated with this LHASA object are deleted
whenever the command it run, so they have to be saved or moved out of their dataset before the
command is re-used if they are still needed.

Depending on the transform rule coding, the proposed reagents may contain expandable superatoms
(alkyl, halogen) and/or other markers (such as functional groups requiring protection). A
second-pass match operation against a starting material catalog is required to obtain real starting
materials, and there may be multiple catalog matches if the starting material structure contains
variable groups, or different pre-attached protecting groups may be suitable.

A scored structure may be matched by multiple 1D patterns, and any of these may be positioned in
multiple different match orientations. Furthermore, multiple reaction variants may be generated
from within a transform rule (for example, by means of a BRANCH CHMTRN statement). Therefore,
frequently more than a single reaction is the result of a scoring operation on a single structure. It is
also possible that no result reactions are reported for a given structure/transform combination, either
because no pattern matches, or all possible reaction paths were discarded by means of CHMTRN KILL
statements, or unmet score thresholds. This is even possible when the tested structure was generated
by a lhasa react command with the same transform - that command performs only pattern
matching and atom/bond updates, not reaction knowledge evaluation.

The return value of the command is the highest score among all found retro-reaction paths for the
tested product structure, or 0 if there were no result reactions. Every retro-reaction result object
holds detailed transform result and logging information in property X_LHASA_SCORE, including its
individual score. The result reactions additionally have atom mapping information in A_MAPPING
and may contain additional information on the role of specific atoms in property A_FLAGS
(especially in bits protected, interfering, participating).

lhasa scorematch
lhasa scorematch lhandle ehandle/espec
l.scorematch(ehandle/eref/ensspec)

Test whether a structure intended to be retro-synthetically scored matches the transform patterns for
the current transform. No actual scoring is performed. The return value is the total number of distinct
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 821

CACTVS Tcl and Python Scripting Language Reference
matches of the score structure on all retro patterns. If the value is zero, the structure cannot be
processed by the current transform. This command helps in distinguishing between unsuitable score
structures and those where all reaction paths are killed by the transform code executed after one or
more matches.

lhasa set
lhasa set lhandle ?property/attribute value?...
lhasa set lhandle ?dictionary?
l.set(property/attribute,value,...)
l.set({property/attribute:value,...})
l.property/attribute = value
l[property/attribute] = value

Set one or more attributes of the LHASA object. All attributes which can be set can also be queried
via the lhasa get command. Attributes which cannot be modified are listed under lhasa get.

These are the recognized attributes:
• address_city

The city part of the author contact address.
• address_country

The country part of the author contact address, following the ISO3166 standard.
• address_state

The state part of the author contact address. Empty if not applicable.
• address_street

The street address part of the author contact address. Includes floor, house number, etc.
• address_zip

The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author of the transform rule works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The (first) author of the transform rule . This is a free-form string. When a transform is read
from source or compiled code, this is set to the value encoded in the first written*by or
changed*by statement.

• authorurl
A URL with information on the author, or an empty string if unset.

• category
A category string to be used if the rule definition is stored in a repository.

• classuuid
The base class UUID of this rule definition.
822 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• comment
A free-form text comment.

• complexityfilter
A maximum complexity value (as per property E_COMPLEXITY) which is acceptable for
starting material selection. If the attribute is set to a value larger than zero (the default), a
query condition is automatically added to the auto-generated starting material queries
(read-only attribute intermol_reagentquery1 etc., see lhasa get command). This attribute
can be combined with the element filter attribute.

• date
This attribute stores the date of the rule definition compilation. It is used for information
purposes only. If a new rule is compiled, it is initialized to the current date. When a transform
is read from source code, it is set to the last date encoded in written*by or changed*by
statements.

• debugimagesize
The height and width of images measured in 72dpi pixels which are entered in the debug
table (see debugtable and execflags attributes) for visualizing the progress of scoring
operations. The default image size is 200 pixels.

• doi
A digital object identifier for the rule, if defined.

• elementfilter
An element filter (formula match) expression (see molfile scan command). If it is
specified as a non-empty string, it is added as an additional criterion to the auto-generated
starting material queries (read-only attribute intermol_reagentquery1 etc., see lhasa get
command). The attribute can be combined with the complexity filter attribute.

• email
The email address of the creator of the rule, useful in case a definition file is distributed and
anybody has questions.

• execflags
A collection of flags modifying various aspects of the operation of the object. The
recognized flags are:

• checkreactionbonds - if set, the breaking or creation of bonds in retro-synthetic (scoring)
direction only succeeds if the bonds are marked in property B_REACTION_CENTER as
changed, created or broken. This marking of bonds in this property is automatically
applied when the forward reaction for retro analysis is created (lhasa react). This
option prevents possible deviations of bond transformations into out-of-pattern regions
of the product molecule. However, if the retro-analyzed product does not contain
B_REACTION_CENTER, for example because the scored product was not generated via the
standard mechanism, the analysis fails.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 823

CACTVS Tcl and Python Scripting Language Reference
• checkreagents - this flag has only an effect if the scored molecule is the product
component of a reaction, where the reagents component contains the starting materials.
If set, a check is performed if all, of the retro-synthetically generated fragments match
molecules in the reagents component. If not, the generated score structure is discarded.
This flag is usually combined with the checkreactionbonds flag and further restricts the
score result set. For example, an asymmetric ether usually generated (in absence of
interfering features) 6 different score solutions with the Williamson ether synthesis
transform - attaching a halogen on the fragment on both sides of the ether oxygen, and
proposing the use of chlorine, bromine and iodine as reacting halogen. With the
checkreactionbonds flag and properly set properties on the scored structure, only the
side of the ether which was reacted in the forward reaction is cut since this encoded in
bond property B_REACTION_CENTER. However, this still generates three solutions since
the scored product on its own has no knowledge which halogen was used when it was
generated from starting materials. If however the scored structure is part of a full forward
reaction, only the halogen variant used in its generation is reported as unique scored
result.

• countedreagentquery - if set, reagent queries check for single-instance presence of the
substructure, discarding structures with multiple pattern matches in non-overlapping
locations.

• debugtable - Create and fill an embedded table object with a transform execution trace.
This is internally used in the CHMTRN Web tool.

• dumperrorstructure - If a structure triggers an error during retro analysis, dump it as a
serialized object into a file in the current directory.

• exclusivereagentquery - if set, suitable reagents do not just need to contain the pattern
of a reagent specification, but additionally cannot contain the patterns of any other
reagent, except for intramolecular reagents.

• forwardreactiontrace - Trace the execution of forward reactions.

• forwardresultsasreactions - Normally, the forward application of a transform (lhasa
react command) returns the result structures as simple structures, not as part of a full
reaction with the starting materials. If this flag is set, the result structures are part of a
reaction, with B_REACTION_CENTER and A_MAPPING set on both reagent and product
ensemble. This is the preferred mode to generate suitable scoring structures for use with
the checkreagents flag.

• forwardscorabilitycheck - if set, perform an extra check on whether the scored molecule
matches any of the score patterns, without executing any real scoring.

• forwardstereoexpansion - if set, forward reactions which generate stereogenic centers
and bonds in the course of the reaction do not return undefined stereochemistry at these,
but an enumeration of molecules with defined stereochemistry, allowing the selection of
stereo-specified starting materials from retrosynthetic analysis.

• keepkills - if set, keep killed structures and report them in the score result set with a -999
score, but discontinue execution of the transform.
824 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• nosuperatoms - Do not attach leaving groups with superatoms like [ALK] in retro
analysis. Instead, attach a specific minimal leaving group (usually a C1 fragment).

• prefernew1dscorepatterns - if set, prefer the use of the NEW1D pattern(s) not just for
forward reactions, but also for scoring, provided they exist. By default, the original 1D
pattern(s), if they exist, have precedence for this purpose. In most cases, the left-side
portion of a NEW1D pattern is identical to the equivalent 1D pattern, except in cases where
the reaction encoding of the NEW1D pattern needs to avoid generic bond types.

• reagentequivalencytrace - A trace option for determining the equivalency of reagents
generated during retro analysis.

• registerscore - Register score events and circumstances for later detailed analysis.

• reagentmatchtrace - A trace option for reagent matching.

• reversepatternmatchtrace - A trace option for the pattern matching in retrosynthetic
analysis.

• symmetricreagentquery - If more than a single non-overlapping match of the patterns of
potential starting materials is allowed (see targetmatchcount attribute), multiple matches
are only allowed if they are topologically equivalent. In the default case of allowing only
single matches, this flag has no effect.

The default execution flag value is exclusivereagentquery|countedreagentquery.

• forwardmode
Change the way forward reactions (lhasa react) are processed. Possible values are
intermolecular (the default) and intramolecular. In intermolecular mode, the reagent
patterns of a possible reaction must match onto different molecules in the combined reagent
set, and the number of molecules in the set must be the same as the number of disconnected
patterns in the matched reaction (usually 2, but up to 4, depending on how the 2D or New*1D
pattern is encoded). In intramolecular mode, there can be only one reagent molecule, and all
reagent patterns must match in non-overlapping fashion the same molecule.

• hashproperty
The name of the hash code property used to eliminate structure duplicates. The default is
E_HASHISY. New 128-bit hash codes are not yet supported.

• id
The official registration ID of the transform rule. regid is an alias.

• interferingcolor
The color to use to mark interfering functional groups in transform result graphical reports.
The default is „light salmon“.

• infourl
A URL with information on the transform rule, or an empty string if unset..

• license
The license class associated with this transform rule. Setting the license to a standard type
updates the associated URL with a standard location.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 825

CACTVS Tcl and Python Scripting Language Reference
• licenseurl
A URL with details about the rule license.

• maxqueryfragments
The maximum number of molecules in a matching reagent record. The default value is 1, i.e.
allow only reagents without counterions, etc.

• mininorganicsize
The minimum heavy atom count of inorganic fragments generated in retro scoring
mechanisms to retain the fragment in the result ensemble. The default is 2, i.e. inorganic
fragments such as water with one heavy hetero atom are deleted.

• minmolsize
The minimum heavy atom count a fragment must meet to be not automatically discarded
when a result structure ensemble is logged. The default is 2.

• name
This is the name of the transform rule. Changing it after it has been defined originally is
generally considered bad style, but it is possible.

• orcid
The ORCID code of the author of the transform rule (see www.orcid.org).

• participatingcolor
The color used for marking reaction-participating (in CHMTRN parlance) functional group in
transform result graphical reports. The default is palegreen.

• phone
A contact phone number of the author.

• protectedcolor
The color used for marking functional groups which need protection under the conditions of
the retro-reaction. The default is plum.

• reactioncycles
The number of iterative cycles the lhasa react command should perform when it is run.
The default is one, and any other value is useful only under special circumstances.

• reagentexclusionmode
The mechanism used to exclude parts of potential reagents from matching the reagent pattern
because they are already matched by patterns of reagents in other roles. Useful values are
combinations of burnatoms, burnbonds, burncarbon, burnterminals, burnringsystems, and
burnaroringsystems. The default is burnatoms|burnaroringsystems. Please refer to the
match or molfile scan commands for additional information.

• reagentmatchmode
The substructure match mode to use to match starting materials. This is a standard
substructure match parameter and possible value are explained in the section on the match
command. The default mode is conditionalnocommonfgatoms.

• references
Cross references of the rule. This is a nested list of class UUIDs and reference type tags.
826 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• scorethreshold
A positive integer value which specifies a threshold for the accumulated score. If, at the time
a result structure is to be reported, its score is below the threshold, reporting is skipped, even
though the result structure was not explicitly KILLed. If the attribute is set to a negative value
(which is the default), no result structure score filtering is performed.

• scoredmolcount
An integer value which can be set to indicate the required number of molecular fragments
in the result reagent after executing a lhasa score command. If the number is not negative,
only results which match the number are accepted - other outcomes are KILLed. This is
useful to exclude (set to 2 or other number of reagent structures) or require (set to 1)
intramolecular retro-reactions. If set to a negative value (the default), not result fragment
count filtering is performed.

• sourcefiles
A list of the names of the files which contained the source code for the compiled transform
rule. If the rule was compiled from blob data without reading named files (see lhasa create
command) all names are set to an empty string. If this attribute is set, the number of list
elements must be the same as the number of data blobs or source files used to compile the
rule.

• stereosynthesismode
This attribute can be set to none (the default), eantioselective or diastereoselective. The set
value is checked against CHMTRN target keywords ENANTIOSELCTIVE*SYNTHESIS and
DIASTEREOSELECTIVE*SYNTHESIS if they are encountered in transform rules while
executing the lhasa score command.

• subtractthreshold
A positive integer value which leads to the re-interpretation of a SUBTRACT CHMTRN
statement as a KILL statement if the final negative delta is larger or equal to the specified
threshold. The value only applies to the delta of a single SUBTRACT statement, not the
accumulated score. If set to a negative value (which is the default), no command
re-interpretation is performed regardless of the demerit.

• targetmatchcount
Set the desired number of non-overlapping reagent pattern matches in potential starting
materials. This number is 1 by default.

• traces
A list of conditions which limit the range of transform execution traces activated via setting
the cactvs(trace)control variable to lhasa. By default, all executed byte-code statements
are traced, but trace output can be limited to code sections of interest. The argument is a list
of trace sections. Every list element is a nested list of one to three integers. The first element
of the nested lists is the start line in the source file of the traced section. Code before that line
is not traced. The optional second element is the last source line of the trace section. If it is
not set, the trace extends to the end of the source file. The optional third element is the source
file index, with zero for the base rule file and one or higher for additional library files. The
default value for this element is zero, i.e. if a trace section is specified without an explicit
source file index, it applies to the base transform file.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 827

CACTVS Tcl and Python Scripting Language Reference
• version
The version of the node. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The version UUID associated with this transform rule version.

lhasa setparam
lhasa setparam lhandle property ?keyword value?...
lhasa setparam lhandle property dictionary
l.setparam(property,?key,value?...)
l.setparam(property,dict)

Set parameter values in the metadata section of existing property data attached to the Lhasa object.
This command does not change the parameters for computations in the property definition (see prop
setparam command for this function). It only stores its data in the parameter set which was copied
into the metadata when the property was computed for the table.

This command does not attempt to compute property data. If the specified property is not present,
an error results.

lhasa show
lhasa show lhandle propertylist ?filterset? ?parameterdict?
l.show(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the lhasa get command. The difference between lhasa get and lhasa show
is that the latter does not attempt computation of property data, but raises an error if the data is not
present and valid. For data already present, lhasa get and lhasa show are equivalent.

lhasa sqldget
lhasa sqldget lhandle propertylist ?filterset? ?parameterdict?
l.sqldget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the lhasa get command. The differences between lhasa get and lhasa
sqldget are that the latter does not attempt computation of property data, but initializes the property
value to the default and returns that default, if the data is not present and valid; and that the SQL
command variant formats the data as SQL values rather than for TCL or PYTHON script processing.

lhasa sqlget
lhasa sqlget lhandle propertylist ?filterset? ?parameterdict?
l.sqlget(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.
828 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
For examples, see the lhasa get command. The difference between lhasa get and lhasa
sqlget is that the SQL command variant formats the data as SQL values rather than for TCL or
PYTHON script processing.

lhasa sqlnew
lhasa sqlnew lhandle propertylist ?filterset? ?parameterdict?
l.sqlnew(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the lhasa get command. The differences between lhasa get and lhasa
sqlnew are that the latter forces re-computation of the property data, and that the SQL command
variant formats the data as SQL values rather than for TCL or PYTHON script processing.

lhasa sqlshow
lhasa sqlshow lhandle propertylist ?filterset? ?parameterlist?
l.sqlshow(property=,?filters=?,?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the lhasa get command. The differences between lhasa get and lhasa
sqlshow are that the latter does not attempt computation of property data, but raises an error if the
data is not present and valid, and that the SQL command variant formats the data as SQL values rather
than for TCL or PYTHON script processing.

lhasa transfer
lhasa transfer lhandle propertylist ?targethandle? ?targetpropertylist?
l.transfer(properties=,?target=?,?targetproperties=?)

Copy property data from one Lhasa object to another Lhasa object or other major object, without
going through an intermediate scripting language object representation, or dissociate property data
from the Lhasa object. If a property in the argument property list is not already valid on the source
object, an attempt is made to compute it.

If a target object is specified, the return value is the handle or reference of the target object. The
source table and the target object cannot be the same object.

If a target property list is given, the data from the source is stored as content of a different property
on the target. For this, the data types of the properties must be compatible, and the object class of
the target property that of the target object. No attempt is made to convert data of mismatched types.
In case of multiple properties, the source property list and the target property list are stepped through
in parallel. If there is no target property list, or it is shorter than the source list, unmatched entries
are stored as original property values, and this implies that the object class of the source and target
objects are the same.

If no target object is specified, or it is spelled as an empty string or PYTHON None, the visible effect
of the command is the same as a simple lhasa get, i.e. the result is the property data value or value
list. The property data is then deleted from the source object. In case the data type of the deleted
property was a major object (i.e. an ensemble, reaction, table, dataset or network), it is only unlinked
from the source object, but not destroyed. This means that the object handles or references returned
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 829

CACTVS Tcl and Python Scripting Language Reference
by the command can henceforth the used as independent objects. They can be deleted by a normal
object deletion command, and are no longer managed by the source object.

lhasa valid
lhasa valid lhandle propertylist
l.valid(property/propertysequence)

Returns a list of boolean values indicating whether values for the named properties are currently set
for the Lhasa object. No attempt at computation is made.

lhasa has is an alias to this command.

lhasa verify
lhasa verify lhandle property
l.verify(property)

Verify the values of the specified property on the Lhasa object. The property data must be valid, and
a table property. If the data can be found, it is checked against all constraints defined for the property,
and, if such a function has been defined, is tested with the value verification function of the property.

If all tests are passed, the return value is boolean 1, 0 if the data could be found but fails the tests,
and an error condition otherwise.

lhasa write
lhasa write lhandle ?filename?
l.write(?filename=?)

Write a byte code file encapsulating the currently loaded and compiled transform or classification
rule. This file can be used as input for a lhasa read command to restore the LHASA object at a later
time. Only the rule content and the object metadata is stored, not the current execution state and
result data of the LHASA object. The byte code contains the code generated from all included CHMTRN
library files, not just the primary transform file, if applicable.

If no file name is specified, it is constructed from the LHASA object name and the suffix .clb (CACTVS
LHASA Binary) without a directory path component. It is possible to use output pipes or (on
Linux/Unix) TCL or PYTHON file handles or references as special output file names. If an explicit
empty filename is set (including None for PYTHON), no disk file is written. Instead, the file contents
are returned as byte blob.

The primary purpose of the binary format is distribution of rule content without access to the source
code. We have permission from the LHASA rights holders to distribute binary versions of original
LHASA transforms, but not their source code. Transform source code is only available as part of the
standard toolkit package for newly added transform rules not authored by Lhasa Inc. or Lhasa Ltd.
Additional source may be made available for customers with an extended license or the legal
successors of the members of the original industry consortium sponsoring the development of these
rules. In addition, a large part of the Lhasa UK source part has been put into the public domain.

The binary format in this CHMTRN interpreter implementation is intentionally not compatible to the
original Lhasa byte code, avoiding its limitations due to insufficient number of bits in the 32-bit
values of the virtual processor code.
830 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The return value of the command is the filename, which may have been auto-generated, except in
case when the output is a blob.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 831

CACTVS Tcl and Python Scripting Language Reference
The netx Command

The netx command is used to manage network file I/O modules. The command has the following
subcommands:

netx defined
netx defined networkformat
Netx.Defined(networkformat)

A boolean check whether the network format is supported by a module. If the format is not yet
known, an attempt is made to locate and auto-load the module. For an equivalent command without
auto-loading, see netx exists. The name can be the primary name of the format, or any recognized
alias.

netx exists
netx exists networkformat
n.exists()
Netx.Exists(networkformat)

A boolean check whether the network format is supported by a module. No attempt is made to
auto-load a handler module if it is not already in memory. The name can be the primary name of the
format, or any recognized alias. For an equivalent command with auto-loading, see netx defined.

netx get
netx get networkformat attribute
Netx.Get(networkformat,attribute)
n.get(attribute)
n.attribute
n[attribute]

Query the value of an attribute of the module Note that network format handlers are static - it is
neither possible to define them on the command line, nor to change any attribute. Therefore, there
are no netx create or netx set commands.

The following attributes are recognized:
• address_city

The city part of the author contact address.
• address_country

The country part of the author contact address, following the ISO3166 standard.
• address_state

The state part of the author contact address. Empty if not applicable.
• address_street

The street address part of the author contact address. Includes floor, house number, etc.
• address_zip

The ZIP code or other applicable postal code of the author contact address.
• aliases

A list of recognized alias names of the format.
832 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• affiliation
The institution the author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the module, as free-format text.

• authorurl
A URL with information on the author, or an empty string if unset.

• builtin
A boolean flag indicating whether this is a built-in type.

• capabiltities
A collection of flags reporting specific attributes of the module. The currently supported set
is:

• none
No flags.

• read
Module supports input from a file.

• write
Module support output to a file.

• category
A category string to be used if the module is stored in a repository.

• classuuid
The base class UUID of this module.

• comment
A free-form comment.

• date
The date the module source code was last changed.

• doi
A digital object identifier for the module, if defined.

• email
An email contact address of the developer of the module.

• features
A list of the functions this module provide. Currently, these can be check (format
auto-detection), read (format input) and write (format output).

• infourl
A URL with information on the module, or an empty string if unset.

• keywords
A list of keywords associated with the module.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 833

CACTVS Tcl and Python Scripting Language Reference
• license
The license class associated with this module. Setting the license to a standard type updates
the associated URL with a standard location.

• licenseurl
A URL with details about the module license.

• literature
A free-form literature reference.

• mimetype
The MIME type associated with the format.

• name
The primary name of the format. Since the information may be queried via an alias name,
this can be different from the command argument.

• orcid
The ORCID code of the author (see www.orcid.org).

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• references
Cross references of the module. This is a nested list of class UUIDs and reference type tags.

• regid
For officially registered modules, this is the assigned registration ID. Unregistered modules
report zero.

• slot
The slot in the handler table the module was loaded into.

• suffixes
A list of file name suffixes commonly associated with the format.

• version
Version information for the module. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The UUID associated with this module version.

netx list
netx list ?pattern?
Netx.List(?pattern=?)

Return a list of all currently loaded network file modules, including those handled by built-in
modules. If desired, the list can be filtered by a string pattern.

netx ref
Netx.Ref(networkformat)

PYTHON-only method to get a reference of the module, which allows terser attribute retrieval
commands and other operations.
834 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
netx subcommands
netx subcommands
dir(Netx)

Return a list of the currently implemented subcommands of the netx command.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 835

CACTVS Tcl and Python Scripting Language Reference
The prop Command

The prop or property command is used to create, modify, query and delete property definitions.

The command has the following subcommands:

prop addparameterdict
prop addparameterdict propertyname parametername datadict
Prop.Addparameterdict(property/pref,parametername,dict)
p.addparameterdict(parametername,dict)

Add a new parameter to a property definition. The recognized dictionary items are the same as in
the prop getparamdict command, with the exception that all parsed values are ignored - parameter
values, defaults, min and max values are defined via string data, for which a parse is attempted and
an error generated if it fails. All dictionary items are optional. If a parameter definition attribute is
not defined in the dictionary, an empty or undefined default parameter specification field value is
entered.

If the named parameter is already defined, an error is produced.

The command returns the property name or handle.

prop addparamdict is an alias to this command.

prop alias
prop alias
prop alias propertyname
prop alias propertyname aliasname ?propertyname aliasname?...
Prop.Alias()
Prop.Alias(propertyname/pref)
Prop.Alias(propertyname/pref,aliasname,?property/pref,aliasname?...)
Prop.Alias(dict)
p.alias(?aliasname=?)

This command defines an alias name for a property name. After defining an alias, any time the alias
name is used as a property name, it is silently and automatically translated to the original property
name. It is possible to map an alias name to another alias. Name resolution recursively proceeds until
the name can no longer be resolved. Aliases have precedence over basic property names. If an alias
name is the same as an existing property name, that existing property becomes effectively invisible
and is replaced by the property the alias links to.

The property or alias name the new alias maps to must be resolvable at the time of definition. Alias
names must conform to the CACTVS property naming scheme, e.g. is not not possible to define
arbitrary aliases. This is not an equivalent for setting the originalname property attribute.

In case the command is used without arguments, it returns a dictionary of current alias definitions.
The keys are the recognized alias names and the values the property or second-level alias name the
keys are translated to. If only the property name is specified, a list of the aliases for this property is
reported.

Example:
prop alias E_NATOMS E_ATOM_COUNT
836 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
After execution, the number of atoms in an ensemble can both be queried via property E_NATOMS
(original name) and E_ATOM_COUNT (new alias name).

The default start-up scripts of the toolkit include a set of alias definitions which map older, less
systematic property names as aliases to current official property names.

prop cast
prop cast srcproperty/srcdatatype dstproperty/dstdatatype value
p.cast(destination=,value=)
Prop.Cast(srcproperty/srcdatatype,dstproperty/dstdatatype,value)

This command is used to convert or reformat property data. Its arguments are different from that of
other prop subcommands. In addition to a simple property name, an indexed property name or the
name of a toolkit property data type can be specified both as source and target description.

The value argument is parsed into a toolkit data item using the input routines associated with the
property datatype, property field datatype, or directly specified datatype. All data format variants
supported by a data manipulation command such as ens set are allowed, and different input
formats may lead to the same internal representation.

The data item is then cast to the target datatype, and re-output as TCL or PYTHON interface object using
the output routines associated with the target data type. There is no permanent storage of the value
in any object. If there is a direct cast path encoded between the source and target data types, it is used,
otherwise internally an attempt is made to convert the data item to a string and re-parse it with the
target data type I/O routines.

The return value of the command is the argument value encoded in the target data type and/or field
format.

Examples:
prop cast int string 3
prop cast E_NAME E_NAMESET “a single name”

The first line casts an integer 3 to a string with characters “3”. The second example casts the input
value from string (the data type of E_NAME) to a single-element string vector (the datatype of
E_NAMESET).

prop compare
prop compare propertyname value1 value2 ?cmpflags? ?auxvalue1? ?auxvalue2?
prop compare propertyname(field) value1 value2 ?cmpflags? ?auxvalue1? ?auxvalue2?
prop compare datatypename value1 value2 ?cmpflags? ?auxvalue1? ?auxvalue2?
p.compare(value1=,value2=,?comparisonflags=?,?auxvalue1=?,?auxvalue2=?)
Prop.Compare(propertyname?(field)?/pref?,value1=,value2=,?comparisonflags=?,

?auxvalue1=?,?auxvalue2=?)
Prop.Compare(datatypename/dref,value1=,value2=,?comparisonflags=?,?auxvalue1=?,

?auxvalue2=?)

Compare two property values. In the first two forms, the name of the property, or of a property field,
is used primarily to get the data type for the decoding of the comparison values and the selection of
the applicable comparison function. Alternatively, a data type name can also be supplied directly.

The value parameters are expected to be suitable string or interpreter language representations for
the underlying data type. If the property name form of the command is used, they may be specified
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 837

CACTVS Tcl and Python Scripting Language Reference
as enumerated values and other formats which can only be decoded with the aid of information
attached to a specific property. The comparison values are converted using the string or TCL or
PYTHON object input function associated with the data type. If the property name form is used, they
are also subject to any other tests associated with the property, such as constraints or regular
expression pattern matches.

The cmpflags argument is a list of words which are used to select specific comparison function
modes. The default is an empty list. In that case, no modification flags are passed to the comparison
function. In case a mode bit is selected which is not supported by a specific comparison function, it
is silently ignored. Some of the flags may be combined to yield specific useful comparison results,
but it is the responsibility of the implementation of a data-type specific comparison function to
determine which flags can be combined, and which have precedence in case of conflicts. The
following words are currently recognized:

• none
Equivalent to an empty string, no bits set

• absolute
For numerical comparisons, use the absolute value.

• anymatchelement
In case of data types with separate elements (vectors, etc.) check whether any element in the
first value is identical to the corresponding element in the second vector. If yes, return 1, else
0.

• anymisselement
In case of data types with separate elements (vectors, etc.) check whether any element in the
first value is different from the corresponding element in the second vector. If yes, return 1,
else 0.

• approximate
Perform an approximate comparison. For string types, this means that white space,
punctuation characters, digits and character case are ignored. If combined with the
withdigits flag, the comparison takes digits into account, but still ignore whitespace,
punctuation and case.

For floating-point comparisons, this flag indicates that rounded integers should be used for
comparison, not the float values.

If the toolkit was compiled with support for the TRE library, this attribute can also be used
in combination with a regular expression comparison. In that case, the result is a percentage
similarity score between the query expression and the test string, with character
substitutions, deletions and insertions all having the same weight.

• asnumber
In case of strings, compare string contents as signed floating point numbers instead of
characters.

• bitcount
For bit vector and integer types, compare the number of set bits, not the numerical value.
838 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• bitset
For bit vector and integer types, check whether all set bits in the second argument are also
set in the first argument. The return value is -1 if the second argument contains set bits which
are not in the first argument, 0 if the values are identical, and 1 if the first value contains set
bits that are not set in the second argument. In case there are set bits in either of the two
arguments with no corresponding set bit in the other argument, the return value is -1.

• bitunset
For bit vector and integer types, check whether all unset bits in the second argument are also
unset in the first argument. The return value is -1 if the second argument contains unset bits
which are not in the first argument, 0 if the values are identical, and 1 if the first value
contains unset bits that are not unset in the second argument. In case there are unset bits in
either of the two arguments with no corresponding unset bit in the other argument, the return
value is -1.

• contained
Check whether the value of the second argument is contained in the first. The return value
is 1 if it is, 0 otherwise. For strings, this is a substring search. For integers and bit types, it
counts the number of common bits. For vectors, it checks whether all elements of the second
argument are also found in the first vector, but there is no requirement that the matching
element indices are the same.

• correlation
For bit types and numerical vector types, compute the correlation coefficient between the
vector arguments. The result is multiplied by 100 and rounded to the next integer.

• cosine
This operation is only supported for bit vectors. It returns the cosine similarity coefficient
as an integer, multiplied by one hundred.

• dice
Compute scaled (0..100) Dice similarity coefficient for bit vectors, bit sets and strings (via
bigraphs).

• dictionary
Compare strings in dictionary order.

• euclid
For bit types and numerical vector types, compute the Euclidean distance between the points
represented by the vector arguments. The result is rounded to the next integer.

• extended
For string comparisons with regular expressions, use extended regular expression syntax.

• glob
For string comparisons, the second value is interpreted as a shell-style glob expression. The
return value is 1 if the expression matches, 0 otherwise. The position of the expression
argument vs. the simple string can be changed with the swap flag.

• ignorecase
For string-type comparisons, ignore character case.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 839

CACTVS Tcl and Python Scripting Language Reference
• ignoredashes
Ignore any dash/minus characters in string comparisons. This is useful for comparing CAS
numbers with non-standard separator locations.

• ignorewhitespace
For string comparisons, ignore white space, but not character case.

• left
For string comparisons, match the left side of the target strings.

• like
For string comparisons, interpret the comparison value as SQL-style like pattern.

• precision
use the precision as defined by the property attribute precision for comparison, instead of
the native data type precision. If the first optional parameter of the command is specified,
its value is used instead of the precision set in the property definition. The precision value
an integer, defining the number of significant digits after the decimal point. Negative values
are allowed to define significance limited to differences in tens or hundreds in a property
value.

• overlap
This operation is only supported for the float pair type. For each value, the pair defines a
minimum and maximum range. If the ranges overlap, zero is returned, otherwise -1 (in case
the first range is entirely to the left) or 1 (in the opposite case).

• regexp
For string comparisons, the second value is interpreter as a regular expression. The return
value is 1 if the expression matches, 0 otherwise. This flag can be combined with the
ignorecase and extended flags, which further modify the interpretation of the regular
expression. The argument position of the expression argument vs. the comparison string can
be changed with the swap flag. Starting with toolkit version 3.352, the regular expression
syntax on all platforms is that of the PCRE library, i.e. the PERL style.

• right
For string comparisons, match the right part of the target string.

• swap
Exchange the left/right roles of the arguments. This also affects the special interpretation of
arguments in certain positions, as with the glob and regexp modifiers.

• trim
In case of string comparisons, ignore leading and trailing white space, but not embedded.

• tanimoto
For bit types and numerical vector types, compute the Tanimoto coefficient. The result is
multiplied by 100 and rounded to the next integer.
840 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• tversky
For bit vectors, compute the Tversky score between the vector arguments. This is one of the
few modes where the extra arguments have an effect. Here, they are expected to be values
in the 0..100 range. They are divided by 100 and used as floating-point c1 and c2 parameters.
In case both are set to 50, the result is the same as a Tanimoto comparison. Note that the
default values of zero for the extra arguments are not useful for this mode and reasonable
values must be supplied.

• withdigits
For approximate string comparisons, recognize and compare digits. By default, they are
ignored in that mode. In any case, approximate string comparisons ignore white space and
punctuation.

The return value is the integer value returned by the comparison function. For most modes, this is
either 0 (values are equal), 1 (left value is larger) or -1 (right value is larger). Some modes do
however return other values. For example, similarity bit vector or bit set comparisons return a value
between 0 and 100.

The default values for the optional extra parameters are both zero.

Example:
prop compare E_SCREEN [ens get $eh1 E_SCREEN] [ens get $eh2 E_SCREEN] tanimoto

This command performs a Tanimoto comparisons on the screening vectors of the two ensembles and
returns a score in the range 0..100.

prop configure
prop configure propertyname

Execute the property configuration function (attribute configfunction). If there is no function
defined, or the execution of the configuration function fails, the command does nothing. By
convention, a property configuration function opens a TK window with various GUI elements for the
convenient adjustment of computation parameters. Because this is usually a graphical operation, and
the overhead of extending the property slave interpreter to a fully GUI-enabled version, this
command is always executed in the global interpreter.

Note that this function usually does not directly result in the change of property attributes and
parameters. The standard approach is to set up and display a TK window, which remains open until
it is closed by the user, while this command returns immediately. Changes from adjustments in the
property panel take effect asynchronously only after an apply button has been pressed by the user.

This function is not supported in the PYTHON interface.

prop create
prop create propertyname ?attribute value?...
prop create propertyname dict
Prop(propertyname,?attribute,value?,...)
Prop(propertyname,dict)
Prop(propertyname,?attribute=value?,...)
Prop.Create(propertyname,?attribute,value?,...)
Prop.Create(propertyname,dict)
Prop.Create(propertyname,?attribute=value?,...)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 841

CACTVS Tcl and Python Scripting Language Reference
Create a new property definition, and optionally set attributes of the new property.

The name of the new property must conform to the general property naming conventions in the
toolkit. Indexed fields, instance identifiers, registration ID and other name parts aside from the base
name are ignored.

In case a property definition for the same property name is available, and either already loaded or
can be found by in the property autoloader path, the command internally succeeds, but still returns
a scripting language error. This is intended to prevent the accidental overwriting of system property
definitions, which can lead to problems which are difficult to detect and may lead to crashes, for
example when the data type of an internally used property is changed in an incompatible fashion.
Acceptance of the command when overwriting is desired can be forced by surrounding it in a TCL
catch or PYTHON try/except statement. In the PYTHON case, the simple constructor always succeeds
(due to lack of language features to support partial failure in the constructor), while the factory
function Prop.Create() works like the TCL equivalent.

A property created without additional attributes has no associated functions, is of data type string
and generally has empty default values for all attributes. The only exception is the URN namespace,
which is set to the local namespace, and the creation date, which is set to the current time. In
addition, the property object class is automatically set from the prefix of the specified name.

The processing of the attribute/value pairs is equivalent to a prop set command. The possible
attributes are described under that subcommand.

Creating a property for which already a loadable definition exists in the installation environment
results in this definition to be read first. The creation attributes then overwrite the values of the
existing definition. In order to create a new property with all default fields, use the prop xcreate
variant.

Example:
prop create A_MYPROPERTY datatype int author “A. Nonymouse”

This statement creates an atom property (determined by the standard A_ prefix) of data type integer
and a curious author attribution.

prop defined
prop defined propertyname ?alloworiginalname?
Prop.Defined(property=,?alloworiginalname=?)

Attempt to resolve the specified property name. If the property name is not yet part of the internal
property database, an attempt is made to resolve it via the auto-loading mechanism. This is different
from the similar prop exists command. The boolean return value is zero if the property name could
not be resolved, one otherwise.

If the alloworiginalname flag is set, the property lookup will also use original names (such as SD
file field tags) for identification. By default, only native toolkit names are recognized.

prop available is a deprecated alias of this command.

prop delete
prop delete propertylist ?force?
p.delete(?force=?)
842 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Prop.Delete(properties=,?force?)

This command deletes zero or more property definitions from memory. It does not remove the files
the property is defined by, if these exist. Property names which are not defined when the command
is run are silently ignored. By default built-in properties cannot be deleted. In order to force this, the
optional boolean parameter must be set. Deleting built-in properties is risky and can lead to crashes
if the property is required as part of internal computations.

The property is not actually removed from the internal database until all instances of data of that
property attached to chemical objects have been deleted. In such a case, the property name is not
usable any longer in script commands, but implicitly information such as data type and formatting
instructions are still used until all data associated with the original definition has been purged. The
name of a half-deleted property still shows up in commands like ens props, but commands such
as ens get fail, even for existing property data because the translation of the property name in the
request to the internal data structure is no longer possible. However, operations such as file I/O
which do not rely on properties looked up by string name may still succeed. The deletion of chemical
objects with data from deleted properties always succeeds, decrements the reference counts and
frees memory.

It is possible to re-define a property with the same name as a deleted one, even if there is still pending
data. However, this is discouraged and potentially confusing.

If the supplied property name is an alias, the property the alias is pointing to is deleted, not the alias
definition (see prop unalias for this function). In addition, all alias definitions which point to the
deleted property are also recursively deleted.

The command returns the number of properties successfully deleted.

prop dup
prop dup propertyname newpropertyname
p.dup(newpropertyname)
Prop.Dup(propertynamename/pref,newpropertyname)

Create a new property definition using an existing definition as a template. In typical cases, the
property duplicate is further customized by prop set commands. The new property name should
not be the name of an existing property, though this is not illegal. In that case, it hides the definition
of the original name similar to an alias definition.

The return value of this function is the name of the duplicated property.

prop exists
prop exists propertyname
Prop.Exists(propertyname)

This command checks whether a property is currently loaded in the in-memory database. No attempt
is made to look up the definition via the auto-loading mechanism if it is not yet present. The boolean
return value is zero if the definition is currently unknown, one otherwise. For a related command
with implied auto-loading, see the prop defined command.

prop get
prop get propertyname attribute
p.get(attribute)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 843

CACTVS Tcl and Python Scripting Language Reference
p.attribute
p[attribute]
Prop.Get(pname/pref,attribute)

Get the value of a property attribute. The property attributes are explained below in the paragraph
dealing with the prop set subcommand. The return value is the current setting of the requested
attribute.

The parameters attribute is a special case in multi-threaded scripts. Its value is thread-local. Every
thread may have a different parameter set for each property. In order to obtain the base parameter
set, the attribute globalparameters may be read.

prop getparameter
prop getparameter propertyname parametername ?usedefault?
p.getparameter(parameter=,?usedefault=?)
Prop.Getparameter(propertyname/pref,parameter=,?usedefault=?)

Get the value of a computation function parameter, or of a computation function default parameter.
If the last command argument is not specified, or set to a boolean false, the queried parameter
collection is the current parameter set (property attribute parameters). Otherwise, it is the default
parameter collection (property attribute defaultparams). If the requested parameter is not found in
the parameter set, an error results. Otherwise, the result of the command is the retrieved parameter
value.

In a multi-threaded environment, a returned parameter value (but not a default parameter value) is
thread-dependent. Every script thread has an independent property computation parameter set
which is copied from the global value in the base interpreter the first time a property is referenced
in a thread.

This command may be abbreviated to prop getparam.

prop getparameterdict
prop getparameterdict propertyname parametername
p.getparameterdict(parameter=)
Prop.Getparameterdict(propertyname/pref,parameter=)

Get the full definition of a property parameter, in addition to its current value. The command returns
a dictionary which contains the following entries:

• name The parameter name

• description Free-form parameter description

• label Parameter label

• enumeration Symbolic values and aliases thereof, in standard enum format

• defaultvalue Default parameter value as string (not included if undefined)

• basevalue Current parameter value in base thread as string

• value Current parameter value in current thread as string

• minvalue Minimum value as string (not included if undefined)
844 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• maxvalue Maximum value as string (not included if undefined)

• regexp Allowed value regular expression (not included if undefined)

• xname Extended name

• datatype Parameter value data type

• constraints A list of active constraint flags, none if none are set

• parsed_defaultvalue The default value parsed as the parameter data type

• parsed_basevalue The base value parsed as the parameter data type

• parsed_value The current thread value parsed as the parameter data type

• parsed_minvalue The minimum value parsed as the parameter data type

• parsed_maxvalue The maximum value parsed as the parameter data type

Parsed value entries are omitted if their corresponding string value is not defined, or the parse with
the datatype-specific decoder fails. Parsed values are returned with the normal mapping to scripting
language types (e.g. integer values if the parameter type is an integral numeric type), all other items
are strings.

prop getparamdict is a command alias.

prop isdefault
prop isdefault propertyname value
p.isdefault(value)
Prop.Isdefault(propertyname/pref,value)

Check whether a property data value is the same as the property default value. The return value is
the boolean test result.

prop ismagic
prop ismagic propertyname value
p.ismagic(value)
Prop.Ismagic(propertyname/pref,value)

Check whether a property data value is the same as the property magic value. The return value is
the boolean test result.

prop isnull
prop isnull propertyname value
p.ismagic(value)
Prop.Isdmagic(propertyname/pref,value)

Check whether a property data value is the same as one of the potentially multiple defined NULL
values.The return value is the boolean test result.

prop list
prop list ?pattern? ?constraints?
Prop.List(?pattern=?,?constraints=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 845

CACTVS Tcl and Python Scripting Language Reference
List all currently loaded property definitions, including built-in definitions. If desired, a string
pattern filter can be supplied to select only specific properties. The optional fourth parameter can
be set to a combination of the bit flag values computable and testable (or none, if an explicit unset
value is desired). These flags restrict the output to properties which have a true value in the attributes
of the same name.

Example:
prop list E_* 1

lists all currently defined and loaded ensemble property definitions which are computable.
Computability is only checked at the property definition level. It is no guarantee that the property
computation succeeds for any specific ensemble or other chemistry object.

The return value is a string list for TCL, or a reference list for PYTHON.

prop query
prop query keyword ?objectclass? ?mode? ?casesensitivity?
Prop.Query(keyword=,?objclass=?,?mode=?,?casesensitivity=?)

Search the internal property database by matching the keyword against a standard set of property
attributes, such as name, description, keywords, category, comment and UUIDs. Only the current
memory database is checked, no auto-loading or repository checks are performed.

By default all property definitions are matched. The object class argument (such as atom) can be
used to limit the search to properties for a specific object class. Providing an empty argument is the
same as omitting the argument.

The optional mode argument changes the string comparison mode. The default is equal, other
possibilities are substring, left (match beginning of string), right (match end of string), like (as the
SQL operator), glob or regexp.

The final argument can be case (case-sensitive matching) or nocase (case-insensitive comparison,
this is the default).

The return value is a list of the version UUIDs of the matched properties.

prop read
prop read filename ?doinstances?
prop read dirname ?doinstances?
prop read all
Prop.Read(filename=,?doinstances=?)
Prop.Read(“all”)

The first command variant reads a file with one or more property definitions. All property
definitions found in the file are added to the internal in-memory database. By default, or when the
doinstances parameter is set to a false boolean value, a definition from the file which refers to the
same property as one already loaded implicitly deletes the old definition (see prop delete for a
discussion of the consequences of this operation) from memory before the new definition is added.
If the optional argument is set to a true boolean value, an additional definition with an instance
number one higher than the highest currently defined instance is created instead.

The second command variant identifies all property definition files in XML-based or old
keyword-based formats in the specified directory and loads them, without enforcing a specific load
846 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
order. In the PYTHON variant, the argument name is always filename, regardless whether the argument
value is a file or directory name.

The third variant traverses all directories in the property autoloader path and executes a directory
property read, like the second command version, on all readable directories.

The return value of the command is a list where the first element is the total number of property
definitions read from the file or directory, and the second element is the name of the first read
property.

prop readblob
prop readblob data
Prop.Readblob(data=)

Decode a property definition stored in the data argument without the need to access the file system.
The data argument is expected to contain a single XML-style property definition record.

If the decoding succeeds, the return value is the name or reference of the read property.

prop ref
Prop.Ref(propertyname)

PYTHON-only method to get a reference of the property, which allows terser attribute retrieval
commands and other operations.

prop reload
prop reload propertyname
Prop.Reload(property=)

A convenience command for property computation module development. It first attempts to delete
the current property definition. If this fails because its reference count is not zero, and attempt is
made to reach zero by deleting all objects which may contain property data of the object class the
property is associated with (e.g. ensembles if the property is an atom, ring or ensemble property).
If the deletion now succeeds, the property is auto-loaded again, presumably with an updated
processing script or module. Specifying an unknown property, a property where the reference count
cannot be decremented to zero, or for which the definition cannot be found in the property loader
path is an error.

The command returns the property name, even in PYTHON (i.e. no reference).

prop set
prop set propertyname ?attribute value?...
prop set propertyname dict
Prop.Set(propertyname/pref,?attribute,value?,...)
Prop.Set(propertyname/pref,dict)
p.set(?attribute,value?,...)
p.set(dict)
p.attribute = value
p[attribute] = value

This command is used to modify the attribute sets of existing property definitions. If the property
name cannot be resolved, an error results. The following attributes are currently supported:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 847

CACTVS Tcl and Python Scripting Language Reference
• access
This argument controls the general access to property computation servers which accept
remote requests. This is an enumerated property with possible values none (unset, no access
by anyone if running as server), private (access only if client user is the same as server user,
and client and server are on the same subnet), local (client user must be valid on local host,
and client and server are on the same subnet), registered (client user must be in net group
named propname_users), and finally free (no first line access checking on user IDs, subnets
or net groups). If this access condition lets a request pass, script-based access checking still
applies. This attribute has no effect on property computations which do not operate over a
client/server connection.It has no effect in standard local scripts.

• accessfunction
This name of an access check procedure if the property is computed on a server and remote
requests are accepted. If there is no access function, only rudimentary access control (see
access attribute) is performed. If an access function is set, it is called with the handle of the
chemistry object the computation is requested for, and the name of the property.
Additionally, request information including user name, email, host and password are stored
in the global array variable ::server. The access function may reject requests based both
on the variable contents (wrong password, etc.) or the data of the chemical object the
computation is requested for (too many heavy atoms, etc.). In order to reject a request, the
access function can either return a boolean false value, or throw an error. Currently, the
access check function is always executed in the global interpreter. Different from the
computation, verification and configuration TCL script functions, the access function is
never automatically integrated into property definition files written by the prop write
command. This function is intended to remain confidential and local. The access function
is only called if a computation request is executed in a client/server relationship. It has no
effect in standard local scripts.

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author of the property definition works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.
848 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• altdatatypes
A list of alternative data types the property functions can handle. For example, most image
types such as E_GIF or E_EPS_IMAGE can be computed both as datatype diskfile and blob. If
a list of alternative data types is set, the property can only be reconfigured to use one of these
(for details refer to the datatype attribute). If no list of alternative data types is specified, the
data type can only be changed between types which use the same internal representation
(e.g. float and double, or int and short).

• altmodule
The name of an alternative structure representation interface module. Properties which have
this attribute set are not computed on the normal internal CACTVS data structure, or by calling
an external program by means of a script, but are linked with a third-party software
component and interface code to translate between the data structures of CACTVS and the
other program. This attribute is rarely encountered in normal use scenarios.

• application
The name of an external application which generates the property data. This is a free-form
string.

• applicationdate
The release or version date of an external application which generates the property date.
Must be a valid date specification.

• applicationversion
The version of an external application which generates the property data. This is a free-form
string.

• attachment
This is a deprecated alias name for the objclass attribute.

• author
The author of the property definition. This is a free-form string.

• authorurl
A URL with information on the author, or an empty string if unset.

• auxdata
This is the name of a file with arbitrary additional data the property computation function
may need to perform its duties. When a property definition file is written with the prop
write command, this data is encapsulated in the definition file. When the definition file is
later read by an application, the data is written out to a temporary file, and the file name
returned for this attribute is the name of the temp file, not the original file name. By this
mechanism, it is not required to supply auxiliary data files as a separate files which may be
difficult to locate and are easy to get lost. If this field is empty, no auxiliary data file is
present.

• category
A category string to be used if the property definition is stored in a repository.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 849

CACTVS Tcl and Python Scripting Language Reference
• charset
The character set this property uses for encoding and decoding. While this attribute is
currently maintained as a free-form text field, it should only be set to values in standard
character set syntax, such as ISO-8859-1. The latter value is the default in case it is not set.

• checkfunction
The name of a scripted TCL or PYTHON procedure designed to verify that a value of a property
is correct. This function is called with the property name and a chemistry major object
handle as arguments. It should return 1 if the property data is set and the check succeeds, or
0 otherwise. It should not attempt to compute the data if it is not present. If the function can
be found in the private slave interpreter of the property, it is executed there. Otherwise, an
attempt is made to locate and run it in the main interpreter. When a property definition file
is written with prop write, and the function can be located, it is encapsulated in the
definition file and is available for all further interpreters which read the definition file.
Example:
prop check E_CAS $eh

This command checks, if property E_CAS is set for the ensemble, whether it is formatted
correctly by calling the TCL check procedure defined for E_CAS. With this example property,
the check function runs the CAS check digit algorithm on the data value. It catches cases
where the re-computed check digit does not match the one found in the data.

• classuuid
The base class UUID of this property.

• comment
A free-form text comment.

• computable
A read-only boolean status code indicating whether this property is in principle computable.
A true status indicates that the property has a computation function and it is general suitable
character.

• computefunction
The name of the computation function. For computation functions implemented as
compiled code, this data is for information only and cannot be changed in scripts. For
scripted functions, this is the name of the TCL of PYTHON function which performs the
computation. The function is called with the handle of the chemical object as parameter. In
case the computation succeeds, the function should attach the property data to the object. In
case of an error, an error condition should be raised in the script.

If the function can be found in the private slave interpreter of the property, it is executed
there. Otherwise, an attempt is made to locate and run it in the main interpreter. When a
property definition file is written with prop write, and the function can be located, it is
encapsulated in the definition file and is available for all further interpreters which read the
definition file. Example:
ens get $eh E_CAS

This request calls the TCL script function CSgetE_CAS which is defined in the property
definition file as computation function for E_CAS.

Properties which cannot be computed have an empty compute function name.
850 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
In case of TCL script computation functions, all default and current computation parameters
are automatically copied to the global (to the property slave interpreter, not visible in the
main interpreter) array ::params. This is done by first traversing the default parameter list
and then the current list, so that parameters in the current list overwrite any default values.
In addition, the current property computation time-out value is stored in
::params(timeout). Alternatively, the parameter values can be queried by prop
getparam commands in the function. In multi-threaded scripts, each thread interpreter sees
its private version of property computation parameters. Therefore, it is possible to compute
different versions of the same property in parallel threads.

• configfunction
The name of the configuration function for the property. This is a TCL script function which
is supposed to present a TK panel with configuration options for that property. The apply
function associated with the panel should modify the current parameter set of this property.
The function is called with the property name as only parameter. Different from
computation and check functions, this function is always executed in the main interpreter,
in order to avoid the need to extend the slave interpreter into a full TK-enabled interpreter
with much larger overhead. When a property definition file is written with prop write, and
the function can be located, it is encapsulated in the definition file and is available for all
further interpreters which read the definition file. Example:
prop configure E_GIF

This command calls the configuration function for property E_GIF, which attempts to
display a pretty large GUI panel with lots of sliders and dials allowing the user to adjust the
rendering parameters.

Properties which cannot be configured graphically have an empty configuration function
name.

• constraints
A set of flags to impose additional constraints on property values. Attempting to set a
property value which does not meet these constraints in a script raises an error, or the value
may be implicitly modified to fit the constraint. The check only applies to string conversions
and conversions from TCL or PYTHON script interpreter objects. It is still possible to set a value
in violation of the constraints by rogue compiled code in computation functions and by
similar means. Not all flags are implemented, or make sense, for all data types.
Implementing constraint checks is the responsibility of the data type handler module. Flags
not supported for a specific data type are silently ignored. Any combination of flags can be
supplied as a list argument. The currently supported values are

• none
no constraints, other than the native capabilities of the underlying data type

• notnegative
no negative numerical value

• notpositive
no positive numerical value), notzero (no zero value)

• nolowercase
no lower-case characters)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 851

CACTVS Tcl and Python Scripting Language Reference
• nouppercase
no uppercase characters

• trimmed
leading and trailing white space are removed

• nowhitespace
all white space is removed

• odd
numerical value must be odd

• even
numerical value must be even

• notempty
input cannot be an empty string)

• maptolowercase
translate to lower case

• maptouppercase
translate to upper case

• mapwhitspace
all white space sequences are translated to a single underscore character

• no8bitchars
characters cannot have 8th bit set

• maptotitle
translate to title formatting, with first letter of every word in upper case and all other
letters in lower case

Example:
prop set E_ID constraints {notzero notnegative}

Assuming that E_ID has a numerical data type, any attempt to set it to 0 or a negative value
in a script will fail.

Another method to apply constraints to property data is by means of the regexp and
regexpflags attributes. Both methods may be used in combination.

• cost
This is an integer parameter which is intended to give a rough estimate of the cost involved
in computing a property. The default value is 1. Currently, its only use if when merging
ensembles with different sets of property data. Here, no attempt is made to compute
properties which have a cost of more than 5 and are only present on one of the ensembles.

• ctxkey
The tag for this property in the ctx file format. If it is not set, a reasonable default tag is
derived from the property name. This attribute is deprecated, the more general filetags
attribute is the recommended replacement.
852 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• datadirectory
The installation-dependent directory path where property-specific data files are expected to
be stored. The directory path is constructed from the installation path, the propdata
subdirectory name and the property name in lowercase. Properties shipped with the toolkit
adhere to this storage scheme for auxiliary data files. If the data directory does not exist,
which is the case for properties which do not use external data files, the attribute value is an
empty string. This attribute is read-only.

• datamutex
Lock (with value 1) or unlock (with value 0) the mutex protecting the external property data
directory (see datadirectory attribute). This is a write-only attribute. If a property intends to
read or modify contents of its data directory, it should lock and then, after completion,
unlock the mutex, to make sure modifications by other threads do not interfere. If the mutex
is currently locked by another thread, the command will pause until the other thread has
released it. Currently, use of the mutex to protect the data access is optional, but strongly
suggested.

• datatype
The attribute sets the data type of the property. The exact set of possible data types varies.
Besides the rich set of built-in data types, an attempt is also made to locate a property
handler module with the specified name in case the argument cannot be resolved with the
built-in and currently loaded I/O handler modules. The default value is string - a simple 8-bit
ISO 8859-1 string property.

It is not possible to change the data type of a property if data instances of that property exist
on chemical objects in the current application, and the internal representation of the old and
new type is not identical. For example, it is possible to switch between bool and int types,
but not between int and string, if active data of the old type has already been stored.

The altdatatypes attribute imposes additional restrictions on possible values of this attribute.

• date
This attribute stores the date of the property definition. It is used for information purposes
only. If a new property is defined, it is initialized to the current date.

• dbflags
This attribute encodes a set of hint flags for setting up SQL database columns for storing data
of that property. The argument is a list of words representing bits which should be set. This
attribute is intended to be used with application scripts and is not stored in property
definition files. Various SQL statement construction functions will use information stored
here for table and column definitions. It is a thread-local attribute. The following flags are
currently supported:

• none
the default, no special treatment, key - property data will likely be used as query key,

• primarykey
column is a primary key for the table

• notnull
disallow the storage of NULL values for that data
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 853

CACTVS Tcl and Python Scripting Language Reference
• indexed
set up index on the property column,

• fixedlen
set up database column as fixed-width data, with actual width stored in the length
attribute

• timeonly
for datetime data type, store only time part

• dateonly
for datetime data type, store only date part.

• dbmap
Set the database, table and column mapping attribute of the property. On retrieval, trhis is
a string in the format database.table.column, with unset parts omitted. On setting, the
attribute may be set a a simple string (sets column name only), a string with a single dot (sets
table and column) or a full string. This attribute combines the dbmap_database,
dbmap_table and dbmap_column attributes. The property database map is thread-local. It is
intended to be used to work with different databases in application scripts. It is not stored
in the property description file. If a database map is set, various SQL statement construction
functions will use this information.

• dbmap_column
Set or retrieve the column part of the current property database map.

• dbmap_database
Set or retrieve the database part of the current property database map.

• dbmap_table
Set or retrieve the table part of the current property database map.

• default
This attribute defines the default value for the property. Usually, the syntax for this item is
the same as setting a specific data value, but data type handlers can set up a special default
value decoder function. For example, array types allow a syntax like 10:0 for a default value
of 10 elements set to 0 each, but this syntax is not supported when setting individual data
instances.

In case of properties of complex multi-field structure, the default value is a list of values in
the order of the field definitions. The the default value list is shorter than the field list, the
remaining fields have a zero/empty default value.

Property data values which are identical to the default are not written explicitly in native
CACTVS binary files. If such data is restored, and the default value has changed, the input data
assumes the new default value because it is set from the current property definition, not the
file contents.
854 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• defaultparams
The default set of parameters, as a keyword/value list or dictionary. The syntax is the same
as that of the parameters attribute. This attribute set is intended to be used as a quick way
to reset the normal parameter set after changes have been made. Example:
prop set $p parameters [prop get $p defaultparams]

• deinitfunction
The name of a de-initialization function to be called when the property definition is deleted.
This is useful for example to remove data which is automatically set up on initialization and
then held for the lifetime of the property definition. The type of the function is expected to
be the same as that of the compute function, e.g. compiled code for DLL/SHAREDLIB

functions, script code for scripted computation functions. The function is called with two
arguments, the property definition pointer and error function for compiled code, and the
property name as only argument for scripts.

• deletefunction
This is the name of a TCL or PYTHON function which is called whenever property data
instances are deleted. The only argument to the function is the value of the data item. This
function may perform custom clean-up operations, such as taking down editing forms.

If the function can be found in the private slave interpreter of the property, it is executed
there. Otherwise, an attempt is made to locate and run it in the main interpreter. When a
property definition file is written with prop write, and the function can be located, it is
encapsulated in the definition file and is available for all further interpreters which read the
definition file.

• depends
A list of properties which this property depends on as input data when it is computed. This
information is used to automatically invalidate or re-compute data instances when
underlying, more basic data changes on the chemical object. This is a recursive process. The
invalidation of one set of properties is cascaded to all property instances on the chemical
object which themselves depend on the just invalidated data. An update cascade can be
triggered for example implicitly by statements such as atom set or ens new, or explicitly
by ens taint. Note that simple data deletion commands such as ens purge are not triggers.
Property data can be prevented from auto-deletion by using lock statements such as ens
lock. The updated data which acts as the trigger is never itself deleted, even if a dependency
cycle exists.

For this argument, it is explicitly allowed to set dependency property names which are not
yet defined. No attempt is made to resolve these, but every loading or creation of a new
property definition in another context will lead to a regeneration of the pre-parsed form of
dependencies on all current internally held property definitions, potentially adding more, or
different, dependency links. Property names which cannot be resolved are silently ignored.

• description
This is a free-form string which describes the property.

• displaywidth
A default value for the width of a display column, measured in characters. The default value
is negative, meaning that scaling is dynamic.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 855

CACTVS Tcl and Python Scripting Language Reference
• doi
A digital object identifier for the property, if defined.

• email
The email address of the creator of the property definition, useful in case a definition file is
distributed and anybody has questions.

• enum
This attribute defines enumerated symbolic names for specific property values. They can be
used for mnemonic data input, and many output modes also use these names by default (cf.
ens get vs. ens nget). Input of enumerated values is always case-insensitive. It is not
illegal to store data values of an enumerated property which are not represented by a
corresponding symbolic name. These values are simply encoded as or decoded from
numerical values.

For properties which consist of multiple independent sub-items, or sub-item data types, the
enumeration is a list. The list is split, and each element applies to a different field in the order
of field definitions. Examples for this are the compound and choice types, but not simple
vectors. For simple vectors, the enumerated names apply to each element.

The enumeration is a string, where blocks corresponding to a specific value are separated
by a colon. In the absence of an explicit value designator, the first block corresponds to value
zero. Multiple words separated by commas are interpreted as alias names. On output, the
first word is used as the canonic designator. Example:
prop set E_CLEARANCE enum \
“public:private:topsecret,destroy_before_reading”

The enumeration defines symbolic names for value 0 (public), 1 (private) and 2 (topsecret,
or alias destroy_before_reading). On output, a data value 2 is always displayed as topsecret .

There are a couple of additional syntax elements. A code which is not in the automatic value
sequence can be specified with a =n construct. The next value block, if it has not an explicit
value designation of its own, is the value of the previous block plus one. Here is the
enumeration for property A_LABEL_STEREO, with codes for standard parities and square
planar stereochemistry:
M,-=-1:undef=0:P,+=1:U,C=2:Z,N=3:X=4

The normal 0,1,2... implicit value sequence can be changed to a power-of-two sequence by
prefixing the enumeration string with a “^” character. In that case, the implicit numerical
value o the blocks are zero, one, two, four, etc. For bit types (64-bit set and bit vector), this
interpretation of the enumeration string is automatic and does not need to be spelled
explicitly. Output of data items for properties with a bit-based implicit or explicit
enumeration string consists of a set of all words with corresponding set bits, and one
possible input format is a list of words for all bits that are set.

A final syntactic shortcut is the use of the “@” character as prefix. In that case, the
enumeration is interpreted as a symmetric value set centered around zero. If there are three
value blocks in the enumeration string, and no explicit value designations, the encoded
numerical values are, from left to right, minus one, zero and plus one.

Characters with special meaning in parsing enumeration strings (equal, comma, colon)
cannot be part of a symbolic name. Prefix characters may be used in enumeration names,
but not as part of the first word.
856 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• fielddatatypes
A list of the field data types defined for the property. This is a subset of the information
encoded by the fields attribute, and read-only.

• fieldindices
A list of the choice indices of the field definitions. This attribute is useful only for choice
and choicevector properties. This is a read-only attribute.

• fieldnames
A list of the field names defined for the property. This is a subset of the information encoded
by the fields attribute, and read-only.

• fieldproperties
A list of the secondary properties associated with the fields of the current property. Fields
which are not property-associated report an empty element. This is a subset of the
information encoded by the fields attribute, and read-only.

• fields
This attribute describes fields of a property. Its exact meaning depends on the data type of
the property. The attribute is a nested list. Each list element is a list which contains a field
name, its data type (optional, defaults to string) and its unit (optional, defaults to undefined).
Simple properties which do not have sub-items do not possess a field set. For simple vectors,
field names may be defined to facilitate convenient vector element access, but they have no
effect on the internal representation of the property values. Example:
prop set A_XYZ fields {x y z}
echo [atom get $eh $label A_XYZ(x)]

The code above shows you how to name elements in a simple vector, and how to use them
conveniently for retrieval. For the bit and bitvector data types, such fields are interpreted as
individual bits.

However, the field set is essential for the definition of properties with a complex internal
structure, such as data types compound and choice, and the vector variants thereof. For these
types, the field set should be set up when the property is defined, and not changed at any time
later. Example:
prop create E_MYCOMPOUND datatype compound \
fields {{name string} {fval double angstrom} \ {timestamp date}}

The statement above defines a compound property with three fields of different data types,
one of them with a standard unit. Another use is for the definition of choice properties,
which hold one of several possible variants of data, possibly of different data types:
prop create E_MYCHOICE datatype choice \
fields {{name string} {ival int} {timestamp date}}

The difference is that the example compound property contains three parallel fields of
different data types, while the choice property has just a single field, but it can be of one of
three different data types at any time. For the compound example, the string input or output
form of a property value is a list of three values, where each element is parsed or formatted
according to the data type of the field. For the choice example, the string format is a single
two-element list, where the first element is the field name, which implicitly defines the data
type, and the second element the value. Another example:
prop create E_MYCOMPOUNDVEC datatype compoundvec \
field {{name string} {ival int} {timestamp date}}
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 857

CACTVS Tcl and Python Scripting Language Reference
This is the specification for a compound vector. Each vector element is a compound of three
data items. It could be set to a vector with two elements with a statement like
ens set $eh E_MYCOMPOUNDVEC \
{{“name1” 1 now} {“name2” 2 tomorrow}}

In the same fashion, choice vectors may be defined and set. A choice vector has a single data
item per element, but each of these elements can be of a different data type from among the
selection defined in the field set.

In addition to having a simple basic data type, the fields of complex data types can also be
indirectly defined by a reference to a secondary property, which defines the structure of that
field. These indirect references can be of complex types themselves. If the secondary
property has a defined unit, this unit automatically sets the field unit, too. Example:
prop create T_NCBI_PUBLICATION_PATENT_ID \
datatype compound \
fields {{country string} {id T_NCBI_BIBLIO_PATENT_ID} {doc-type string}}

This compound property has three fields. The first and second are simple basic types, but
the third is a complex property of type compound with its own fields, which potentially
could themselves be recursively defined by more property references. The string
representation of data for this definition is a list of three elements, where the middle element
is itself a (potentially deeply nested) list.

If an input list for a complex property is shorter than the size of the field list, the rest of the
items are set to their respective default values.

If the data type of a field cannot be decoded from the information currently in memory, an
attempt is made to auto-load the data type I/O handler or, in case of property references, a
property definition. If that fails too, an error occurs. Data types must be specified in lower
case. This is needed to distinguish them from property names, which are upper case.

In case of symbolic names assigned to vector fields, the data type of the field is ignored and
can be omitted, since it directly follows from the vector definition.

The native CACTVS file formats are designed to cope with complex property data for which
the field definitions have changed between the time the file was written and when the data
is read again. Every field is stored with its explicit name and data type. If the current
property definition has additional fields compared to what is stored in the file, these fields
are initialized to the default value. Fields which are no longer present in the property
definition, but whose data type can be decoded from the information in the file are skipped
and ignored.

If a prop get command is executed for this attribute, the output is a nested list. Each field
description always contains the field name and the data type. If the property is of the choice
or choicevector data type, the choice index of this field is appended next. Finally, there can
be a property reference or unit element which is appended only if a secondary property
reference or a standard unit is defined for the field. Ultimately, each field record can consist
of two to four elements.

• fieldunits
A list of the units of the fields defined for the property. Fields without a defined standard unit
report an empty element. This is a subset of the information encoded by the fields attribute,
and read-only.
858 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• fileflags
This attribute is only used when also a fileformat value is set (see below). In that case, this
attribute defines the decoder flags used when reading the property data as a string file record
in an ens create command.

• fileformat
The name of a structure file I/O module associated with this property. The data of properties
which possess this attribute are images of file records. Examples are E_SMILES (file format
smiles, E_SMARTS (file format smarts) or E_SDF_STRING (file format sdf). This information
is used when a structure is decoded from such data by means of the ens create command,
and instead of a specific decoder mode the property name is supplied.

• filetags
A dictionary of the tags to be used for storing property data in various file formats.
Currently, only the cml, cex and ctx I/O modules make use of this information. The keys of
the dictionary entries are the file format names, the values the associated tag strings. This
attribute does not trigger the autoloading of the specified I/O modules at the moment the
attribute is set. Rather, these tags are resolved or disabled when a matching I/O module is
loaded or unloaded by another mechanism, for example explicit loading (filex load) or
implicitly via a file suffix match. There can only be one tag per file format - the last is used
in case of duplicates -, and the total number of different file formats a tag can be set for is
ten per property, though the tag/file format sets of different properties do not need to be
identical.

• filters
This attribute is a list of filters which limit the definition range of a property to a subset of
objects. Example:
prop set A_FREE_ELECTRONS filters classicatom

This statement, which just mirrors the actual definition of property A_FREE_ELECTRONS, tells
the toolkit that the concept of free electrons is meaningful only for classic atoms with are
an element, but not for super-atoms, query atoms and similar constructs which are
subclasses of the atom minor object. In case there are multiple filters, the object must pass
all of them in order to make a property data item defined. In case a specified filter name is
not yet defined, an attempt to autol.oad the filter definition is made.

Currently, there is a maximum of 10 filters per property definition.

• flags
The flags attribute holds a collection of general flags which encode the status and operation
mode of the property. This is an enumerated set. Currently supported flag names include

• autobackup
when property is changed via script, automatically save last values in backup property,
i.e. A_LABEL in A_LABEL%

• expandpriority
if a chemistry object such as an atom which hold a data item of this property is replaced
by, for example, an expanded fragment, this data is transferred to the first replacement
atom of the expanded fragment, and not computed from the properties of the new atom.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 859

CACTVS Tcl and Python Scripting Language Reference
• fixedlength
the size of property data is constant, even for data types where each data item could have
an individual size, for example vector types, or strings. This information is useful to
optimize storage layouts in various contexts. The actual length of the data item is either
taken from the length property attribute, or from a sample data item on a chemical object
which is expected to be a representative with the correct length. The short form fixedlen
is an alias-

• globalexecution
execute computation script and other scripts associated with this property always in the
global interpreter, not a property-specific slave.

• internaltimeout
indicates that the property computation function performs its own internal timeout
handling. No timeout interrupt framework is installed when a computation of this
property is invoked.

• labelkey
this property is the minor object label key property for the object class it is associated
with. For atoms, this is A_LABEL, for bonds, B_LABEL, etc. There can only be one such
property per object class, and there must be one such property for all object classes
which are not major objects. Changing the label key properties should only be attempted
under extraordinary circumstances.

• localupdate
the property computation function supports the update of a single specific object, not all
objects of the same class linked to a major object (i.e. it can recompute data on a single
atom and not just all atoms in the ensemble). This flag is for information only. Do not
set it directly.

• locked
if set, the property cannot be overwritten by reading property definition records
describing properties with the same name. Individual attributes of the property may still
be changed, including resetting this flag by script commands. This attribute is for
example useful when the current definition of a property should be maintained after
opening a cbs or bdb file - these include the property definitions used at the time the file
was written.

• mergedata
merge multi-line input data into a single data item, for example a string with tab
separators. Has an effect only for input from multi-line MDL SD data fields.

• mergedefault
if data of a non-computable property is present only on one object in an object merge
operation, by default this property data is discarded in the process because there is no
way to obtain it for the second object. If this flag is set, the object without the data is
instead initialized with default data for the property, and the merge does not discard the
original information from the object where it was present.

• none
no flags are set. On setting, you can also pass an empty string.
860 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• portable
the property has no OS-dependent components such as DLLs or shared libraries for the
computation module, or at least such components are available for all currently
supported toolkit platforms.

• trace
for scripted properties, trace execution when the computation function is called.

• trusted
the property is trusted, relax usage restrictions and safety belt features.

• nominmax
property has no definition of, or use for, minimum and maximum property values. This
can reduce memory usage and increase performance.

• nosighandler
run without signal handler to trap core dumps etc. even if property is not trusted. Signal
handlers are expensive to set up and tear down, so if a function of an untrusted is called
millions of times, this can significantly improve performance.

• notimeout
disable computation timeout watchdog, even if a timeout value is set.

• synthetic
the property was synthesized from minimal information without a proper property
definition. Its name contains an asterisk to make this immediately obvious.This flag is
for information only, do not set it directly.

• timing
measure execution time for each computation function call and store in property
metadata record on the major object the computation was performed for.

• threadtrace
trace multi threading-related synchronization operations.

• uselookuptimeout
if the flag is set, and no property-specific global or thread-local timeout has been set, use
the global Internet lookup timeout value in ::cactvs(lookup_timeout) instead. This
flag is typically used by properties where the computation involves retrieving data from
Internet sources.

The standard bit set manipulation prefixes (+,-,^) are supported. Example:
prop set A_XY flags +notimeout|trace

This command adds two flags to the current flag set.

• format
Internal use only

• functionsource
The source code of all of the script functions which are contained in the property definition.
Code for functions which are not defined in the definition file, but for example reside in
global library source files, are not returned when the attribute is queried. If the attribute is
set, its contents replace the current function definitions.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 861

CACTVS Tcl and Python Scripting Language Reference
• functiontype
The type of computation function this property provides. Possible values are none (no
computation function), bultin (built-in function), dll (dynamically loaded compiled
module), tclscript (interpreted TCL script), syncserver (synchronous client/server
computation, CACTVS native RPC protocol), asyncserver (asynchronous client/server
computation, CACTVS native RPC protocol), mail (send request and receive answer by email),
altrepmodule (via an alternative data representation module), default (pseudo-function, a
computation request always results in default values as result), disabled (temporarily
disabled), indirect (computation happens as windfall by computing a different property) and
soap (communication via SOAP-based service). PYTHON-enabled toolkit versions
additionally support the pythonscript function type, and versions with a JAVA JVM the java
type.

In most cases, the function type is defined once when the property is set up and not changed
later. One potentially useful application of changing the function type is when a
computation is farmed out to a public or access-controlled server, for example because a
local optional computation module is missing. Example:
prop set A_XYZ functiontype syncserver \
host www.xemistry.com port 17890 password xxx

After this statement, requests for atomic 3D coordinates will no longer be made by
attempting to load a local module and execute the coordinate generation code on the client
machine, but by communicating with the server specified above. this is a sample host name
and not a real publicly accessible service.

Setting some other attributes (such as the indirect property) implicitly updates this attribute.

• globalparameters
This is the global version of the current parameter set. Its meaning is explained in the
paragraph detailing the parameters attribute.

• helpful
This is a list of source data properties which can be helpful for computing this property, but
do not need to be present for the computation to succeed. This is for example used as a hint
in network communication. If the property data is already present, it is sent, but no attempt
is made to compute it, and the computation function will either do without these additional
data, or compute it itself. This attribute has no effect for local computations. Its counterpart
is the required attribute.

• host
The name of the host to contact to request a remote computation for this property. This
applies only to properties which are farmed out to servers and is ignored otherwise.

• id
Get the internal integer ID code of the property. An ID value is automatically assigned when
a property is created or, for built-in properties, on start-up. This is a read-only attribute and
cannot be set.
862 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• indirect
If this attribute is set to the name of another property, the computation function of that other
property is expected to compute the data for this property as a side effect. This property
should be listed in the windfall attribute of the second property. When the computation of
this property is requested in a script, the request is re-schedule as a computation request for
the indirect property.

This mechanism is useful because you only need to maintain a single computation module
or script for a set of properties which are computed synchronously. One of the properties
provides the computation function, and lists the other properties in its windfall attribute. The
other properties from the group all simply refer via an indirect attribute to the single
property with the computation function.

• infourl
A URL with information on the property definition, or an empty string if unset.

• invalidation
This set of flags describes under which circumstances the property data attached to an object
is automatically discarded. The flag sets augments the property dependency relationships
defined via the depends attribute. These are s global operations on a structure beyond the
scope of isolated property data changes. With the exception of the never value, multiple
code words can be usefully combined into a list. The currently supported flags are:

• never
no automatic invalidation

• atomchange
any major atom change in an ensemble, such as an atom type or element change, or the
addition or deletion of atoms

• bondchange
any major bond change in an ensemble, such as a bond type or order change, or the
addition or deletion of bonds

• stereochange
any stereochemistry change in an ensemble

• groupchange
any major group data change in an ensemble, similar to the atomchange and bondchange
criteria

• merge
data of two objects is merged

• 3dop
the 3D structure of an ensemble changes in a way that affects inter-atomic distances

• 3dglop
the 3D coordinates of an ensemble change globally, but inter-atomic distances remain
constant

• shuffle
the order of atoms changes in an ensemble
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 863

CACTVS Tcl and Python Scripting Language Reference
• hadd
hydrogens are automatically added or removed to an ensemble

• dup
a major object is duplicated.

• atom
the atom list composition changes for an ensemble

• bond
the bond list composition changes for an ensemble

• mol
the molecule list composition changes for an ensemble

• ring
the ring list composition changes for an ensemble

• sigma
the sigma system list composition changes for an ensemble

• pi
the pi system list composition changes for an ensemble

• group
the group list composition changes for an ensemble

• surface
the surface patch list composition changes for an ensemble

• ringsystem
the ringsystem list composition changes for an ensemble

• reaction
reaction membership changes for an ensemble, or the ensemble set changes for a
reaction

• dataset
dataset membership changes, either for an object in a dataset, or the dataset object proper
for which the object set changes

• file
the association of an object with a structure file changes, for either of the sides

• table
the association of an object with a table object changes, for either of the sides

• network
the association with a network object changes

• vertex
the vertex list composition changes on a network object

• connection
the connection list composition changes on a network object
864 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Example:
prop set E_MY_UNIQUE_ID invalidation dup

Property data for E_MY_UNIQUE_ID is discarded from the cloned structure when duplicating
ensembles.

A signal indicating that certain operations have taken place can be explicitly sent by the taint
major object subcommands. Example:
ens taint $eh {atomchange bondchange}

Above command leads to the shedding of all property data on the ensemble which is not
robust with respect to atom and bond edits. These events are always global on the
controlling major object. It is not possible to signal an update event for a single atom or
bond.

• keycolumn
The name of a database column for keyed properties which are retrieved from a
database-style source. In case of data sources which do not have a concept of columns, this
is an empty string.

• keydatatype
The data type of the access key of a keyed property. If the key is another property
(keyproperty attribute), the data type is derived from the property definition of the key
property and potentially its field index and should not be changed. For keys which are not
properties, this attribute must be set. It can be any supported property data type, including
those which need to be loaded as external handler module on demand.

• keyenum
An enumeration similar to the enum attribute for the encoding and decoding of key values
for keyed properties. It the key is a property, this attribute overrides the enum attribute the
key property might possess itself in the context of key operations.

• keyproperty
The name of a property which is used as access key to obtain property values by retrieval
from an external data source. This must be resolvable to a property definition. If no key
property is used, this is an empty string.

• keyreference
The data source for key-based property retrieval, encoded as a URN. The protocol field of
the URN determines the name of the key resolver used. An attempt is made to auto-load the
proper key resolver module if the handler has not yet been loaded.The rest of the URN fields
are interpreted by the resolver module. They usually follow the standard URN syntax with
user IDs, passwords, hosts, ports, and a file or database table component, with reasonable
defaults if any parts are not specified.

• keywords
A list of keywords associated with the property.

• length
The data length of the property. A value of -1 (the default) indicates that the length should
be expected to vary. The exact interpretation of the attribute is dependent on the data type.
For example, for strings and Unicode strings it is the character count, for blobs the byte
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 865

CACTVS Tcl and Python Scripting Language Reference
count, and for vectors of constant element size (for example, floating-point and integer
vectors) the element count. If a length is set, it is only used as a hint for internal
optimizations. It becomes a binding statement only if the fixedlength bit in the flags property
attribute and/or the dbflags attribute has been set.

• license
The license class associated with this property. Setting the license to a standard type updates
the associated URL with a standard location.

• licenseurl
A URL with details about the property license.

• literature
This is a free-form string for a literature reference describing the meaning and/or algorithm
behind the property.

• logfile
In case the property logging mode is set to write to a file, this is the name of the file the log
output is written to.

• logmode
This attribute is an enumerated set of words which describe the handling of log or debug
output during calls of the property computation routine. If any mode except ignore is set,
standard output and standard error are redirected to the selected output channel before the
function is called, and restored to the previous channels afterwards. The default should be
ignore, because redirection involves several system calls and therefore can significantly
slow down the computation of trivial properties. The supported values are:

• ignore
neither redirection nor restoration

• suppressed
redirection to /dev/null or NUL on Windows

• console
redirection to the /dev/console (not on Windows)

• filewrite
redirect to the file specified in attribute logfile. The file is deleted before each
computation function call.

• fileappend
redirect to the file specified in attribute logfile. The output is appended.

• stdout
redirect both standard output and standard error to original standard output

• stderr
redirect both standard output and standard error to original standard error

• magic
Define a magic value for the property. This is a convenient way to mark one specific
property data value as an indicator for a special condition outside the normal validity range
of the property. The attribute must be a parseable representation of a property value.
866 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Magic values are not written out explicitly in native CACTVS binary files. If therefore the
magic value changes, newly read magic property data values automatically assume the
current magic value because they are set from the current property definition, not the file
contents.

• max
The maximum expected property value. This attribute is not enforced - it is primarily
intended to be used to compute color scales etc. from property values. See also the min
attribute. The attribute must be set to a valid string representation of a property value which
can be decoded with the current property definition, and should not be the same as either the
magic or null attributes.

• menugroup
The name of a menu group the property should be sorted into under the name specified in
menuname. This is only used in graphical user interfaces.

• menuname
This is an alternative, user-friendly name to be used in menu displays and similar
circumstances. This attribute is a free-form string. Since it is not decoded as property name,
it does not need to adhere to the CACTVS property naming conventions.

• mergefunction
The name of a TCL or PYTHON function which is called when property data attached to a major
object is prepared for merging, for example in the context of the ens merge command. The
type of the function must be the same as that of the compute function. In case this is a TCL
or PYTHON procedure, it is called with the the two object handles (TCL) or references (PYTHON)
as argument.

If the merge function can be found in the private slave interpreter of the property, it is
executed there. Otherwise, an attempt is made to locate and run it in the main interpreter.
When a property definition file is written with prop write, and the function can be located,
it is encapsulated in the definition file and is available for all further interpreters which read
the definition file.

The purpose of the merge function is to modify the data values in the second object in order
to prepare its merge with the first object. It must not perform any merge operation itself. For
example, the built-in merge functions for minor object labels (properties A_LABEL, B_LABEL,
etc.) adds an offset to the label values of the second object in order to avoid the assignment
of identical labels to two minor objects in the merged ensemble. The merge function for
atomic 2D coordinates (property A_XY) scales the coordinates of the second object to fit with
the scaling of the first, and then adjust the coordinates so that the structures are displayed
side by side after merging.

• mimetype
A helpful MIME type associated with the property. It is for example use to identify the format
of contents of property data held in blobs or disk files. Commonly used values are for
example image/png, image/gif and image/svg+xml to identify the encoding of image data.
The default value is empty.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 867

CACTVS Tcl and Python Scripting Language Reference
• min
The minimum expected property value. This attribute is not enforced - it is primarily
intended to be used to compute color scales etc. from property values. See also the max
attribute. The attribute must be set to a valid string representation of a property value which
can be decoded with the current property definition, and should not be the same as either the
magic or null attributes.

• name
This is the name of the property. Changing it after it has been defined originally is generally
considered bad style, but it is possible. Internal data references use pointers, not strings with
names.

• nativename
Internal use only.

• null
The string representation of the first NULL property value. Usually this is set to the same
string as the magic attribute, or an empty string. The value must be a valid string
representation that can be decoded with the current property definition if it is not an empty
string. An empty string disables the null value check and is not parsed, even if that is a valid
representation of a property value.

• null1
This is an alias for the null attribute above.There are a maximum of three recognized NULL
values - this follows the SPSS statistical analysis package data model. The second value is
only applied if the first value is set, and the third only if the first and second are defined.

• null2
The second null value.

• null3
The third null value.

• nullrange
A list with a pair of elements defining an inclusive lower and upper value limit for property
values regarded as NULL data. The format of each of those elements is the same as for the
null attribute described above. This range criterion is distinct from the normal null
parameter - both may be used in combination. For properties where the associated property
data type does not support larger/smaller comparisons, this attribute is not useful.

• objclass
The name of a chemical object class the property is attached to. By default, this is
automatically set by decoding the prefix of the property name, and it is highly recommended
that you do not override this automatic prefix scheme. attachment is an alias for this
attribute.

• objectfile
This is the name of the shared object (DLL, Bundle) file for a dynamically loaded
computation modules. This attribute is empty for properties which do not possess a
compiled computation module.
868 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• originalname
The original name of the property. When data is read from a file, and the tag the data is stored
under does not match the CACTVS property name, this attribute is automatically globally
updated and set to the name as found in the file. There is currently no mechanism to
remember multiple original names from different files in parallel.

When property data is written to a file, and an original name is set for an output property,
this name is used in preference to the CACTVS name if the file syntax allows it. For example,
this is the attribute which should be changed in order to set arbitrary SD data field names
for property data.

This attribute can be set to arbitrary strings and does not need to follow the CACTVS property
naming conventions. Nevertheless, names set via this attribute are used to resolve
properties only as fall-back. The priorities for name resolution are aliases first, then proper
CACTVS names, and finally original names. Menu names are never used for property lookup.

• orcid
The ORCID code of the author of the property definition (see www.orcid.org).

• outputlevel
Deprecated. Originally intended to allow the selection of groups of properties up to a certain
level of importance in output sets without the need to name them explicitly. The higher the
specified level for a property, the more important it is supposed to be. Its output level value
is compared to the output level of, for example, a structure file handle, and the property is
included if its level is equal to or larger than the file object level. In practical experience, this
does not work too well. In any case, the decision to include or suppress the data of a property
via this criterion can be overruled by the property outputmode attribute, and the write and
suppress lists of structure file objects.

• outputmode
This attribute is one of several attributes which control whether data for a property is
included in output or not. It can be one of three values:

• suppressed
the data is never output

• standard
the property output is decided by other factors, such as the outputlevel attribute or
property control lists of structure file objects

• forced
the property is always written, regardless of other settings.

The default value is standard.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• parameters
This is a keyword/value list of the adjustable parameters used in the property computation
routine. It must be set as a proper TCL list owith an even number of elements. or, equivalently,
a TCL or PYTHON dictionary.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 869

CACTVS Tcl and Python Scripting Language Reference
For multi-threaded scripts, this attribute is thread-local. When a script thread first refers to
a property, its thread-local parameter set is copied from the current global setting. All further
manipulations only change the thread-local copy. The only exception is the base thread,
which updates the master copy. In case a script thread needs to change or query the global
setting, it can use the globalparameters attribute. For the base thread, these two attribute
names are identical. The split of the parameter set into thread-local versions allows multiple
threads to compute different variants of data for the same property simultaneously.

Convenient methods to access the parameter set are via statements like
array set params [prop get $pname parameters]
set paramdict [dict create {*}[prop get $pname parameters]

The first example initializes the array variable params to proper element names and values.
The second method initializes a TCL dictionary.

The reverse path is also straightforward:
prop set $pname parameters [array get params]

Please refer also to the paragraph about the computefunction attribute for more details on
how to access the parameter set in computation functions.

When used with prop set or prop create in the base thread, the more detailed typed
parameter dictionary is replaced. All parameters defined this way are untyped and
unrestricted strings.

• paramdict
When used with prop get, report exhaustive parameter info in the form of a list of
dictionaries. The outer list contains an element for every defined parameter, in order of the
definition. Each list element is the full parameter dictionary of that parameter (see prop
getparameterdict command). parameterdict is an alias for this attribute.

When used with prop set or prop create, the full parameter set of the property is replaced,
and the untyped simple parameter list rebuilt from the new detailed specification. Different
from the parameters attribute, the effects of this command are not thread-local. The edits
always apply to the base property definition.

• parametercount
This is a read-only attribute which returns the number of currently defined computation
parameters for this property. It is half the length of the list returned by reading the
parameters attribute.

• password
A free-form text password which is transmitted as part of the request data for computations
which are performed on a remote server. The server may use this information to grant or
deny the processing request. This attribute is not used for local computations.

• phone
A contact phone number of the property author.

• port
The port used to contact a remove computation server. The default port for distributed
CACTVS computation servers is 16520. For local computations, this attribute is ignored.
870 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• precision
The number of significant digits after the decimal point for floating-point data.

• precompute
This is a list of properties for which an attempt is made to pre-compute them before the
computation function for this property is called. In case the computation fails, it is silently
ignored.

This attribute is primarily useful to control the location of computation for low-level
property data when using server-based set-ups. In case the computation is performed
implicitly in the computation function running on a server, the low-level computations also
take place there if they are not themselves farmed out. If these properties are listed as
precompute properties, they are computed on the client side before the request is sent.

• profile
Internal use only.

• regexp
This attribute provides a method to check the encoding of property data values that are read
from strings, or from TCL or PYTHON interpreter objects. The argument is a regular
expression. If input data does not match it, it is rejected. The check is only performed at the
time of input via the handler function. Compiled code manipulating internal data structures
directly can still produce data which does not pass the expression filter.

Data format handler modules need to implement this function individually. At this time, the
data types which support this are string, stringevector, unicode and unicodevector. Data
format handlers which do not support regular expression filtering silently ignore it. The
match operation of the regular expression can be further controlled with the regexpflags
attribute.

This attribute can be used in combination with the constraints attribute.

Example:
prop set E_REGID regexp {TinyPharma[0-9]+}

• references
Cross references of the property definition. This is a nested list of class UUIDs and reference
type tags.

• regexpflags
This set of flags controls the match condition for regular expressions set via the regexp
attribute. It is a set of flags. The currently supported flags

• none
no flags, can also be set as empty string

• extended
use extended regular expression syntax

• nocase
ignore case

Example:
prop set E_REGID regexpflags {nocase extended}
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 871

CACTVS Tcl and Python Scripting Language Reference
• regid
The official registration ID of the property. Properties of general usefulness can be
registered and be assigned an official numerical identifier. This attribute must be set by a
(potentially, digitally signed) property definition record. It cannot be set by script
commands.

• required
This attribute is a list of properties which need to be present before a remote or threaded
computation of property data can be attempted. In client/server computations, the client tries
to compute all these properties and send the data (together with helpful, but not mandatory
data - see helpful attribute) to the server. In case of a threaded property computation, the
required properties are computed on the original object before it is duplicated for use with
the independent thread. This attribute has no effect on local computations.

• scale
A scaling value for numerical data. The default is 1.0. This attribute is defined, but currently
only passed on for MDL XDF file format output. It has no effect on the interpretation of
property data

• separator
A field separator which enables word-indexed addressing in string-style property data types.
Example:
prop create E_MYID separator :
set eh [ens create $smiles]
ens set $eh E_MYID “p345:c64587:u45”
ens show $eh E_MYID(1)

This returns “c64587”. In case the separator is more than a single character, any of the listed
characters is considered a word boundary. The split occurs on any sequence of characters
from the separator set. The default separator is white space.

• sourcefile
The name of the source file of a compiled property computation module. No guarantee is
given that the file is contained in any specific toolkit distribution.

• status
A read-only attribute which lists the currently set flags in the internal status word of the
property. This is primarily useful for debugging purposes.

• testable
A read-only attribute which returns a boolean status code whether the function is testable.
A true value means it has a scripted test function, and is of a suitable general function type.

• testdata
The name of a file with sample structures and result data which can be used to verify the
correct computation of property data in an installation. It should contain a reasonable set of
structurally different structures and result data for this property which has been verified to
be correct. The most suitable type of file for this data is a native CACTVS binary structure file.
872 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
When a property definition file is written with the prop write command, this data is
encapsulated in the definition file. When the definition file is later read by an application,
the data is written out to a temporary file, and the file name returned for this attribute is the
name of the temp file, not the original file name. By this mechanism, it is not required to
supply test data files as a separate files which may be difficult to locate and are easy to get
lost.

If this field is empty, which is the default, no test data is present.

• testfunction
The name of the test function of the property. If the property does not have a test function,
the value is an empty string.

A property test function is a parameterless TCL or PYTHON function which computes property
data of the associated property on predefined structures, reactions, etc. and compares it to
known results. In case of success, the function returns 1, 0 in case of failure, and it throws
an error in case of a critical problem. If the property is a TCL script property, the test function
is executed in the property slave interpreter. Otherwise, the global interpreter is used. If the
property has a PYTHON computation function, the test function is also assumed to be PYTHON.
Otherwise, it is expected to be written in TCL. Remote computation functions (synchronous
or asynchronous server, mail service, etc.) currently cannot be tested.

• timeout
A timeout for the property computation in seconds. If it is set to zero, the default, no timeout
is in effect. Once a property computation exceeds its maximum computation time, it is
aborted, and the computation fails. The timeout value is the total CPU time spent in the call
to the computation routine. This includes all time spent with the computation of low-level
properties which are requested inside the computation function of the current property.

Computation aborts can lead to serious memory leaks. Time-outs should therefore not be
used without need. Additionally, checking the time and setting interrupt handlers involves
multiple system calls. The computation of trivial properties can slow down significantly if
time-outs are enabled.

Time-outs may be stacked if required, i.e. a timed computation routine can request the
computation of another timed property. In that case, in the inner computation routine, both
timers are active, and the timeout of any of these will lead to an overall computation failure.

• trace
This is a deprecated attribute to control the tracing of computations in script functions.
Please use the flags attribute.

• traits
A couple of indicator bits describing the general type of the property. The value can
currently be none, or any combination of hashcode, stereodescriptor, rendering,
pixelimage, vectorimage, linenotation, 3dmodel, spectrum and interactive.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 873

CACTVS Tcl and Python Scripting Language Reference
• unit
An information string describing the unit the proper data is using. The string is not parsed
to enforce a recognized set of units, but built-in unit conversions only work if a standard unit
is used. Supported unit sets currently include length, energy, mass, time, pressure,
temperature, volume and mols. For any of these, a standard range of units is recognized (e.g.
picoseconds/ps to years/y for time, and Joules, kcals, etc. for energy).

• version
The version of the property definition. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The version UUID associated with this property definition version.

• warmupobjects
A list of decodable line notations (typically SMILES, Reaction SMILES, or CACTVS serialized
objects) for use with the prop use command. The type of the object must correspond to the
major object class associated with the property (i.e. an ensemble for ensemble/mol/atom
properties, or a reaction for reaction properties). If you wish to specify the object class
explicitly, alias attribute names warmupstructures or warmupreactions can also be used. By
default, properties do not have associated warm-up objects. If prop use is invoked for
properties without explicit warm-up objects, the default object in
::cactvs(default_warmup_structure) or ::cactvs(default_warmup_reaction) is
used.

• width
The width of the property. This is the number of slots the property is occupying in the data
storage area of chemistry objects. The vast majority of properties has a width of one, and
this is the default. The only standard exception are certain bond properties which are
directional, i.e. there are two values, one for looking from the first atom to the second, and
a different value for looking into the reverse direction. These bond properties have a width
of two. In principle, it is possible to define properties of larger width, or to use this
functionality on properties which are not attached to bonds.

Property values of properties which are of a width larger than one are returned and input as
lists in TCL scripts, or sequences in PYTHON. The length of these lists must be the same as the
width in the property definition. It is not possible to access single-slot subsets of the property
data directly.

Use of this feature is no longer recommended. For multi-value properties, the use of
compound data type properties, or a split into two independent properties are often better
solutions.

• windfall
A set of properties that is attached as result data as a side effect of computing this property.
For local computations, this is for information only. For server property computations, it
prepares the client to expect these additional property data records to be transmitted. Note
that this list is not supposed to include minor, dependent properties which are needed as
input for the computation. Rather, this should be used if there are two or more potentially
interesting result properties which are most conveniently computed in parallel, and where
computation of any of the additional properties in a separate request would essentially
require to run the same computation over again.
874 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
In a typical set-up, the windfall properties do not define their own computation functions,
but redirect to the computation of this property via an indirect attribute, resulting in a set of
two or more properties which are always computed together and where the combined
computation function is maintained in a single place, on the property which lists them as
windfall results.

The prop set command supports a special attribute value syntax for manipulating bitset-type
attributes. If the first character of the argument is a minus character (-), the named bits in the set
identified by the remainder of the argument are unset. If it is a plus (+), they are additionally set.
With an equal sign (=), or no special lead character, the flag set replaces the old value. A leading
caret character (^) toggles the selected bits.

Example:
prop set E_SCREEN flags +locked:fixedlength
prop set E_SCREEN flags -locked

prop setparameterdict
prop setparameterdict propertyname parametername datadict
Prop.Setparameterdict(property/pref,parametername,dict)
p.setparamdict(parametername,dict)

Modify an existing parameter of a property definition. The recognized dictionary items are the same
as in the prop getparameterdict command, with the exception that all parsed values are ignored
- parameter values, defaults, min and max values are defined via string data, for which a parse is
attempted and an error generated if it fails. All dictionary items are optional. If a parameter
definition attribute is not defined in the dictionary, the existing definition is retained.

If the named parameter is not already defined, an error is produced.
prop setparamdict is an alias to this command.

prop setparameter
prop setparameter propertyname ?parameter value?...
prop setparameter propertyname dictionary
p.setparameter(?parameter,value?,...)
p.setparameter(dict)
Prop.Setparameter(propertyname/pref,?parameter,value?,...)
Prop.Setparameter(propertyname/pref,dict)

Set zero or more computation parameters. In multi-threaded scripts, this effects only the thread-local
parameter set. Only the base interpreter, and its slaves, manipulate the global parameter set, in
addition to its own thread-local set.

In the second command variant, the dictionary argument must be a properly formed TCL dictionary
with suitable keyword/value pairs. If that is the case, the dictionary is implicitly expanded and
processing proceeds as in the first command variant.

An attempt to set a parameter whose name is not listed in the current parameter set fails with an error.
This is a safety mechanism to prevent typos in parameter names. Nevertheless, setting such an
unknown parameter does succeed internally. In order to force the addition of a new parameter, the
statement can be written with a catch command:
catch {prop setparam $pname my_new_parameter “New World!”}
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 875

CACTVS Tcl and Python Scripting Language Reference
This command can be abbreviated as prop setparam.

There is no command to unset a single parameter. This can be done by retrieving and manipulating
the complete parameter list via a command like
set d [dict create {*}[prop get $propname parameters]]
dict unset d $obsolete_param
prop set $propname parameters $d

prop sqldecode
prop sqldecode propertyname value
Prop.Sqldecode(propertyname/pref,value)
p.sqldecode(value)

Attempt to decode a property value from a string formatted in SQL-style encoding. If it succeeds,
its standard Tcl or PYTHON representation is returned. Otherwise, an error results.

prop sqlencode
prop sqlencode propertyname value
Prop.Sqlencode(propertyname/pref,value)
p.sqlencode(value)

Encode a property value in SQL formatting. The value parameter must be a valid representation of
the property value in its TCL or PYTHON format. If the decoding succeeds, and the data type handler
supports SQL formatting, the returned value is suitable for constructing SQL statements.

prop sqlformat is an alias for this command.

prop string
prop string propertyname
Prop.String(propertyname/pref)
p.string()

Get the XML-style property definition record as a string. This is equivalent to writing out the property
definition and reading the output file as text data.

prop subcommands
prop subcommands
dir(Prop)

This command returns a list of all the subcommands of the prop command.

prop test
prop test ?propertyname?...
Prop.Test(?propertyname/pref?,...)
p.test()

Run the property test functions on a list of properties. The return value is a list of integers containing
one integer per property. In case a listed property does not have a test function, the value is -1. If a
test succeeds, the value is one. If it fails, the value is 0, and in case of a critical error in any of the
tests, the test is canceled and the error reported.
876 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
prop unalias
prop unalias ?alias_name?...
Prop.Unalias(?alias_name?,...)

Remove one or more alias definitions introduced by a prop alias command.

If a specified alias name does not exist, it is silently ignored. If an existing property was hidden by
an alias definition, it becomes visible again. However, existing property data in the name of the old
alias on chemical objects continues to refer to the property definitions it was alias-mapped to when
it was created.

prop use
prop use propertyname
p.use()
Prop.Use(propertyname/pref)

Warm up property computation, make sure that the property definition and associated computation
dynamic libraries are loaded and the property computation is internally initialized. The latter
function works by re-computing the property either on specifically set structures, reactions, etc.
(warmupobjects attribute), or on default ensemble/reaction/etc. objects from
::cactvs(default_warmup_structure) or ::cactvs(default_warmup_reaction). The class
of warm-up object corresponds to the major object of the property (i.e. ensembles for
atom/bond/ensemble properties, reactions for reaction properties, etc.). The warm-up objects are
created only temporarily for the duration of the command, and a failure to compute the property on
a warm-up object is no error.

Calling the computation function, if it exists, during program initialization is intended to allow the
computation routine to perform initialization tasks, such as decoding fragments or setting global
variables, so that later invocations in a multi-threaded script or application are safe even if the
function writer was not careful about asset mutex locking during first-call initializations, and
property database and property reference locking can be omitted if the overall property database is
locked - see ::cactvs(property_lock) control variable.

The command returns nothing.

prop verify
prop verify propertyname ?objecthandle?...
Prop.Verify(propertyname/pref,?objecthandle/objectref?,...)
p.verify(?objecthandle/objectref?,...)

Verify the syntactic correctness of property data on a list of major objects, such as ensembles,
reactions or datasets. The return value is a boolean list of check results, 1 if the data is formatted
correctly, 0 if not. If the property is not set for the object, the returned status value is -1.

In case there is no check function (attribute checkfunction, see prop set command) defined, or it
cannot be found, an error results. More details on the operation of the check function can be found
in the prop set subcommand documentation.

Example:
prop verify E_CAS $eh
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 877

CACTVS Tcl and Python Scripting Language Reference
This command checks if property E_CAS is set for the ensemble, whether it is formatted correctly by
calling the scripted TCL check function defined for property E_CAS. For this property, the check
function runs the CAS check digit algorithm on the data value. It catches encoding errors where the
check digit does not match the value as re-computed from the other digits.

prop check is an alias for this command.

prop write
prop write propertyname ?filename/dirname/emptystring?
p.write(?filename/dirname/emptystring?)
Prop.Write(propertyname/pref,?filename/dirname/emptystring?)

Write the current definition of the property to a file. The file can be loaded into other script
interpreters explicitly (see prop read command) or implicitly via the property definition auto-load
mechanism. If no file name is given, the name of the file is automatically constructed from the
property name in lower case and the suffix .xpd for the new-style XML property definitions.

In addition to normal file names, the magic names stdout and stderr may be used, as well as already
opened TCL or PYTHON socket and file handles, plus pipes indicated by a file name which starts with
“|”. Writing to TCL or PYTHON channels is not supported on the MS Windows platform. If the file
name argument is a directory, the file name is still automatically generated, and the file written into
that directory. If a file name with an explicit .prp suffix is specified, the output is written in the legacy
keyword/value ASCII-based file format. Old property definition files continue to be supported for
both input and output. They are backward-compatible with earlier toolkit versions, though they
cannot store all content of the newer XML format.

If the output is written to a regular file named in the command, the suffix .xpd is automatically added
if necessary, and the output contains a single property definition record. By writing to a TCL or
PYTHON channel, it is possible to write multiple properties into a single file, and these can be read in
a single operation by the prop read command. For explicit file input, neither one of the two standard
suffixes nor the standard file name derived from the property name are mandatory, but the naming
convention must be adhered to in order to enable auto-loading of property definitions.

If the file name argument is an empty string, or None for PYTHON, the definition is returned as an
in-memory string blob and not written to disk.

It is possible to write out built-in property definitions. For reference purposes, current toolkit
distributions contain a BUILTIN directory which contains dumps of the property definitions of the
built-in property set.

The command returns the name of the file written to if the output is not a blob.

prop xcreate
prop xcreate propertyname ?attribute value?...
prop xcreate propertyname dict
Prop.Xcreate(propertyname,?attribute,value?,...)
Prop.Xcreate(propertyname,dict)
Prop.Xcreate(propertyname,?attribute=value?,...)

Create a new property definition, and optionally set attributes.
878 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The command, and the difference to the normal prop create command is explained in the
paragraph on that command.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 879

CACTVS Tcl and Python Scripting Language Reference
The repx Command

Intentionally undocumented, internal use only
880 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The report Command

The report command is used to interact with report objects. The purpose of report objects is to
generate reports in PDF or HTML format from structure data. PDF files can contain a hidden
structure-searchable database with the structure and rendered or auxiliary data items.

The format of a report is defined by an XML style file, which describes a record box with arbitrary
positioning of data or image fields. These record boxes can be stacked horizontally and vertically
on report pages. The XML style file is embedded in PDFs written by report objects, so these files can
contain both human-readable and computer-readable data content plus the layout information used
to generate the file. It is for example possible to re-render content with a different style file, or use
the style file extracted from a template file to render additional documents in exactly the same style.

The unit for describing report object placements are 72 DPI pixels. The are converted and/or scaled
to the selected output format.

report create
report create ?attribute value?...
report create dict
Report(?attribute,value?,...)
Report(dict)
Report(attribute=value,...)
Report.Create(?attribute,value?,...)
Report.Create(dict)
Report.Create(attribute=value,...)

Create a new report object. Additionally, an set of attributes of the object may be defined in the same
statement. The settable attributes are the same as in the report set command.

The command returns the handle or reference of the new report object.

report delete
report delete ?rhandle?...
report delete all
r.delete()
Report.Delete(?rhandle/rref?,...)
Report.Delete(“all”)

Delete one of more report objects which are identified by their handles or references. The second
variant deletes all currently defined report objects.

Example:
report delete {*}[report list]

This command is equivalent to report delete all.

report extract
report extract rhandle pdf_filename ?mode? ?outfilenamenbase?
r.extract(filename=,?mode=?,?outfilenamebase=?)

Extract the SQLITE database and the report style XML file from a PDF report.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 881

CACTVS Tcl and Python Scripting Language Reference
The default mode is all, meaning that both the database and the formatting information is extracted,
written to external files, and attached to the report object. Other supported modes are style
(formatting only) and database (data only).

The final optional argument sets the base filename of the extracted SQLITE and XML style files. If it
is not set, a file name is automatically generated.

The return value of the command depends on the extraction mode. In the all mode, is is a list of the
respective filenames for the database and style file. In other modes, it is a single string with the
specific filename.

report get
report get rhandle attribute
r.get(attribute)
r.attribute
r[attribute]

Query an attribute of a report object. The currently supported attributes are:
• address_city

The city part of the author contact address.
• address_country

The country part of the author contact address, following the ISO3166 standard.
• address_state

The state part of the author contact address. Empty if not applicable.
• address_street

The street address part of the author contact address. Includes floor, house number, etc.
• address_zip

The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author of the report works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the report, as free-form text.

• authorurl
A URL with information on the author, or an empty string if unset.

• border
The distance between the paper or HTML page and the first elements of a data box.

• boundingbox
A list of the upper left x/y and lower right x/y coordinates of the current layout, with all
scaling and offset computations applied. This is a read-only attribute.
882 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• category
A category string to be used if the report definition is stored in a repository.

• classuuid
The base class UUID of this report.

• comment
A free-form comment.

• date
The date of the last change of the report.

• dbfields
A nested list of the columns defined for the embedded structure and reaction database. Each
field is reported as a list of the property or pseudo-property name of the field, the true
database column name, a bitset set of any database field attributes set on the field (from the
bit set of none, index, unique, notnull, nocompute), the name of the SQLITE database type
used to encode the field, and the field length, which is zero if it is not defined.

If database fields have not yet been defined on the report object, querying or setting this attribute
instantiates a standard set for a structure (but not reaction) database. Additionally, all properties
currently associated with a data display field in the layout are automatically added, so that every
visible data value can also be read from the database.

When setting this attribute, every field sublist must contain only between one and three
elements. The last two items reported are automatically deduced from the type of data to be
stored. If no explicit field name is specified, the field name is copied from the first argument.
If no third element is supplied, the database column has no auxiliary SQL attributes, i.e. it is not
indexed, may contain multiple entries of the same value, can be NULL, and an attempt will be
made to compute its value when a structure or reaction record is written and the ensemble or
reaction does not currently hold a value for the property or pseudo-property of the database
column.

• dbfilename
The name of the SQLITE database file with the structure- and data-searchable content
associated with this report object. It can also be set, though usually its name is
auto-generated. Initially, an empty return value indicates that no file name has been set.

• doi
A digital object identifier for the report, if defined.

• email
An email contact address of the author.

• eolchars
The end-of-line character to use in ASCII-formatted output, such as the HTML report style.
The default value is the platform style (Windows, Mac or Unix/Linux). It can be set to any
string. Additionally, the magic values win (or crlf), mac (or cr) and linux (or unix, or lf) are
recognized.

• footer
The center-aligned page footer text, which can contain placeholders. The default is an empty
string.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 883

CACTVS Tcl and Python Scripting Language Reference
• handle
The TCL handle in string format

• header
The center-aligned page header text, which can contain placeholders. The default is an
empty string.

• htmlfilename
The name of the file with the HTML-formatted rendering of the report content. Usually, this
is automatically set. The initial value is an empty string, which results in an automatically
generated name if a HTML file is written.

• infourl
A URL with information on the report, or an empty string if unset.

• keywords
A list of keywords associated with the report

• leftfooter
The left-aligned page footer text, which can contain placeholders. The default is an empty
string.

• leftheader
The left-aligned page header text, which can contain placeholders. The default is an empty
string.

• versionuuid
The instance UUID associated with this report

• license
The license class associated with this report. Setting the license to a standard type updates
the associated URL with a standard location.

• licenseurl
A URL with details about the report license.

• literature
This is a free-form string for a literature reference describing the meaning and/or algorithm
behind the report.

• maxpages
The maximum number of pages to write, in PDF or HTML format. If the current data set is
too large to fit into this number of pages, the rest is silently omitted. A negative value, which
is the default, allows an unlimited number of pages. In any case, the maximum page count
of a PDF report is 9999 pages. This is due to a limitation in the PDF rendering library.

• maxrecs
The maximum number of records to write, which is the same as the number of top-level data
boxes. The actual size of the dataset or structure file used as data source for the report may
be larger, if a filtering mechanism, such as selection processing, is set. Records in excess of
the maximum are silently omitted. A negative value, which is the default, allows an
unlimited number of records.
884 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• name
The primary name of the report.

• orcid
The ORCID code of the author of the report (see www.orcid.org).

• orientation
The page orientation, which can either be portrait (the default) or landscape.

• ownerpassword
The owner password for generated PDF files. An empty string, which is the default, indicates
that no password is set. For HTML output, this attribute is ignored.

• paper
The size of paper, such as A4, A3 or letter, which is used to format the output as PDF or
HTML. This parameter has an effect even on HTML output, since the code contains page
breaks for nice printing. The default is the toolkit default paper, which itself is usually A4
or letter.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• pdffilename
The name of the file with the PDF-formatted rendering of the report content. Usually, this
is automatically set. The initial value is an empty string, which results in an automatically
generated name if a PDF file is written.

• phone
A contact phone number of the author.

• references
Cross references of the report. This is a nested list of class UUIDs and reference type tags.

• regid
For registered reports, the registration ID. Unregistered modules report zero.

• rightfooter
The right-aligned page footer text, which can contain placeholders. The default is an empty
string.

• rightheader
The right-aligned page header text, which can contain placeholders. The default is an empty
string.

• scale
A scaling factor to convert the 72-DPI internal coordinates to print coordinates. The default
scale is 1.0. If set, the magic value #auto is also recognized, which sets the scaling factor so
that the configured number of horizontal and vertical blocks with the current style file just
fit onto the configured paper type. Please refer also to the interacting xblocks and yblocks
attributes. Automatic setting of this attribute is only possible if a style file has been read,
because it requires the box layout data.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 885

CACTVS Tcl and Python Scripting Language Reference
• spacing
The number of pixels between top-level data boxes if more than one is stacked in x or y
direction. The default spacing is 1.

• styledata
The contents of the current style file, in original XML formatting. This data can be set either
directly as a string, or indirectly via the stylefilename attribute. If set directly, the
stylefilename attribute is reset.

• stylefilename
The name of the XML file with report render style information. Its initial value is an empty
string. If this attribute is set, the file contents are parsed and stored internally. The file
contest are then available as in the styledata attribute.

• title
The title of the report as a free-form string. In HTML reports, it is used as page title. In PDF,
it is part of the document metadata.

• userpassword
The user password for PDF documents. By default, it is an empty string, which means that
no password is set. For HTML output, the attribute is ignored.

• version
A version string

• versionuuid
The version UUID associated with this report version.

• xblocks
The number of top-level data boxes to arrange in horizontal direction on a document page.
When it is set, the magic words #auto is recognized, which computes the maximum number
of boxes which can be placed without overspill on the page using the current border, spacing
and scaled top-level box size. Please refer also to the interacting scale attribute. Automatic
setting of this attribute is only possible if a style file has been read, because it requires the
box layout data.

• yblocks
The number of top-level data boxes to arrange in vertical direction on a document page.
When it is set, the magic words #auto is recognized, which computes the maximum number
of boxes which can be placed without overspill on the page using the current border, spacing
and scaled top-level box size. Please refer also to the interacting scale attribute. Automatic
setting of this attribute is only possible if a style file has been read, because it requires the
box layout data.

report list
report list ?pattern?
Report.List(?pattern=?)

Return the handles of all currently defined report objects. The handles may optionally be filtered by
a standard TCL string match condition.
886 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
report read
report read rhandle pdf/db/html_filename ?dataset?
r.read(filename=,?target=?)

Read data for a report from a PDF file with an embedded database, a SQLITE database with the
property structure (typically extracted from a report PDF) or a HTML file generated by the report
command with embedded data.

If an existing destination dataset is specified, all read structure or reaction objects are put into that
dataset. A new dataset is automatically created if the argument is omitted, specified as an empty
string (including None for PYTHON), or as the magic name #new.

The return value is the handle or reference of the dataset holding the extracted chemistry objects.

report ref
Report.Ref(identifier)

PYTHON-only method to get a reference of the report object from its handle.

report set
report set rhandle ?attribute value?...
report set rhandle dict
r.set(?attribute,value?,...)
r.set(dict)
r.attribute = value
r[attribute] = value

Set attributes of the report object. The attributes are explained in the section on the report get
command.

Example:
report set $rhandle stylefile „mystyle.xml“ paper A4 xblocks 2 yblocks #auto \

scale #auto

This is a typical page set-up operation. The PDF or HTML form of the report will contain 2 top-level
boxes arranged horizontally, a suitable (as computed from the aspect ratio of the paper) number of
vertically stacked blocks, and everything scaled so that either the horizontal or vertical extent of the
block stacks, plus the border, just fit onto the selected paper, without overspill.

report subcommands
report subcommands
dir(Report)

Return a list of all subcommands of report objects. The command does not have any parameters.

report write
report write rhandle ?filename? ?source? ?flagdict?
report write rhandle ?filename? ?source? ?flagname flagvalue?...
r.write(?filename=?,?source=?,?flags=?)

Write a report file from the existing report definition and a structure data source.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 887

CACTVS Tcl and Python Scripting Language Reference
The file name specifies an output data file. Its type is initially inferred by the filename suffix - .pdf
for PDF files, .htm or .html for HTML files, and .db or .sqlite for a raw SQLITE database. The file name
can be omitted if the pdffilename attribute is set, and the output format should be PDF, or another
format is set in the flags argument and the corresponding format-specific filename attribute is set.
If an explicit format is specified in the flags argument, the automatic format selection from the
filename is overridden. The filename can also be a directory. In that case, an automatically generated
file name based on the report instance UUID is constructed and the file written to that directory. The
magic output file names stdout and stderr are also recognized.

The structure data source can either be the handle or reference of a dataset with structure or reaction
objects, or the handle (reference) of an open molfile structure or reaction file. If no structure object
data source is specified, but there is a current SQLITE database file associated with the report object,
data is read from that database.

The output flags can be from the following set:

• format The desired output format. It can be pdf, html (htm) or db (sqlite).

• maxrecs The maximum number of structure objects or structure input file records to
process.

• page A page or page range. Pages outside the range for which data exists are omitted.

• reusedb A boolean flag indicating whether an existing SQLITE database file should be
re-used.

• selection The method to pick structures or reactions for inclusion in the report. It can be
ignore (all dataset items or file records are reported), filter (only items passing a
filter are included in the report) or highlight (only items where the highlight
attribute is set are included).

The return value of the command is the output file name, which may have been auto-generated.
888 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The soap Command

The soap command is used to facilitate networked communication by means of SOAP messages.
SOAP message objects are also useful to parse other styles of XML-formatted messages which are not
really SOAP, for example NCBI Entrez eutils result messages.

SOAP objects are created like other CACTVS objects, and have internal state, so it is possible to
communicate with multiple sources simultaneously by creating a SOAP object for every channel.

SOAP objects share many characteristics with JSON objects, and many commands are identical or
at least very similar.

These are the currently supported SOAP object commands:

soap append
soap append soaphandle ?attribute value?...
soap append soaphandle dict
s.append(?attribute,value?,...)
s.append(?attribute=value?,...)
s.append(dict)

This is a variant of the soap set command. The difference is that the supplied data is appended to
the current attribute value instead of replacing it. In case appending is not a possible operation, the
result is the same as using soap set.

The set of supported attributes is explained in the paragraph on soap set.

The command returns the original object handle or reference.

soap create
soap create ?attribute value?...
soap create dict
Soap(?attribute,value?,...)
Soap(dict)
Soap(?attribute=value?,...)
Soap.Create(?attribute,value?,...)
Soap.Create(dict)
Soap.Create(?attribute=value?,...)

Create a new SOAP object. The return value is the new object handle or reference. If no extra
attributes are specified, an empty object with default settings is created. Processing of specified
optional attribute/value pairs is performed in as an identical fashion to the soap set command.

soap delete
soap delete ?soaphandle?...
soap delete all
s.delete()
Soap.Delete(?sref/shandle?,...)
Soap.Delete(“all”)

Destroy one or more SOAP objects. The special word all can be used to remove all SOAP objects
currently defined in the interpreter.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 889

CACTVS Tcl and Python Scripting Language Reference
For the sake of consistency with the commands for other objects, soap close is an alias to this
command.

The return value is the number of successfully deleted SOAP objects.

soap error
soap error soaphandle ??message? channel? ?code? ?factor?
s.error(?message=?,?channel=?,?code=?,?uri=?)

Send a properly formatted SOAP error message over a TCL channel to a client, or at least prepare it.
If any of the optional arguments behind the channel argument are provided, they are processed like
equivalent soap set commands and change the internal attributes of the object.

In the generated message, the message, code and factor values are wrapped into XML tags of type
faultstring, faultcode and faultfactor, respectively. Usually, the factor value should be set to the URI
of the service, which could be stored in the uri attribute of the SOAP object. This core information
is then embedded into a standard SOAP fault envelope. If no channel argument or an empty string
is specified, and the internal channel of the SOAP object is undefined, no data is transmitted over the
channel, but the message is still formatted. If a valid channel was specified, or the SOAP object has
a valid internal channel, the message is immediately transmitted.

The return value of the command is the complete SOAP error message, with header and body. The
internal header and body fields of the SOAP object are also updated and allow subsequent individual
retrieval of these components.

soap find
soap find soaphandle taglist ?mode? ?contentflags?
s.find(tags=,?mode=?,?contentflags=?)

Find the contents and/or attributes of specific XML tags in a message. The generation of a parse tree
(see soap parse command) is a prerequisite for this function. If a parse tree does not yet exist, but
the SOAP object has body data, an attempt is automatically made to execute a parse of the full
message body data.

The command returns data found inside the first of potentially multiple query tags which matches
in case-sensitive fashion a tag in the parse tree, which is traversed depth-first.

The mode argument determines the reporting mode. It can be one of

• first
Find the first instance of tag and return single data item.

• next
Find the next instance of tag after the current position, or the begin of the message if this is
the first query, and return single data item.

• a numerical index
Find the nth instance of the tag and return single data item. The index starts with zero.

• all
Return all matching tag contents as a list of data item information. This is the default mode.
890 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The type of tag content reported can be configured by the contentflags argument. The argument can
be an arbitrary list made from the words

• tag
The name of the matched tag itself.

• attributes
The attributes of the tag, as name/value dictionary.

• chardata
The character data in the tag, excluding embedded inner tags, possibly trimmed (see
trimmed flag word).

• children
If set, include the same data as for the matched tag recursively for all its children, as nested
lists.

• trimmed
Remove left and right white space from the returned chardata value.

• noleafchildren
If children is set, omit output of an empty children list if a node has no children.

The default output selection is just chardata. If multiple content flags are selected, the order of the
elements in an item output list is tag, attributes, chardata and finally children. If a query fails to
yield any results, an empty string is returned. In reporting mode all, the item output lists are
themselves list elements of the overall result list.

This command is not SOAP-specific but can work in principle on any XML data, for example ENTREZ
eutils output.

soap get
soap get soaphandle attribute
s.get(attribute)
s.attribute
s[attribute]

Query the value of an attribute of a SOAP object. The list of recognized attributes is explained in the
paragraph on the soap set command.

The return value of the command is the value of the attribute.

soap list
soap list ?pattern?
Soap.List(?pattern=?)

Return a list of the handles or references of all currently existing SOAP objects in the interpreter. If
desired, the list can be filtered by a string pattern.

soap parse
soap parse soaphandle ?starttag? ?classname/instanceindex? ?data?
s.parse(?starttag=?,?class=?,?data=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 891

CACTVS Tcl and Python Scripting Language Reference
Parse an XML message stored in the body attribute of the object and create the parse tree which is
the prerequisite for retrieval of message content via the soap find command. If a data argument
is supplied, it replaces the body data of the object.

By default, or when the start tag argument is set to an empty string (or None for PYTHON), the
complete message is parsed. Optionally, processing can be limited to a subsection of the full data
that starts with the specified tag. In that case, only the content between the selected opening and
closing tags matching the supplied start tag is analyzed, and the argument replaces the tag attribute
of the SOAP object. By default the first start tag match is used, but this can be changed with the next
optional argument.

In case of multiple tags with the same name in the parsed data, an additional class attribute can be
specified as a second element. If this optional filtering argument is used, the first tag block matching
both the tag name and having a matching class attribute is extracted and parsed. If the class argument
is omitted, or empty, no class filtering is performed. Instead of a class name, it is also possible to
specify an integer instance index in the same argument position. By default, the first occurrence of
the start tag (index 0) is parsed, but by specifying a different start tag index, a different tag instance
may be selected.

The result of the command is the parse tree in nested list representation. This is the same data as the
parsetree attribute which can be queried via soap get.

soap read
soap read soaphandle ?channel?
s.read(?channel=?)

Read a message with a HTTP header from a channel. If the channel argument is not supplied, the
internally configured SOAP object channel is used. The internal header and body attributes of the
object are updated when the read succeeds. Note that this command works with any communication
which uses a HTTP header and body data. It is not limited to reading SOAP messages, or even plain
XML data.

The reader supports chunked data transmission.

The return value of the command is the received body text. In most applications, this command is
followed by a soap parse command, and then multiple soap find commands.

soap ref
Soap.Ref(identifier)

PYTHON-only method to get a reference of the SOAP object from its handle.

soap reformat
soap reformat soaphandle ?text?
s.reformat(?text=?)

Pretty-print an XML blob, with properly indented nested tags for easy visual inspection. If no explicit
string is specified, the current body attribute value of the soap object is used. The return value of the
command is the reformatted content. The original data is not changed.

This command assumes that the input is not pre-formatted. It does not attempt to remove existing
line feeds for formatting whitespace on the input, but rather adds it own formatting on top.
892 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
soap request
soap request soaphandle ?method? ?channel? ?parameters? ?uri?
s.request(?method=?,?channel=?,?parameters=?,?uri=?)

Call a SOAP handler on a remote server, or at least prepare the message content to do that. If any of
the optional arguments with the exception of the channel argument are provided, they are processed
like soap set commands and change the internal attributes of the object. If the uri argument is not
supplied, and the SOAP object has no configured uri attribute, a default URI to be used as part of the
HTTP POST instruction in the header is constructed from the host, port and method attributes. This
URI is not directly used to open a communication channel, though - the TCL transmission channel can
have been opened by any suitable means.

If the channel argument is not supplied, or written as an empty string, and the object has no valid
internal handle, the message is just assembled. Otherwise, it is transmitted directly. Using an explicit
channel argument does not update the internal channel attribute of the object.

The return value of the command is the assembled SOAP request message, with header and body.
The internal header and body fields of the SOAP object are also updated and allow subsequent
individual retrievals of these components.

Note that this command just sends the request, but does not wait for or read the server response. Use
the soap read command for this purpose.

soap respond
soap respond soaphandle responsedata ?channel? ?method? ?namespace?
s.respond(data=,?channel=?,?method=?,?namespace=?)

Send a properly formatted SOAP response message over a TCL channel to a client, usually as a
response after receiving a SOAP request message from that client. If any of the optional arguments
behind channel are provided, they are processed like soap set commands and change the internal
attributes of the object

In the generated message, the responsedata value is wrapped into an XML tag of type
<methodResponse>, where method is replaced by the name of the configured SOAP method. This
core information is then embedded into a standard SOAP envelope and transmitted over the channel.
If no channel argument is given, and the internal channel of the SOAP object is undefined, the
message is just formatted, but not transmitted.

The return value of the command is the complete SOAP message, with header and body. The internal
header and body fields of the SOAP object are also updated and allow subsequent individual
retrievals of these components.

soap set
soap set soaphandle ?attribute value?...
soap set soaphandle dict
s.set(?attribute,value?,...)
s.set(dict)
s.set(attribute=value,...)
s.attribute = value
s[attribute] = value
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 893

CACTVS Tcl and Python Scripting Language Reference
Set one or more attributes of a SOAP object. Since this paragraph is also referenced from the soap
get subcommand, the attribute set listed here includes attributes which cannot be set, or for which
setting them to any scripted value does not usually make sense.

The currently supported set of attributes is:

• body
The body part of the last received SOAP message. This attribute is not usually set by scripts.

• bodylength
The length of the body, in bytes. This is a read-only attribute.

• channel
The communication channel associated with the SOAP object. This is a standard TCL channel
handle. It is possible to set it to an empty string (or None in PYTHON), which indicates that no
channel is set.

• errorcode
The error code from the last XML parsing step as integer value. If no error occurred, the value
is 0.

• errorcolumn
The column the XML parser detected the last error.

• errorfactor
The factor leading to an error, either as received from a SOAP message, or set in preparation
of sending an error message. Standard practice is to send the URI of the failed service in this
field.

• errorline
The line the XML parser detected the last error.

• errormsg
The message of a SOAP error, either as extracted from a SOAP message, or set in preparation
of sending an error message.

• header
The header part of the last received SOAP message. This attribute is not usually set by
scripts.

• headerlength
The length of the header, in bytes. This is a read-only attribute.

• host
The remote host the SOAP object communicates with.

• method
The method identification of either the last received SOAP message, or set in preparation to
send a message.
894 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• namespace
The SOAP method namespace. It can be set to an empty string in order to avoid using method
namespace attributes in sent XML messages altogether. The namespace suppression only
applies to the method section. The overall SOAP envelope will still contain a standard set
of namespace references.

• parameters
The SOAP method parameters. If queried, this is a dictionary of name/value pairs. In order
to set these, a properly formatted dictionary must be supplied. The formatting is the same
as for the parameters attribute of property definitions.

• parsetree
A nested list representation of parse tree generated by the last successful XML content parse
by means of the soap parse command. This is a read-only attribute, and primarily useful
for debugging.

• port
The port the SOAP object uses for network communication. The default is 80, the standard
HTTP port.

• response
The response part of the last SOAP message, in parse tree representation. This is a read-only
attribute.

• result
The pure method invocation result data extracted from the last SOAP message. This is a
read-only attribute.

• tag
The current start tag for parsing a subsection of XML message content, see soap parse
command.

• uri
The URI associated with a SOAP service.

soap subcommands
soap subcommands
dir(Soap)

This command returns a list of all the subcommands of the soap command.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 895

CACTVS Tcl and Python Scripting Language Reference
The tablex Command

The tablex command is used to manage table file format handler extensions. The command has the
following subcommands:

tablex defined
tablex defined format
Tablex.Defined(format)

A boolean check whether a specific table file format is supported by an I/O handler. If the format is
not yet known, an attempt is made to locate and auto-load the I/O module. For an equivalent
command without auto-loading, see tablex exists.

tablex exists
tablex exists format
tx.exists()
Tablex.Exists(format)

A boolean check whether a specific table file format is supported by an I/O handler. No attempt is
made to auto-load a handler module if it is not already in memory. The name can be the primary
name of the table file format, or any recognized alias. For an equivalent command with auto-loading,
see tablex defined.

tablex get
tablex get format attribute
Tablex.Get(format,attribute)
tx.get(attribute)
tx.attribute
tx[attribute]

Query the value of an attribute of the table file format handler. The list of supported attributes is
described in the section on the tablex set command.

If the format is not yet known, an attempt is made to auto-load it.

tablex list
tablex list ?pattern?
Tablex.List(?pattern=?)

Return a list of all currently supported table formats, including those handled by built-in format
handlers. If desired, the list can be filtered by a string pattern.

tablex load
tablex load format ?objectfile?
tablex load all
Tablex.Load(format,?objectfile?)
Tablex.Load(“all”)

Explicitly load a table file format handler module. If the module is already loaded, the current
version is unloaded first. If no specific object file (a shared library on Unix/Linux, a DLL on
Windows, a bundle file for MacOSX) is specified, the standard name of the module file is
896 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
automatically generated from the data type name, and then the file searched in the directories in the
data type handler module path. The module search path can be customized in the control variable
::cactvs(tablexpath).

For TCL, the return value of the command is the slot in the table file format module table the module
has been loaded into. This corresponds to the value of the slot attribute which can be queried via
tablex get. For PYTHON, the return value is a module reference.

The second form of the command scans the currently set table format extension search path and
loads all accessible modules which are not yet in memory. Modules which are already active in the
running application are not unloaded, and only a single instance of each I/O module, even if present
under various alias names in the module directories, is loaded. This form of the command does not
return a value.

tablex modules
tablex modules ?pattern?
Tilex.Modules(?pattern=?)

This is an alias for tablex list.

tablex ref
Tablex.Ref(format)

PYTHON-only method to get a reference of the module, which allows terser attribute retrieval
commands and other operations.

tablex reload
tablex reload format ?objectfile?
Tablex.Reload(format,?objectfile?,...)

A variant of the tablex load command which fails if the I/O module was not previously loaded.
There is no all variant of this command.

tablex subcommands
tablex subcommands
dir(Tablex)

Return a list of all supported subcommands of the tablex command in the current interpreter.

tablex set
tablex set format ?attribute value?...
tablex set format dict
Tablex.Set(format,?attribute,value?,...)
Tablex.Set(format,dict)
Tablex.Set(format,attribute=value,...)
tx.set(?attribute,value?,...)
tx.set(dict)
tx.set(attribute=value,...)
tx.attribute = value
tx[attribute] = value
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 897

CACTVS Tcl and Python Scripting Language Reference
Set one or more attributes of the table file format handler. Some attributes are read-only. They are
still listed here because the tablex get command refers to this section. The following attributes are
recognized:

• address_city
The city part of the author contact address.

• address_country
The country part of the author contact address, following the ISO3166 standard.

• address_state
The state part of the author contact address. Empty if not applicable.

• address_street
The street address part of the author contact address. Includes floor, house number, etc.

• address_zip
The ZIP code or other applicable postal code of the author contact address.

• affiliation
The institution the author of the table extension definition works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• aliases
A list of alternative names that are recognized as alternative names for the table file format.

• author
The author of the module, as free-form text.

• authorurl
A URL with information on the author, or an empty string if unset.

• builtin
A boolean flag indicating whether the format handler is built-in. This is a read-only
attribute.

• category
A category string to be used if the table extension is stored in a repository.

• charset
The character set the file format uses.

• classuuid
The base class UUID of this module.

• comment
A free-form comment.

• date
The date of the last change of the module source code.
898 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• doi
A digital object identifier for the module, if defined.

• email
An email contact address of the author.

• features
A list of the types of functions the module provides in its function table. Function types
include check (auto-identify file format), read (read that format) and write (write that
format).

• infourl
A URL with information on the module, or an empty string if unset.

• keywords
A list of keywords associated with the module.

• license
The license class associated with this module. Setting the license to a standard type updates
the associated URL with a standard location.

• licenseurl
A URL with details about the module license.

• literature
This is a free-form string for a literature reference describing the meaning and/or algorithm
behind the module.

• mimetype
The MIME type of the table file format, for example application/ms-excel.

• name
The primary name of the table file format. Because the format may have been specified via
an alias name, this may not be the same as he command parameter.

• objectfile
The full path name of the object file (shared library, DLL or bundle file) of the module. For
built-in modules, this is an empty string.

• orcid
The ORCID code of the author of the module (see www.orcid.org).

• parameters
A keyword/value dictionary of format-specific I/O attributes with their default values which
are not represented as general table object attributes. Upon file output with a specific format,
parameters from this dictionary which have not been explicitly configured in the parameters
attribute of the table object to be written are added from the table I/O module instance to it.
Dictionary keys already set as a custom table parameters entry are not overwritten.

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 899

CACTVS Tcl and Python Scripting Language Reference
• phone
A contact phone number of the author.

• references
Cross references of the module. This is a nested list of class UUIDs and reference type tags.

• regid
For registered modules, the registration ID. Unregistered modules report zero.

• slot
The table file format handler table slot the module is loaded into. This attribute is read-only.

• sourcefile
The source file of the module, if available.

• suffixes
A list of file name suffixes associated with this format. This is a read-only attribute.

• version
A version string.. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The version UUID associated with this module version.

tablex unload
tablex unload ?format?...
tx.unload()
Tablex.Unload(?txref/format?,...)

Unload one or more table file format handler modules. It is an error to specify the name of a module
which is not loaded. Built-in modules cannot be unloaded.

The return value is the number of unloaded modules.
900 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The typex Command

The typex command is used to manage data type handler extensions. The command has the
following subcommands:

typex defined
typex defined datatypename
Typex.Defined(datatypename)

A boolean check whether a specific data type is supported by a data type handler. If the format is
not yet known, an attempt is made to locate and auto-load the handler module. For an equivalent
command without auto-loading, see typex exists.

typex exists
typex exists datatypename
tx.exists()
Typex.Exists(datatypename)

A boolean check whether a specific data type is supported by a data type handler. No attempt is made
to auto-load a handler module if it is not already in memory. The name can be the primary name of
the data type, or any recognized alias. For an equivalent command with auto-loading, see typex
defined.

typex get
typex get datatypename attribute
Typex.Get(datatypename,attribute)
tx.get(attribute)
tx.attribute
tx[attribute]

Query the value of an attribute of the data type handler. Note that data type handlers are static - it is
neither possible to define them on the command line, nor to change any attribute. Therefore, there
are no typex create or typex set commands.

The following attributes are recognized:
• address_city

The city part of the author contact address.
• address_country

The country part of the author contact address, following the ISO3166 standard.
• address_state

The state part of the author contact address. Empty if not applicable.
• address_street

The street address part of the author contact address. Includes floor, house number, etc.
• address_zip

The ZIP code or other applicable postal code of the author contact address.
• aliases

A list of recognized alias names of the data type.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 901

CACTVS Tcl and Python Scripting Language Reference
• affiliation
The institution the author works for.

• affiliationduns
The DUNS registration ID of the affiliated institution. This is primarily useful for US
government projects.

• affiliationurl
The URL of the affiliated institution.

• author
The author of the module, as free-format text.

• authorurl
A URL with information on the author, or an empty string if unset.

• builtin
A boolean flag indicating whether this is a built-in type.

• category
A category string to be used if the module is stored in a repository.

• classuuid
The base class UUID of this type extension

• cmpops
A list of the comparison operation flags the handler supports. Please refer to the prop
compare command for a list of possible flags.

• comment
A free-form comment

• date
The date the module source code was last changed.

• doi
A digital object identifier for the module, if defined.

• elementsize
In case the data type has vector elements or other components which can be addressed in a
vector-like fashion, and the size of these components is constant, this attribute reports the
size of an element. A zero size is reported if this attribute is not applicable.

• elementtype
The data type of vector elements or other components which can be addressed in a
vector-like fashion. For data types without sub-elements of a constant type, this is an empty
string.

• email
An email contact address of the developer of the module.

• flags
A collection of flags reporting specific properties of the datatype. The currently supported
set is:

• none
No flags
902 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• indexable
The data type supports the extraction of components.

• knimecompatible
This data type has a compatible data type in the standard datatypes of the KNIME
software.

• multiline
The data type produces multi-line file output in standard formatting

• needswritelock
Internal use only.

• nominmax
The data type has no reasonable definition, or use of, minimum and maximum values.

• precision
The data type supports the concept of numerical precision.

• simplenumeric
This is a simple numeric type.

• vector
The data type is a vector type with identical elements that can be accessed by a numeric
index.

• infourl
A URL with information on the module, or an empty string if unset.

• keywords
A list of keywords associated with the module.

• license
The license class associated with this module. Setting the license to a standard type updates
the associated URL with a standard location.

• licenseurl
A URL with details about the module license.

• literature
A free-form literature reference.

• indexing
A descriptive string with a short summary of the field access functions supported by this
data type handler module.

• isarray
A boolean flag indicating whether this data type is an array or not.

• name
The primary name of the data type. Since the information may be queried via an alias name,
this can be different from the command argument.

• objectfile
The full path of the object file (DLL, shared library or bundle file) of dynamically loaded
modules. For built-in handlers, this is an empty string.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 903

CACTVS Tcl and Python Scripting Language Reference
• orcid
The ORCID code of the author (see www.orcid.org).

• path
The repository path for displaying hierarchical repository trees. This attribute is
independent of any file system paths.

• phone
A contact phone number of the author.

• references
Cross references of the module. This is a nested list of class UUIDs and reference type tags.

• regid
For officially registered data type handlers, this is the assigned registration ID. Unregistered
modules report zero.

• slot
The slot in the handler table the module was loaded into.

• sourcefile
The name of the source file for the module, if it is available.

• sql
The SQL type name of the data type. In case there is no applicable SQL data type, this is an
empty string.

• sqlarray
The PostgresQL-style type name of SQL arrays of the data type. In case there is no such SQL
type, this is an empty string.

• version
Version information for the module. This is a string in a 1.2.3 (or shortened) style.

• versionuuid
The UUID associated with this module version.

• xml
The XML type name of the data type.

typex list
typex list ?pattern?
Typex.List(?pattern=?)

Return a list of all currently loaded data types, including those handled by built-in data type
handlers. If desired, the list can be filtered by a string pattern.

typex load
typex load datatypename ?objectfile?
typex load all
Typex.Load(datatypename,?objectfile?)
Typex.Load(“all”)

Explicitly load a data type handler module. If the module is already loaded, the current version is
unloaded first.
904 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
If no specific object file (a shared library on Unix/Linux, a DLL on Windows, a bundle file for
MacOSX) is specified, the standard name of the module file is automatically generated from the data
type name, and then the file searched in the directories in the data type handler module path. The
module search path can be customized in the control variable ::cactvs(typexpath).

For TCL, the return value of the command is the slot in the handler module table the module has been
loaded into. This corresponds to the value of the slot attribute which can be queried via typex get.
For PYTHON, the return value is a module reference.

The magic name all instructs the program to traverse the data type extension search path and to load
all data type extension modules found which are not yet loaded. In that case, the return value of the
command is empty.

typex ref
Typex.Ref(datatypename)

PYTHON-only method to get a reference of the module, which allows terser attribute retrieval
commands and other operations.

typex subcommands
typex subcommands
dir(Typex)

Return a list of all subcommands of the typex command in the current interpreter.

typex unload
typex unload ?datatypename?...
tx.unload()
Typex.Unload(?txref/datatypename?,...)

Unload zero or more data type handler modules. It is an error to specify the name of a module which
is not loaded. Built-in handler modules cannot be unloaded. Unloading a handler module when there
is still property data of that type linked to chemical objects lead to memory leaks and/or confusing
error messages when operating with these objects.

The return value is the number of unloaded modules.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 905

CACTVS Tcl and Python Scripting Language Reference
The ldap Module

Various operations on LDAP directories are supported after loading the external LDAP TCL or PYTHON
module. Only after loading the module, the ldap extension command becomes accessible.

Example for TCL:
package require Ldap

or, in PYTHON,
from ldap import *

The next step is usually the establishment of a connection (bind) to a known LDAP server. In many
cases credentials are required for a successful bind with a DN containing a user name. After a
completed bind, a handle or reference is returned. This handle can be used for further operations,
such as information retrieval, until the connection is closed by an unbind command.

The general syntax of the ldap command follows the usual command/subcommand/handle/
parameters syntax.

Examples:
set lhandle [ldap bind $host $port $binddn $passwd]
ldap unbind $lhandle

The LDAP module currently only supports synchronous operations.

This is the list of subcommands:

ldap add
ldap add ldhandle dn attribute_list
l.add(dn=,attributes=)

Add one or more attributes to an existing DN. Other than that the default mode is LDAP_MOD_ADD,
this command is identical to ldap replace.

The command returns the original handle or reference.

ldap addrdn
ldap addrdn ldhandle dn newrdn
l.addrdn(dn=,newdn=)

Add a new relative DN to an existing LDAP directory identified by the base DN.

The command returns the original handle or reference.

ldap bind
ldap bind host ?port? ?bindDN? ?password?
ldap open host ?port? ?bindDN? ?password?
Ldap(host=,?port=?,?bindDN=?,?password=?)
Ldap.Bind(host=,?port=?,?bindDN=?,?password=?)

Open a connection to an LDAP server and return the connection handle. Only the host parameter is
required. If no port is specified, or an empty string, the default LDAP port (389) is used. If no
906 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
distinguished name for binding is supplied, or an empty string, an anonymous bind is attempted. If
an access control password is required, it may be supplied as last parameter.

The open command alternative is simply an alias intended to provide the standard command
nomenclature for opening connections or files.

Example:
set lh [ldap bind $host 389 “cn=mr_x,cn=users,dc=chemcodes,dc=com” $themagicword]

ldap close
This is an alias for ldap unbind.

ldap delete
ldap delete ldhandle ?dn?...
l.delete(?dn?,...)

This command deletes one or more DNs from the current LDAP server.

ldap get
ldap get ldhandle attribute
l.get(attribute)
l.attribute
l[attribute]

Query status information about the LDAP connection. Currently, the following attributes can be
queried:

• derefmode
Get the method for dereferencing aliases. The value must be one of never, searching finding
(i.e when locating a base object, but not when searching under it), or always.

• handle
The TCL handle of the object.

• sizelimit
The maximum number of returned responses. The default is 0, meaning no limit on the
number of responses.

• timelimit
A timeout value in seconds for server queries. The default is 0, meaning no time limit.

Example:
set tl [ldap get $ldhandle timelimit]

ldap list
ldap list ?pattern?
Ldap.List(?pattern=?)

List all currently open LDAP connections. A list of the connection handles is returned Optionally, the
handles, which are of the form ldap%d, may be filtered by a string pattern.

Example:
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 907

CACTVS Tcl and Python Scripting Language Reference
ldap list

ldap ref
Ldap.Ref(identifier)

PYTHON-only method to get a reference of the LDAP object from its handle.

ldap replace
ldap replace ldhandle dn attribute_list
l.replace(dn=,attributes=)

This command can be used to add, replace or delete one or more attributes of a DN. The attribute
list is a standard TCL list or PYTHON tuple, where each attribute is a list element. The list elements must
be of the form attribute=value, or simply attribute for deletions. Optionally, they may be prefixed
by one of the characters “+” (add attribute), “=” (replace attribute, or create new if not existing), and
“-” (delete attribute). The implicit default is “=”. It is possible to add multiple instances of attributes,
such as a set of e-mail addresses in the form
set alist [list “+mail=wdi@chemcodes.com” “+mail=wdi@xemistry.com”]

The ldap add command is a variant of this command - the only difference is that the default
modification mode is LDAP_MOD_ADD instead of LDAP_MOD_REPLACE, corresponding to am implicit
“+” prefix instead of “=”.

ldap update is a command alias.

The command returns the original handle or reference.

Example:
ldap replace $ldhandle “cn=wdi,cn=users,dc=chemcodes,dc=com” \

“mail=wdi@chemcodes.com”

ldap replacerdn
ldap replacerdn ldhandle dn newrdn
l.replacerdn(dn=,newdn=)

Replace a DN in an LDAP directory. The old DN is deleted, and replaced by the new DN, which may
be specified relative to the old.

ldap updaterdn is a command alias.

The command returns the original handle or reference.

ldap search
ldap search ldhandle baseDN ?scope? ?getdn? ?filter? ?attributelist?
l.search(basedn=,?scope=?,?getdn=?,?filter=?,?attributes=?)

Query an LDAP server for information. Besides an active LDAP connection, the minimal argument
set is only the base DB, the root from where the query should start on the connected server.

The optional scope argument may be default or an empty string (the default setting, in PYTHON you
can also use None), base (search only the base object), one or level (search one level of sub-objects),
or subtree (can be shortened to sub, search all sub-objects of the base object).
908 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The getdn parameter is a boolean flag. If it is set, the first element of each response sublist is the DN
of the entry. By default, only the attribute data is returned.

The filter parameter is a standard LDAP filter, which can be used to select subsets of directory entries.
An empty string in this position (or None for PYTHON), or omitting the parameter, disables filtering.

Finally, the last parameter is the set of attributes which should be returned. If it is omitted, or an
empty string (or None for PYTHON), all attributes of each matched entry are returned. If a requested
attribute is not present in a matching record, it is silently omitted from the result list.

If no errors occurred, the result is a triply nested list. The outermost list contains one element for
each entry. If a maximum number of responses was set to a positive value (sizelimit configuration
parameter, see ldap set command), the maximum number of list elements is defined by this
parameter. Each outer list element is itself a list. The middle lists contain one element for each
returned attribute. Each of these is formatted as another sublist with attribute and value list elements.
The attributes are returned in the order they were specified, provided that they are found in the
returned set. If requested attributes are not present, they are silently omitted from the result list.

The command currently does support the retrieval of binary data.

Example:
ldap search $ldhandle “cn=users,dc=chemcodes,dc=com” one 0 {} [list mail phone]

returns a nested list of addresses, in the format
{{mail user1@addr1} {phone xxx-100}} {{mail user2@addr2} {phone xxx-105}}...

if both the mail and phone attributes are present.

The retrieval of the e-mail address of user wdi may be achieved either by using a filter, or a more
specific DN:
ldap search $ldhandle “cn=users,dc=chemcodes,dc=com” one 0 cn=wdi “mail phone”
ldap search $ldhandle “cn=wdi,cn=users,dc=chemcodes,dc=com” one 0 {} “mail phone”

The filter argument4 is a string representation of the filter to apply in the search. Simple filters can
be specified as attributetype=attributevalue. More complex filters are specified using a prefix
notation according to the following BNF:
<filter> ::= '(' <filtercomp> ')'
<filtercomp> ::= <and> | <or> | <not> | <simple>
<and> ::= '&' <filterlist>
<or> ::= '|' <filterlist>
<not> ::= '!' <filter>
<filterlist> ::= <filter> | <filter> <filterlist>
<simple> ::= <attributetype> <filtertype> <attributevalue>
<filtertype> ::= '=' | '~=' | '<=' | '>='

The '~=' construct is used to specify approximate matching. The representation for
<attributetype> and <attributevalue> are as described in RFC 2254. In addition,
<attributevalue> can be a single * to achieve an attribute existence test, or can contain text and
*'s interspersed to achieve substring matching.

For example, the filter "mail=*" finds any entries that have a mail attribute. The filter
"mail=*@terminator.rs.itd.umich.edu" will find any entries that have a mail attribute ending in the
specified string. To put parentheses in a filter, escape them with a backslash '\' character. See RFC
2254 for a more complete description of allowable filters.

4. Description of filters copied from the OpenLDAP man page for ldap_search(3)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 909

CACTVS Tcl and Python Scripting Language Reference
ldap set
ldap set ldhandle ?attribute value?...
ldap set ldhandle dict
l.set(?attribute,value?,...)
l.set(dict)
l.set(attribute=value,...)
l.attribute = value
l[attribute] = value

Set one or more attributes for an LDAP connection. Currently, the following attributes can be set:

• derefmode
Set the method for dereferencing aliases. The value must be one of never, searching finding
(i.e when locating a base object, but not for searching under it), or always.

• sizelimit
The maximum number of response record to accept. If set to 0, any number of responses are
accepted.

• timelimit
The maximum time in seconds to wait for a server response. If set to 0, no timeout occurs.

The command returns the original handle or reference.

Example:
ldap set $ldhandle sizelimit 5 timelimit 500

ldap unbind
ldap unbind ldhandle ?ldhandle?...
ldap close ldhandle ?ldhandle?...
ldap unbind all
ldap close all
l.unbind()
l.close()
Ldap.Unbind(?lref/ldhandle?,...)
Ldap.Close(?lref/ldhandle?,...)
Ldap.Unbind(“all”)
Ldap.Close(“all”)

The first variant unbinds or closes (these are equivalent commands) a specific set of LDAP
connections. All resources associated with the connection are freed, and the handles invalidated.
However, they may later be reassigned to new connections.

The second alternative closes all currently opened LDAP connections.

The command returns the number of closed connections.

Example:
ldap close all

ldap verify
ldap verify ldhandle bindDN password
ldap verify host port bindDN password
910 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
l.verify(dn=,password=)
Ldap.Verify(host=,port=,dn=,password=)

Perform a basic (LDAP_AUTH_SIMPLE) user/access verification. The first variant uses an existing
handle and attempts to re-bind it with a different distinguished bind name. The connection remains
bound to the new address and DN.

The second variant temporarily creates a new LDAP connection and attempts to bind. The parameters
have the same meaning as in the ldap bind command. The status is saved and then the connection
is immediately closed. No persistent LDAP object is created.

This command returns boolean 1 for a successful bind, and 0 for failure.

Example:
ldap verify $host ““ “dn=wdi,dn=users,dc=chemcodes,dc=com” $mypwd
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 911

CACTVS Tcl and Python Scripting Language Reference
The gdbm Module

The gdbm extension command is provided by the external Gdbm TCL module. It must be loaded before
the command become available.

Example for TCL:
package require Gdbm

and for PYTHON

from gdbm import *

GDBM files need to be opened or created before any operations on them can commence. Afterwards,
the access object is identified by a handle, which is returned by the opener commands. When they
are no longer in use, they should be closed. GDBM files have different internal structure on 32 vs. 64
bit systems, and are byte-order-dependent. They are therefore best suited for local, temporary files.

The general syntax of the gdbm command follows the usual
command/subcommand/handle/parameters syntax. The gdbm command is to a large degree
compatible to the newer and generally preferred tc command, which performs the same types of
operations on TOKYO CABINET files. The latter command can be significantly faster for large files,
generated more compact data files. Additionally, these data files are 32/64-bit clean and
byte-order-independent and thus much more portable between systems.

Note that the PYTHON version of this module is not identical to the standard PYTHON gdbm module.

Examples:
set gdhandle [gdbm open mygdbmfile.gdb]
set data [gdbm get $gdhandle $key]
gdbm close $gdhandle

This is the list of subcommands:

gdbm add
gdbm add gdhandle ?-nocase? key ?data?...
g.add(key=,data=,?nocase=?)

Append the listed data items as TCL list elements to the entry identified by the key. If no such record
exists, a new record with the initial set of list items is created if there are data arguments. If any of
the data items are already present in the current value list, they are ignored, so duplicates are not
added. The duplicate check is performed in case-insensitive fashion if the -nocase flag is used.

The gdbm append command performs a similar operation, but without a duplicate check.

The command returns the updated entry value list.

This command only works if an existing value is a properly formatted TCL list. For PYTHON, you can
either pass a list or tuple, or a string as data argument which will be split into list items according
to the TCL syntax.

Example:
gdbm add $gdhandle “project_$projectid” [ens get $eh E_IDENT]
gdbm add $gdhandle “project_$projectid” [ens get $eh E_IDENT]
912 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The second statement has no effect.

gdbm append
gdbm append gdhandle key ?data?...
g.append(key=,data=)

Append the data items as TCL list elements to the entry identified by the key. If no such record exists,
a new record with the initial set of list items is created if there are any data arguments. No duplicate
check is performed for the added list elements - this is the difference to the gdbm add command.

The command returns the updated entry value list.

This command only works if an existing value is a properly formatted TCL list. For PYTHON, you can
either pass a list or tuple as data argument, or a string which will be split into list items according
to the TCL syntax.

Example:
gdbm append $gdhandle “project_$projectid” [ens get $eh E_IDENT]
gdbm append $gdhandle “project_$projectid” [ens get $eh E_IDENT]

The second statement adds a duplicate list element to the entry.

gdbm close
gdbm close ?gdhandle?...
gdbm close all
g.close()
Gdbm.Close(?gref/ghandle?,...)
Gdbm.Close(“all”)

This command closes opened GDBM files. After a file has been closed, its handle becomes invalid,
but may the reissued for another opened GDBM file again.

The first version of the command closes specific files. The second version closes all open GDBM files
in the current application. Both variants return the number of closed files as result.

Example:
gdbm close $gdhandle

gdbm count
gdbm count gdhandle ?pattern?
g.count(?pattern=?)

Count the number of keys in the file. If a pattern argument is given, only the file entries with a
matching key are counted. The command returns the number of passing keys.

Unfortunately, GDBM files do not maintain an internal record count, so this command has to loop
through all keys, which can take a substantial amount of time for large files.

The command gdbm size is an alias for this command.

Example:
set size [gdbm count $gdhandle]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 913

CACTVS Tcl and Python Scripting Language Reference
gdbm create
gdbm create filename ?mode? ?filemode? ?blocksize?
Gdbm.Create(filename=,?mode=?,?filemode=?,?blocksize=?)
Gdbm(filename=,?mode=?,?filemode=?,?blocksize=?)

This command is the same as the command gdbm open, except that the default file access mode to
be used if no explicit mode is specified is create instead of read.

Example:
set gdhandle [gdbm create thefile.gdb]

gdbm delete
gdbm delete gdhandle key ?ispattern?
g.delete(key=,?ispattern=?)

If no ispattern boolean argument is given, or it is not a true value, the record matching the key
exactly is deleted. If the entry did exist and could be deleted, boolean 1 is returned, 0 otherwise.

If the ispattern flag is set, the key argument is interpreted as a string match pattern. All records with
keys matching the pattern are deleted. In this case, the return value is the number of deleted entries.

Example:
gdbm delete $gdhandle count* 1

deletes all records with keys starting with count.

gdbm dump
gdbm dump gdhandle ?file/pipe/std_channel/tcl_channel? ?keypattern? ?datapattern?
g.dump(?filename=?,?keypattern=?,?datapattern=?)

If no file or channel handle is specified, or an empty string is used (or None for PYTHON), this
command is used to obtain the complete contents of a GDBM file as a dictionary. If non-empty filter
patterns are set, only those key/value pairs where the key or data part matches the respective pattern
are reported.

If a file name, a Unix pipe in standard notation, a standard channel or a valid TCL channel handle
argument is specified, and the target is writable, the filtered key/value pairs are written to that
channel. Every key/value pair is formatted as a simple two-element TCL list (even in the PYTHON
interface) and written to the file. In this mode, the return value is the number of lines written.

Example:
gdbm dump $gdhandle stdout

gdbm exists
gdbm exists gdhandle key
g.exists(key)

This command returns boolean 1 if the key is in the GDBM file, 0 otherwise.

Example:
set isknown [gdbm exists $gdhandle [ens get $ehandle E_HASHY]]
914 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
gdbm first
gdbm first gdhandle ?pattern?
g.first(?pattern=?)

Returns the key of the first file entry. In case a pattern is specified, the first entry whose key matches
the pattern is retrieved. If no matching or first key can be found, an error results.

Example:
gdbm first $gdhandle Z*

returns the first key which starts with a (case-sensitive) Z. Keys are returned in an unpredictable
order.

This command is typically used in combination with subsequent gdbm next commands.

gdbm get
gdbm get gdhandle key ?silent? ?defaultvalue?
g.get(key=,?silent=?,?default=?)
g.key
g[key]

Retrieve the data value associated with the specified key. If the key does not exist, and a default
value was specified, the default value is returned instead. Without a default value, the result is an
empty string (TCL) or None (PYTHON) if the silent flag is set, and an error otherwise.

This command may return binary data with non-printable characters, so the language objects are
byte arrays, not strings.

For PYTHON, if the key is the same as the name of one of the class methods, only g.get()can be used
to retrieve the data.

Example:
gdbm get $gdhandle [gdbm first $gdhandle]

gdbm incr
gdbm incr gdhandle key ?delta?
g.incr(key=,?delta=?)

Increment the data value stored under the specified key by the delta value. If no delta value is
specified, it defaults to one. If the key does not exist, a new key/value pair with an initial data value
of the delta is created. If the entry exists, but the data value is not a valid integer, an error is raised.
The value is stored as a string.

The return value of this command is the incremented value.

Example:
gdbm insert $gdhandle “count_dracula” 5
puts [gdbm inc $gdhandle “count_dracula”]

This command sequence updates the file, and outputs 6.

gdbm index
gdbm index gdhandle index ?pattern?
g.index(index=,?pattern=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 915

CACTVS Tcl and Python Scripting Language Reference
Return the nth key in the database if no pattern is specified, or the nth key which matches the pattern.
The key index starts with zero.

Example:
gdbm index $gdhandle 10 cpdname*

returns the key for the eleventh file record which starts with the string cpdname. If no such key
exists, an error is raised.

gdbm insert
gdbm insert gdhandle ?key value?...
gdbm insert gdhandle dict
g.insert(?key,value?,...)
g.insert(dict)

Insert one or more new key/value pairs into the file. The values may be binary data. If a key already
exists, the return value for that key/value pair is boolean 0 and the old data is not overwritten. If a
key is not in the database, boolean 1 is returned for that item pair and the data is stored in the file.

If only a single argument is used after the handle, it is expected to be a properly formed dictionary.
In that case, all dictionary elements are processed as if they were spelled out as individual key/value
pairs.

The return value is a list of boolean flags indicating success or failure for the operation on each
key/value pair. No error is raised if a write operation fails.

Example:
gdbm insert $gdhandle [ens get $ehandle E_HASH] [ens get $ehandle E_GIF]
gdbm insert $gdhandle [array get ::params]

gdbm keys
gdbm keys gdhandle ?pattern?...
g.keys(?pattern=?)

This command returns a list of all keys in the file. Keys may optionally be filtered by one or more
string match patterns. The PYTHON version only supports a single pattern.

The related gdbm match command can be used to obtain a list of keys which are filtered by the value
component and not the key name.

Example:
set keylist [gdbm keys $gdhandle project${id}*]

gdbm linkvar
gdbm linkvar gdhandle ?-loadall? ?-preserve? varname

This command establishes a link between a GDBM file and a TCL array variable. If the variable is
already in existence, it is deleted prior to recreation as a linked array variable. This can be prevented
by using the -preserve option. This command is not supported with PYTHON.

After the link has been formed, any read access by a TCL script to an element of the array variable
retrieves the data value from the file which corresponds to the array element name as key, if the
variable element is not yet set. If the variable element already exists, it takes precedence over the
916 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
file contents, but this can only happen if the -preserve option was used when the variable was linked.
In case file retrieval is initiated, and the key does not exist in the file, an error is generated.

Assigning a value to an array element replaces or creates the corresponding file entry. If an array
element is deleted (for example by the TCL unset command), the corresponding key and value in the
file are also deleted. Replacement and deletion operations require a file opened for write access.

If the -loadall option is used, all array elements are immediately loaded by looping over all file keys
when the command is run. By default, data is retrieved from the file only when an array element is
explicitly accessed. If this option is used, the array names command immediately shows all file
keys, not just the ones currently loaded.

Since GDBM data, once retrieved from the file by accessing the linked array element, is never deleted
from memory, the use of this utility is not recommended for large files.

It is possible to link multiple variables to a single GDBM file.

GDBM files must not be closed when variable links to the closed file are active. Currently, there is no
mechanism to detect that the target of a variable link as gone away, so this cannot be handled
automatically. Variable links can be removed by the gdbm unlinkvar command.

Example:
gdbm linkvar $gdhandle g_array
puts “Key: $thekey Value: $g_array($thekey)”
set g_array($newkey) $newvalue
unset g_array($thekey)

gdbm list
gdbm list gdhandle ?pattern?
Gdbm.List(?pattern=?)

Get a list of currently active GDBM file handles. If no files have been opened, an empty list is returned.
Optionally, a string filter pattern can be specified.

Example:
gdbm list

gdbm loop
gdbm loop gdhandle keyvar datavar ?pattern? body
g.loop(function=,?keyvariable=?,?datavariable=?,?pattern=?)

Run a loop over all file entries. If a string filter pattern is specified, only those records with a
matching key are visited. After retrieving the key and data values, the key and data variables are
initialized to the current key and data values, and then the commands in the body section are
executed.

With TCL, in the body, the standard break or return statements may be used to force an early exit from
the loop, and the continue statement also works as expected. In case an uncaught error occurs in the
body, the loop terminates with an error message.

The PYTHON interface intentionally has a different argument sequence. The function may either be a
function reference, or a multi-line string containing the loop body code similar to the TCL style. If a
function reference is used, the function is called with a key/value tuple as only argument. Loop
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 917

CACTVS Tcl and Python Scripting Language Reference
variables are not required in this mode (though they are still supported). Normal break and continue
loop control statements cannot be used in the PYTHON functions. Instead, the custom BreakLoop and
ContinueLoop exceptions can be thrown for the same effect.

If the loop was not terminated due to an error, the result value is the number of visited keys.

Example:
gdbm loop $gdhandle key data {

puts “Key: $key with value $data”
}

gdbm match
gdbm match gdhandle ?pattern?
g.match(?pattern=?)

This command returns a list of all keys where the data value matches the filter pattern. This is similar
to the gdbm keys command, with the difference that in that command the key names are used for
filtering, not the data values.

Example:
set keylist [gdbm match $gdhandle *nitro*]

gdbm new
gdbm new filename ?mode? ?filemode? ?blocksize?
Gdbm.New(filename=,?mode=?,?filemode=?,?blocksize=?)

This command is the same as the command gdbm open, except that the default file access mode to
be used if no explicit mode is specified is new instead of read.

Example:
set gdhandle [gdbm new thefile.gdb]

gdbm next
gdbm next gdhandle key ?pattern?
g.next(key=,?pattern=?)

Get the next key after the specified key which matches the pattern. If no pattern is specified, no key
filtering is performed. If no key can be found, an error is raised, otherwise the key is returned as
function result.

A starting point for a key traversal is usually obtained via a gdbm first or gdbm index command.

Example:
gdbm next $gdhandle name20 name*

produces the next key after the current key name20 matching the pattern name*. This key is not
necessarily name21, or any other predictable value. Rather, the key sequence in the database is
determined by its internal hash, and the ordering is pseudo-random. The only guarantee is that with
a gdbm first/gdbm next loop all keys are ultimately visited. A deletion of the current key is
allowed and guaranteed to not disturb the traversal sequence.

gdbm open
gdbm open filename ?mode? ?filemode? ?blocksize?
918 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Gdbm(filename=,?mode=?,?filemode=?,?blocksize=?)
Gdbm.Open(filename=,?mode=?,?filemode=?,?blocksize=?)

Open an existing GDBM file, or create a new one. The command returns a new object handle or
reference. The default mode is read, opening the file for reading. In this case, the file must already
exist, and have been written on a computer with the same byte ordering and integer size. The mode
parameter may consist of a bitset of the following options:

• read
Open for reading only, the file must exist.

• write
Open for reading and writing, the file must exist

• create
Open for reading and writing, the file is created if it does not yet exist. The contents of an
existing file are not modified.

• new
Open for reading and writing, and the file must not yet exist. If it does, an error results.

• fast
Adds the fast attribute - file updates are not committed immediately to disk, at the risk of
losing data or file corruption if the program exits or crashes before the file is properly closed,
or a gdbm sync command is issued.

It is sufficient to specify the first letter of the mode options. Combining any of the first four file
access modes does not make sense, though. In standard applications, the mode set is either a single
word describing the access mode, or a combination of the fast attribute and the access mode.

The optional filemode parameter determines the Unix-style octal file access bits which have an
effect only in case a new disk file is created. Finally, the rarely used blocksize parameter determines
the page block size of the GDBM file and is again only used in case a new file is created. By default
the value is 0, meaning that a reasonable default value depending on the type of file system the file
resides on is chosen.

This command returns a GDBM file handle in the form gdbm%d which can be used in subsequent
gdbm commands, until the file is closed and the handle becomes invalid.

gdbm ref
Gdbm.Ref(identifier)

PYTHON-only method to get a reference of the GDBM object from its handle.

gdbm reorganize
gdbm reorganize gdhandle
g.reorganize()

Compact the data file. This can be useful after many deletions. The underlying GDBM library copies
the entries to another file, which ultimately replaces the original file. Thus, in worst case, sufficient
disk space for two parallel files with the original file size must be available. This command requires
write access to the GDBM file.

gdbm reorg is an alias.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 919

CACTVS Tcl and Python Scripting Language Reference
For large files, this command can take a long time to complete.

Example:
gdbm reorg $gdhandle

gdbm replace
gdbm replace gdhandle ?key value?...
gdbm replace gdhandle dict
g.replace(?key,value?,...)
g.replace(dict)
g.key = value
g[key] = value

Store one or more specified values which may be binary data, under the given keys. If a key is
already in use, the old value is overwritten. If only a single argument is used after the handle, it is
expected to be a properly formed dictionary. In that case, all dictionary elements are processed as
if they were written out as individual key/value pairs.

The return value is a list of boolean flags indicating success or failure for the operation on each
key/value pair. No error is raised if a write failed.

gdbm set is an alias for this command.

Examples:
gdbm replace $gdhandle $thekey $newdata $key2 $moredata
gdbm replace $gdhandle [array get ::params]

gdbm restore
gdbm restore gdhandle filename ?callback?
g.restore(filename=,?function=?)

This command reads a text file which usually was produced by the gdbm dump command and adds
its contents to the current GDBM file. Every line of the file is expected to contain a properly formatted
two-element TCL list. The list is split into the key and data parts and the contents are written to the
GDBM file, replacing old entries in case of existing keys.

The input file may be gzip-compressed or plain ASCII text.

If a callback function is specified, it is called with the GDBM handle (or reference), the input file
name, and the current restored item count after each successful line input.

The command gdbm readfile is an alias for this command.

The return value is the number of file lines read.

Example:
gdbm restore $gdhandle “we_will_never_need_this_backup.txt”

gdbm set
This is an alias for gdbm replace.
920 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
gdbm sync
gdbm sync gdhandle
g.sync()

Synchronize the in-memory and disk status of the file. All pending changes are committed to disk.
This command has an effect only if the file was opened in fast mode (see gdbm open command).

gdbm synchronize is an alias.

Example:
gdbm sync $gdhandle

gdbm unlinkvar
gdbm unlinkvar gdhandle ?-preserve? varname

Unlink a TCL array variable from a GDBM file. If the -preserve option is not used, the variable is also
deleted from the TCL interpreter. The association between array variable and GDBM file is also
automatically broken when the variable is deleted by other means, such as a TCL unset command.

The GDBM file contents are not modified by unlinking by means of executing this command, or by
any other methods of variable deletion.

Variable links are created with the gdbm linkvar command.

This command is not supported in PYTHON.

Example:
gdbm unlinkvar $gdhandle g_array
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 921

CACTVS Tcl and Python Scripting Language Reference
The tc Module

The tc (TOKYO CABINET) extension command is provided by the external Tc TCL module. It must be
loaded before the command becomes available.

Example (TCL):
package require Tc

or in PYTHON

from tc import *

TOKYO CABINET files need to be opened or created before any operations on them can commence.
Afterwards, they are identified by a handle, which is returned by the opener commands. When a file
are no longer in use, it should be closed.

The general syntax of the tc command follows the usual
command/subcommand/handle/parameters syntax. This command is designed to be compatible to
the older gdbm command, which performs the same type of operations on GDBM files. GDBM files
generally require significantly more disk space, and are slower for larger data sets. Another big
advantage or TC versus GDBM is that the TC files are 32/64-bit-clean and byte-order independent and
thus are more easily exchanged between systems. On the other hand, the underlying TOKYO CABINET

library is currently not supported on Windows, and therefore this command is also unavailable on
that platform

At this time, only TC hash data bases are supported, and this TOKYO CABINET database type is implied
in all commands.

Examples:
set tchandle [tc open myfile.tch]
set data [tc get $tchandle $key]
tc close $tchandle

This is the list of of subcommands:

tc add
tc add tchandle ?-nocase? key ?data?...
t.add(key=,data=,?nocase=?)

Append the listed data items as TCL list elements to the entry identified by the key. If no such record
exists, a new record with the initial set of list items is created if any data arguments are passed. If
any of the data items are already present in the current value list, they are ignored, so duplicates are
not added. The duplicate check is performed in case-insensitive fashion if the -nocase flag is used.

The tc append command performs a similar operation, but without a duplicate check.

The command returns the updated entry value list.

This command only works if an existing value is a properly formatted TCL list. For PYTHON, you can
either pass a list or tuple as data argument, or a string which will be split into list items according
to the TCL syntax.

Example:
tc add $tchandle “project_$projectid” [ens get $eh E_IDENT]
922 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
tc add $tchandle “project_$projectid” [ens get $eh E_IDENT]

The second statement has no effect.

tc append
tc append tchandle key data ?data?...
t.append(key=,data=)

Append the data items as TCL list elements to the entry identified by the key. If no such record exists,
a new record with the initial set of list items is created if any data arguments are passed. No duplicate
check is performed for the added list elements - this is the difference to the tc add command.

The command returns the updated entry value list.

This command only works if an existing value is a properly formatted TCL list. For PYTHON, you can
either pass a list or tuple as data argument, or a string which will be split into list items according
to the TCL syntax.

Example:
tc append $tchandle “project_$projectid” [ens get $eh E_IDENT]
tc append $tchandle “project_$projectid” [ens get $eh E_IDENT]

The second statement adds a duplicate list element to the entry.

tc close
tc close ?tchandle?...
tc close all
t.close()
Tc.Close(?tcref/tchandle?,...)
Tc.Close(“all”)

This command closes opened TOKYO CABINET files. After a file has been closed, its handle becomes
invalid, but may the reissued for another opened TOKYO CABINET file again.

The first version of the command closes specific files. The second version closes all open TOKYO

CABINET files. Both variants return the number of closed files as result.

Example:
tc close $tchandle

tc count
tc count tchandle ?pattern?
t.count(?pattern=?)

Count the number of keys in the file. If a pattern argument is given, only the file entries with a
matching key are counted. The command returns the number of passing keys.

Unfortunately, TOKYO CABINET files do not maintain an internal record count, so this command has
to loop through all keys, which can take a substantial amount of time for large files.

The command tc size is an alias for this command.

Example:
set size [tc count $tchandle]
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 923

CACTVS Tcl and Python Scripting Language Reference
tc create
tc create filename ?mode? ?filemode?
Tc.Create(filename=,?mode=?,?filemode=?)

This command is the same as the command tc open, except that the default file access mode to be
used if no explicit mode list is specified is create instead of read.

Example:
set tchandle [tc create thefile.tch]

tc delete
tc delete tchandle key ?ispattern?
t.delete(key=,?ispattern=?)

If no ispattern boolean argument is given, or it is not a true value, the record matching the key
exactly is deleted. If the entry did exist and could be deleted, 1 is returned, 0 otherwise.

If the ispattern flag is set, the key argument is interpreted as a string pattern. All records with keys
matching the pattern are deleted. In this case, the return value is the number of deleted records.

Example:
tc delete $tchandle count* 1

deletes all records with keys starting with count.

tc dump
tc dump tchandle ?file/pipe/std_channel/tcl_channel? ?keypattern? ?datapattern?
t.dump(filename=,?keypattern=?,?datapattern=?)

If no file handle is passed, or an empty string (or None for PYTHON) is used as file handle, this
command is used to obtain the complete contents of a TOKYO CABINET file as a dictionary. If
non-empty filter patterns are specified, only those key/value pairs where the key or data part matches
the respective pattern are reported.

If a file name, a Unix pipe in standard notation, a standard channel or a valid TCL channel handle
argument is specified, and the target is writable, the filtered key/value pairs are written to that
channel. Every key/value pair is formatted as a simple two-element TCL list (even in the PYTHON
interface) and written to the file. In this mode, the return value is the number of lines written.

Example:
tc dump $tchandle stdout

tc exists
tc exists tchandle key
t.exists(key)

This command returns boolean 1 if the key is in the TOKYO CABINET file, 0 otherwise.

Example:
set isknown [tc exists $tchandle [ens get $ehandle E_HASHY]]

tc first
tc first tchandle ?pattern?
924 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
t.first(?pattern=?)

Returns the key of the first file entry. In case a pattern is specified, the first entry whose key matches
the pattern is retrieved. If no key can be found, an error results.

Example:
tc first $tcandle Z*

returns the first key which starts with a (case-sensitive) Z. Keys are returned in an unpredictable
order.

This command is typically used in combination with subsequent tc next commands.

tc get
tc get tchandle key ?silent? ?defaultvalue?
t.get(key=,?silent=?,?default=?)
t.key
t[key]

Retrieve the data value associated with the specified key. If the key does not exist, and a default
value was specified, the default value is returned instead. Without a default value, the result is an
empty string (TCL) or None (PYTHON) if the silent flag is set, and an error otherwise.

This command may return binary data with non-printable characters, so the language objects are
byte arrays, not strings.

For PYTHON, if the key is the same as the name of one of the class methods, only t.get()can be used
to retrieve the data.

Example:
tc get $tchandle [tc first $tchandle]

tc incr
tc incr tchandle key ?delta?
t.incr(key=,?delta=?)

Increment the data value stored under the specified key by the delta value. If no delta value is
specified, it defaults to one. If the key does not exist, a new key/value pair with a data value of the
delta is created. If the entry exists, but the data value is not a valid integer, an error is raised. The
value is stored as a string.

The return value of this command is the incremented value.

Example:
tc insert $tchandle “count_dracula” 5
puts [tc incr $tchandle “count_dracula”]

This command sequence updates the file, and outputs 6.

tc index
tc index tchandle index ?pattern?
t.index(key=,?pattern=?)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 925

CACTVS Tcl and Python Scripting Language Reference
Return the nth key in the database if no pattern is specified, or the nth key which matches the pattern.
The key index starts with zero.

Example:
tc index $tchandle 10 cpdname*

returns the key for the eleventh file record which starts with the string cpdname. If no such key
exists, an error is raised.

tc insert
tc insert tchandle ?key value?...
tc insert tchandle dict
t.insert(?key,value?,...)
t.insert(dict)

Insert one or more new key/value pairs into the file. The values may be binary data. If the key already
exists, the return value for that key/value pair is 0 and the old data is not overwritten. If the key is
not in the database, 1 is returned for the item pair and the value is stored in the file.

If only a single argument is used after the handle, it is expected to be a properly formed TCL
dictionary. In that case, all dictionary elements are processed as if they were spelled out as individual
key/value pairs.

The return value is a list of boolean flags indicating success or failure for the operation on each
key/value pair. No error is raised if a write operation fails.

Example:
tc insert $tchandle [ens get $ehandle E_HASH] [ens get $ehandle E_GIF]
tc insert $tchandle [array get ::params]

tc keys
tc keys tchandle ?pattern?...
t.keys(?pattern=?)

This command returns a list of all keys in the file. Keys may optionally be filtered by one or more
string match patterns.

The related tc match command can be used to obtain a list of keys which are filtered by the value
component and not the key name.

Example:
set keylist [tc keys $tchandle project${id}*]

tc linkvar
tc linkvar tchandle ?-loadall? ?-preserve? varname

This command establishes a link between a TOKYO CABINET file and a TCL array variable. If the
variable is already in existence, it is deleted prior to recreation as a linked array variable. This can
be prevented by using the -preserve option.

The command is not supported in PYTHON.

After the link has been formed, any read access by a TCL script on an element of the array variable
retrieves the data value from the TOKYO CABINET file which corresponds to the array element name
926 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
as key, if the variable element is not yet set. If the variable element already exists, it takes precedence
over the file contents, but this can only happen if the -preserve option was used when the variable
was linked. In case file retrieval is performed, and the key does not exist in the file, an error is
generated.

Assigning a value to an array element replaces or creates the corresponding TOKYO CABINET file entry.
If an array element is deleted (for example, by a Tcl unset command), the corresponding key and
value in the file are also deleted. Replacement and deletion operations require a TOKYO CABINET file
opened for write access.

If the -loadall option is used, all array elements are immediately loaded by looping over all TOKYO

CABINET file keys when the command is executed. By default, data is retrieved from the file only
when an array element is explicitly accessed. If this option is used, the array names command
immediately shows all file keys, not just the ones currently loaded.

Since TOKYO CABINET data, once retrieved from the file by accessing the linked array element, is never
deleted from memory, the use of this mechanism is not recommended for large files.

It is possible to link multiple variables to a single TOKYO CABINET file.

TOKYO CABINET files must not be closed when variable links to the file are active. Currently, there is
no mechanism to detect that the target of a variable link as gone away, so this cannot be handled
automatically. Variable links can be removed by the tc unlinkvar command.

Example:
tc linkvar $tchandle g_array
puts “Key: $thekey Value: $g_array($thekey)”
set g_array($newkey) $newvalue
unset g_array($thekey)

tc list
tc list tchandle ?pattern?
Tc.List(?pattern=?)

Get a list of currently active TOKYO CABINET file handles or references. If no files have been opened,
an empty list is returned. Optionally, a string filter pattern can be specified.

Example:
tc list

tc loop
tc loop tchandle keyvar datavar ?pattern? body
t.loop(function=,?keyvariable=?,?datavariable=?,?pattern=?)

Run a loop over all file entries. If a filter pattern is specified, only those records with a matching key
are visited. After retrieving the key and data values, the key and data variables are initialized to the
current key and data values, and then the commands in the body section are executed.

With TCL, in the body, the standard break or return statements may be used to force an early exit from
the loop, and the continue statement also works as expected. In case an uncaught error occurs in the
body, the loop terminates with an error message.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 927

CACTVS Tcl and Python Scripting Language Reference
The PYTHON interface intentionally has a different argument sequence. The function may either be a
function reference, or a multi-line string containing the loop body code similar to the TCL style. If a
function reference is used, the function is called with a key/value tuple as only argument. Loop
variables are not required in this mode (though they are still supported). Normal break and continue
loop control statements cannot be used in the PYTHON functions. Instead, the custom BreakLoop and
ContinueLoop exceptions can be thrown for the same effect.

If the loop was not terminated due to an error, the result value is the number of visited keys.

Example:
tc loop $tchandle key data {

puts “Key: $key with value $data”
}

tc match
tc match tchandle pattern
t.match(pattern=)

This command returns a list of all keys where the data value matches the filter pattern. This is similar
to the tc keys command, with the difference that in that command the key names are used for
filtering, not the data values.

Example:
set keylist [tc match $tchandle *nitro*]

tc new
tc new filename ?mode? ?filemode?
Tc.New(filename=,?mode=?,?filemode=?)

This command is the same as the command tc open, except that the default file access mode to be
used if no explicit mode list is specified is new instead of read.

Example:
set tchandle [tc new thefile.tch]

tc next
tc next tchandle key ?pattern?
t.next(?pattern=?)

Get the next key after the specified key which matches the pattern. If no pattern is specified, no key
filtering is performed. If no key can be found, an error is raised, otherwise the key is returned as
command result.

A starting point for a key traversal is usually obtained via a tc first or tc index command.

Example:
tc next $tchandle name20 name*

produces the next key after the current key name20 matching the pattern name*. This key is not
necessarily name21, or any other predictable value. Rather, the key sequence in the database is
determined by its internal hash, and the ordering is pseudo-random. The only guarantee is that with
a tc first/tc next loop all keys are ultimately visited. A deletion of the current key is allowed
and guaranteed to not disturb the traversal sequence.
928 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
tc open
tc open filename ?mode? ?filemode?
Tc(filename=,?mode=?,?filemode=?)
Tc.Open(ilename=,?mode=?,?filemode=?)

Open an existing TOKYO CABINET file, or create a new one. The command returns a new object handle
or reference. The default mode is read, opening the file for reading. In this case, the file must already
exist. The mode parameter may consist of a collection of the following keywords:

• read
Open for reading only, the file must exist.

• write
Open for reading and writing, the file must exist

• create
Open for reading and writing, the file is created if it does not yet exist. The contents of an
existing file are not changed.

• new
Open new file for reading and writing. An error results if the file already exists.

• fast
Adds the fast attribute - file updates are not committed immediately to disk, at the risk of
losing data or file corruption if the program exits or crashes before the file is properly closed,
or a tc sync command is issued.

• compressed
Stored data is zlib-compressed.

In standard applications, the mode list is either a single word describing the access mode, or a list
of the fast or compressed attributes and the access mode.

The optional filemode parameter determines the Unix-style octal file access bits which have an
effect only in case the file is created.

This command returns a TOKYO CABINET file handle in the form tc%d which can be used in subsequent
tc commands, until the file is closed and the handle becomes invalid.

tc ref
Tc.Ref(identifier)

PYTHON-only method to get a reference of the TOKYO CABINET object from its handle.

tc reorganize
tc reorganize tchandle
t.reorganize()

Compact the data file. This can be useful after many deletions. This command requires write access
to the file.

tc reorg is an alias.

For large files, this command can take a long time to complete.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 929

CACTVS Tcl and Python Scripting Language Reference
Example:
tc reorg $tchandle

tc replace
tc replace tchandle ?key value?...
tc replace tchandle dict
t.replace(?key,value?,...)
t.replace(dict)
t.key = value
t[key] = value

Store one or more specified values which may be binary data, under the given keys. If a key is
already in use, the old value is overwritten. If only a single argument is used after the handle, it is
expected to be a properly formed TCL dictionary. In that case, all dictionary elements are processed
as if they were spelled out as individual key/value pairs.

The return value is a list of boolean flags indicating success or failure for the operation on each
key/value pair. No error is raised if a write failed.

tc set is an alias for this command.

Examples:
tc replace $tchandle $thekey $newdata $key2 $moredata
tc replace $tchandle [array get ::params]

tc restore
tc restore tchandle filename ?callback?
t.restore(filename=,?function=?)

This command reads a text file which usually was produced by the tc dump command and adds its
contents to the current TOKYO CABINET file. Every line of the file is expected to contain a properly
formatted two-element TCL list. The list is split into the key and data parts and the contents are
written to the Tokyo Cabinet file, replacing old entries in case of existing keys.

The input file may be gzip-compressed or plain ASCII text.

If a callback function is specified, it is called with the object handle (or reference), the input file
name, and the current restored item count after each successful line input.

The command tc readfile is an alias for this command.

The return value is the number of file lines read.

Example:
tc restore $tchandle “totally_superfluous_backup.txt”

tc set
This is an alias for tc replace.

tc sync
tc sync tchandle
t.sync()
930 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Synchronize the memory and disk status of the file. All pending changes are committed to disk. This
command has an effect only if the file was opened in fast mode (see tc open command).

tc synchronize is an alias.

Example:
tc sync $tchandle

tc unlinkvar
tc unlinkvar tchandle ?-preserve? varname

Unlink a TCL array variable from a TOKYO CABINET file. If the -preserve option is not used, it is also
deleted from the TCL interpreter. The association between array variable and TOKYO CABINET file is
also automatically broken when the variable is deleted by other means, such as a TCL unset
command.

This command is not supported in the PYTHON interface.

The TOKYO CABINET file contents are not modified by unlinking by means of executing this command
or any other method of variable deletion.

Variable links are created with the tc linkvar command.

Example:
tc unlink $tchandle g_array
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 931

CACTVS Tcl and Python Scripting Language Reference
The memcache Command Extension

The memcache command extension provides an interface to the memcached memory data caching
daemon. This is a useful functionality especially for the implementation of stateful CGI and FCGI
applications. This module is now the preferred replacement for the older netcache daemon interface.
Current toolkit packages contain both the interface module, and a compiled version of the daemon
proper.

The command is either auto-loaded, or can be explicitly loaded by a statement like
cmdx load memcache

or (on PYTHON)
from memcache import *

The command is thread-safe (with the usual caveats for PYTHON).

These are the supported subcommands:

memcache append
memcache append mchandle data
memcache append mchandle key data ?ttl_secs? ?flags?
m.append(?key=?,?data=?,?ttl=?,?flags=?)

This command is a variant of the memcache put command which appends its data instead of
replacing it, if a record already exists for the key. If no such record exists, the command is equivalent
to memcache put.

For the explanation of the arguments, please refer to the paragraph on memcache put below.

The command returns the key of the tuple, which may have been assigned automatically.

Example:
memcache append $mch $key $moredata

memcache create
memcache create host:port/socketfile ?host:port/socketfile?...
Memcache(host:port/socketfile,?host:port/socketfile?,...)
Memcache.Create(host:port/socketfile,?host:port/socketfile?,...)

Create a new memcached interface object. The command returns a handle of the new object which
is used by other memcache commands to identify the object. Multiple interface objects may be used
in parallel in an application.

The arguments identify the servers to contact. In case multiple servers are listed, tuples are stored
on or retrieved from one of the servers selected in constant but pseudo-random fashion from the key
value, resulting in load-balancing.

Servers are identified either by a host name, optionally with an addition custom port number, or the
name of a named socket in file system space. An argument is interpreted as a socket name if it
contains path separator characters (“/” or “\”), starts with a dot, or starts/ends with a vertical bar “|”
or equality sign “=”. If the bar or equality sign are present, it is automatically stripped from the
actually used socket name. An attempt is then made to check whether the named socket already
932 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
exists and can be accessed. If this is not the case, an attempt is made to set it up, and an error results
if this operation does not succeed.

Alternatively, servers can be named in the classical hostname:port fashion, where the port part is
optional. If no port is specified, the default memcached port 11211 is used. The host name of a server
specified here must be resolvable, but at the moment the interface object is created it is not required
that a daemon is already listening at the port.

Examples:
set mch [memcache create cachehost1 cachehost2]
set mch [memcache create ./mysocket]

memcache delete
memcache delete all
memcache delete ?mchandle?...
m.delete()
Memcache.Delete(?mchandle/mcref?,...)
Memcache.Delete(“all”)

The first command version deletes all active memcache interface objects, after properly closing their
connections. The second variant closes and deletes specific handles. The command returns the
number of deleted interface objects.

The functionality of the first command variant is automatically executed if the memcache command
extension is unloaded.

Deleting an interface handle does not immediately delete the tuples created via this interface on the
daemon. The data remains stored until its time-to-live expires, and may be fetched by other interface
object instances, even in different processes on different hosts, if they connect to the same daemon
and supply the proper keys. To delete tuples, use the memcache remove command.

Deleting an interface handle furthermore does not delete any named sockets associated with the
handle, regardless whether these were already present when the object was created, or whether they
were automatically set up as a side effect of the object creation.

Example:
memcache delete $mch

memcache get
memcache get mchandle key ?listindex?
m.get(key=,?index=?)
m.key
m[key]

Retrieve the data associated with the specified key. The data, which can be binary in nature, is
returned as the command result. In case there is no tuple associated with the key, including due to
expiration of the lifetime of data associated with the key on the remote daemon, an error results.

If the optional list index is specified, the data is expected to be a properly formed TCL list. If
interpretation as list succeeds, only the selected list element is returned. If the list index is larger than
the number of list items in the data, an empty string is the result, but no error is raised.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 933

CACTVS Tcl and Python Scripting Language Reference
For PYTHON, if the key is the same as the name of one of the class methods, only m.get()can be used
to retrieve the data.

Example:
set data [memcache get $mch $key]

memcache list
memcache list ?pattern?
Memcache.List(?pattern=?)

Get a list of currently used memcache object handles or references. If no memcache objects have
been created, an empty list is returned. Optionally, a string filter pattern can be specified.

Example:
memcache list

memcache put
memcache put mchandle data
memcache put mchandle key data ?ttl_secs? ?flags?
m.put(?key=?,data=,?ttl=?,?flags=?)
m.key = data
m[key] = data

Store data on a memcache daemon. The data is stored as an opaque byte array and can be of any type.
It is not necessary to base64-encode the data or protect it in any other fashion.

The first command variant automatically assigns an unique key and stores the data with it.

The second variant is more flexible. If the key parameter is an empty string, a new unique key is
automatically generated. However, with an explicit key, data can be replaced if the key is already
in use. If an explicitly specified key does not exist, a new tuple is silently created. Keys are also byte
arrays and could potentially be binary data, but commonly some readable string encoding is used.
Optionally, the time-to-live of the data on the daemon can be specified. The default lifetime is 8
hours. The TTL value is relative to the current time.

Tuples which are in the store longer than their lifetime are automatically retired by the daemon.
Attempts to access them via their key after this point in time results in an error. The final optional
argument is an integer, which can be stored as an additional tuple component.

The command returns the key of the tuple, which may have been assigned automatically.

Example:
set key [memcache put $nh $data1]
memcache put $nh $key $data2

memcache ref
Memcache.Ref(identifier)

PYTHON-only method to get a reference of the MEMCACHE object from its handle.

memcache remove
memcache remove mchandle key ?ttl_secs?
m.remove(key=,?ttl=?)
934 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Delete a tuple on the remote daemon. If the key is not valid, an error results. By default the deletion
becomes effective immediate. Alternatively a time-to-live value can be specified, which schedules
tuple deletion for a time in the future. The TTL value is relative to the current time.

This command does not delete the interface object. For this purpose, use the memcache delete
command.

Example:
catch {memcache remove $mch $key}

This statement removes the tuple, and ignores any errors in case the key is not stored or has already
timed out

memcache start
memcached start mchandle
m.start()

Attempt to start all required memcached daemons associated with an interface object. If all
connections are already being served, this command does nothing.

Otherwise, the command will try to start memcached executable(s) with properly configured options
for a rendezvous on the named socket or socket port as specified during the interface object creation.
This autostart mechanism obviously only works of the daemon is running on the same host as the
application, the memcached executable is found in the search path, and the effective user of the
application has sufficient permissions. Other start mechanisms must be used to assure that the
required daemons are listening when using remote ports.

If there were unserved connections, and they could be activated by starting the daemon locally, the
command result is 1. If any required start attempt failed, the result is 0. If the command did not need
to perform any action, the result is -1.

Any newly started daemon has an empty tuple storage and no memory of any data stored by
daemons previously serving the same connection.

memcache status
memcache status mchandle
m.status()

Get the status of all daemons connected to the handle. If there is only a single daemon associated
with the interface object, the result is a status dictionary with parameter/value pairs, otherwise a list
of such dictionaries in the order of the daemons were named when the interface object was
constructed. The exact contents of a status dictionary is dependent on the version of the memcached
serving the connection.

In case any of the daemons associated with the interface object cannot be contacted, an error results.

Example:
echo [dict get [memcache status $mchandle] uptime]

memcache stop
memcache stop mchandle
m.stop()
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 935

CACTVS Tcl and Python Scripting Language Reference
Attempt to stop all memcached daemons associated with an interface object by sending them
termination signals. This works only with local daemons and requires that the effective user of the
application has sufficient rights. It has no effect on any remote daemon process.

As a side effect, all active connections to servers are closed, but they are re-activated automatically
if the daemons become available once more at a time when later commands are executed on the
interface object. The command does not destroy or invalidate the interface object proper. Daemons
can, for example, be restarted manually or by means of the memcache start command. However,
restarted daemons have no memory of tuples stored previously, so a total data loss is always the
consequence when a daemon was successfully terminated by means of this command, or died
because of any other reason.

The return value of the command is 1 if all daemon processes could be terminated, 0 if there were
any problems such as insufficient permissions or remote daemons, and -1 if no action was required.

memcache valid
memcache valid mchandle key
m.valid(key=)

A boolean check whether a given key is valid, i.e. whether data was stored with this key and has not
expired. If the key is not valid, zero is returned, not an error.

Example:
if {![memcache valid $mch $mykey]} {
936 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The netcache Command Extension

The netcache command extension provides an interface to the NCBI netcache memory data caching
daemon. This is a useful functionality especially for the implementation of stateful CGI and FCGI
applications.

Since the NCBI Toolkit, which provides the basic interface functions, is difficult to compile on many
platforms, this command extension is only provided as part of the standard toolkit distributions for
a few select platforms. Even these packages do not contain the netcache daemon proper, only the
interface module. Setting up a netcache environment is probably not justified for most application
scenarios, especially since the simpler and much more portable memcache command extension and
associated daemon with near equivalent functionality are now a standard toolkit component.

There is currently no PYTHON interface to this extension.

This command extension is thread-safe.

These are the subcommands:

netcache create
netcache create clientname ?host? ?port? ?lbname?

Create a netcache daemon interface object. The command returns a handle for this object which is
used by all other netcache commands to identify the interface. Multiple interfaces can be in use
simultaneously.

The clientname argument is an arbitrary string which is used to identify an application, or
application component. The optional host and port arguments specify the server the storage daemon
is running on. If not set, they default to localhost and the default netcache port 9001. The final
argument can be used to select a load balancer component. Please refer to the NCBI netcache
documentation for details. The default is an empty string, i.e. the host/port combination directly
selects the physical server.

Example:
set nhandle [netcache create “killerapp” $cachehost]

netcache delete
netcache delete all
netcache delete ?nhandle?...

The first command version deletes all active netcache interface objects, after properly closing their
connections. The second variant closes and deletes specific handles. The command returns the
number of deleted interface objects.

The functionality of the first command variant is automatically executed if the netcache command
extension is unloaded.

Deleting an interface handle does not immediately delete the tuples created via this interface on the
daemon. The data remains stored until the time-to-live expires, and may be fetched by other
interface object instances, even in different processes on different hosts, if they connect to the same
daemon, use the same client name, and supply the proper keys. To delete tuples, use the netcache
remove command.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 937

CACTVS Tcl and Python Scripting Language Reference
Example:
netcache delete $nh

netcache get
netcache get nhandle key ?listindex?

Retrieve the data associated with the specified key. The data is returned as the command result. In
case there is no tuple associated with the key, including due to expiration of the lifetime of data
associated with the key on the remote daemon, an error results. The returned data can be binary.

If the optional list index is specified, the data is expected to be a properly formed TCL list. If
interpretation as list succeeds, only the selected list element is returned. If the list index is larger than
the number of list items in the data, an empty string is the result, but no error is raised.

Example:
set data [netcache get $nh $key]

netcache list
netcache list ?pattern?

Get a list of currently used netcache object handles. If no netcache objects have been created, an
empty list is returned. Optionally, a string filter pattern can be specified.

Example:
netcache list

netcache put
netcache put nhandle data
netcache put nhandle key data ?ttl_secs?

Store data on a netcache daemon. The data is stored as an opaque byte array and can be of any type.
It is not necessary to base64-encode the data or protect it in any other fashion.

The first command variant automatically assigns an unique key and stores the data with it.

The second variant is more flexible. If the key parameter is an empty string, a new unique key is
automatically generated. However, with an explicit key, data can be replaced if the key is already
in use. If an explicitly specified key does not exist, a new tuple is silently created. Keys are also byte
arrays and could be binary, but commonly some readable string encoding is used. Optionally, the
time-to-live of the data on the daemon can be specified. The default value is part of the netcache
daemon configuration and cannot be queried directly. Tuples which are in the store longer than their
allowed time are automatically retired by the daemon. Attempts to access them via their key after
this point in time results in an error.

The command returns the key of the tuple, which may have been assigned automatically.

Example:
set key [netcache put $nh $data1]
netcache put $nh $key $data2

netcache remove
netcache remove nhandle key
938 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Delete a tuple on the remote daemon. If the key is not valid, an error results.

This command does not delete the interface object. For this purpose, use the netcache destroy
command.

Example:
catch {netcache remove $nh $key}

This statement removes the tuple, and ignores any errors in case the key is not stored or has timed
out.

netcache valid
netcache valid nhandle key

A boolean check whether a given key is valid, i.e. whether data was stored with this key and has not
timed out. If the key is not valid, zero is returned, not an error.

Example:
if {![netcache valid $nh $mykey]} {
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 939

CACTVS Tcl and Python Scripting Language Reference
The pubchem Command Extension

The pubchem command enables the toolkit to talk directly to the NCBI PUBCHEM database server. This
means there is a direct database client connection, not an access to any of the public APIS. This
command therefore only works in environments which have network access to the NCBI server farm,
or an in-house clone.

This command is implemented as a CACTVS command extension, not a standard TCL module, because
it links into CACTVS-specific internal data structures and cannot be loaded into a standard TCL
interpreter.

The command extension can be explicitly loaded via a
cmdx load pubchem

The command is also auto-loaded in standard interpreters, if the command extension module can be
found in the search path. It is a built-in command in some versions of the csweb CGI interpreter.

The command is currently not part of the standard toolkit distribution.

There is currently no PYTHON interface for this extension.

These are the subcommands of the extension:

pubchem cigs
pubchem cigs cidvalue ?type?

Get structure identity group information of a CID. If no type parameter is given, or it is given as all,
the full set of CIGs is returned as a list in the order tautomer, connectivity, stereo, isotope and exact.

If a type parameter is specified, as one of the allowed values all, tautomer, connectivity, isotope and
exact or its abbreviation a, t, c, i or e, only the selected group identifier is reported.

If the CID is not found in the database, an error is reported.

Example:
echo [pubchem cigs $cid t]

pubchem dump
pubchem dump ?updateonly? ?settimestamp? liveVar deadVar

This command is used to get information about changes in the main PCCompound database since
the last query. By default, both the updateonly and settimestamp flags are unset. The command sets
the two variables named in the arguments to a list of CID identifiers. If the updateonly flag is set,
only CIDs which have changed (i.e. were added, modified, or deleted) since the last time stamp
setting are reported. Records which are still in the database are stored in the live variable, deleted
records are returned in the dead variable. If the updateonly flag is not set, all database identifiers are
returned.

The settimestamp flag controls whether this query should automatically set the processing time
stamp of the returned records to the current time, thus marking the database records as synchronized.
Records with an updated time stamp are excluded from the result list of further pubchem dump
commands with the updateonly flag set.
940 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This command can take a couple of seconds to execute, and the result lists can be large (up to a
million or more list elements).

pubchem fetchblob
pubchem fetchblob sid sidvalue
pubchem fetchblob cid cidvalue

This command retrieves a binary ASN.1 structure record blob from the database. The command
comes in two variants. Retrieval via the SID returned the complete structure record, with all
embedded structure forms and their CIDs, while access via a CID only yields that structure and its
property data.

The raw blob data is returned as result. If the queried SID or CID does not exist in the database, an
error is raised.

For historical reasons, the command can also be used without the sid or cid access type identifier.
This form is equivalent to access via an SID.

Example:
set blob [pubchem fetchblob cid 999]
filex load asnb
set eh [molfile read [molfile open $blob s]]

This command sequence creates an ensemble object from the ASN.1 blob. Note that in most cases
the pubchem fetchens command is more convenient to use for this purpose. Structure processing
options should be completely disabled in order to avoid any change when reading compound data
from raw blobs, as in
molfile set $fh readflags {}

pubchem fetchens
pubchem fetchens sid sidvalue
pubchem fetchens cid cidvalue

This command retrieves an ensemble from the PUBCHEM database via an SID or CID identifier. The
return value of the command is a new ensemble handle. In case an SID or CID is not found in the
database, an error is raised.

If the retrieval is made via a CID, only that CID and its associated data is returned. For access via
SID, the full content of the ASN.1 record is encoded in the returned ensemble. The connectivity of
the structure for which its handle is returned is that of the deposited structure. Standardized
compounds and other structure variants of the deposited structure are attached to this base structure
as one or more properties E_NCBI_COMPOUND of datatype ensemble. These secondary
property-encoded ensembles store the data registered for them in the database in their own
independent set of properties. In theory, this could include further structure derivatives that are again
stored as properties E_NCBI_COMPOUND.

For historical reasons, the command can also be used without the sid or cid access type identifier.
This form is equivalent to access via an SID.

All structure processing options are disabled when decoding the blob into the ensemble, so the
returned structure is a faithful representation of the original data, including all bond types, bond
annotations and charges.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 941

CACTVS Tcl and Python Scripting Language Reference
Example:
set eh [pubchem fetchens sid 999]
set ehstd [ens show $eh E_NCBI_COMPOUND]
set stdcid [ens show $ehstd E_NCBI_COMPOUND_ID(id)]

This example retrieves a full PUBCHEM record via an SID, isolates the first structure variant encoded
in the record (which is the default standardized form), and then reads out from that standardized
form its CID.

pubchem setdbhosts
pubchem setdbhosts hostlist

This command changes the default set of database cluster hosts from the compiled-in default. The
hostlist parameter is a list of one or more host names in standard TCL notation.

Example:
pubchem setdbhosts [list DDDSQL10 DDDSQL11]

pubchem sidlist
pubchem sidlist cidlist

This command returns a nested list of SIDs associated with CIDs. For each CID in the cidlist
parameter a list element is returned which contains the list of associated SIDs.

Example:
set cidlist [list 1 2 3]
set sidlist [pubchem sidlist $cidlist]
foreach cid $cidlist sidset $sidlist {

puts “CID $cid is associated with [llength $sidset] SIDs”
}

pubchem sids
pubchem sids cid

This command returns a list of all SIDs a CID is associated with. An error is raised if the CID is not
found int the database.

pubchem synonyms
pubchem synonyms sid sidvalue
pubchem synonyms cid cidvalue

Get the list of synonyms associated with a SID or CID. The command returns a string list. In case
there are no synonyms, or the identifier is not found in the database, an error is returned.

The synonyms list contains only names registered in the global synonyms data block of the ASN.1
specification. It does not report any additional names which may be stored in property data areas of
individual compounds of the record.

pubchem subcommands
pubchem subcommands

Return a list of the subcommands of the pubchem command.
942 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The stat Command Extension
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 943

CACTVS Tcl and Python Scripting Language Reference
Auxiliary Tcl and Python Commands

Beside the listed commands for manipulating chemical and non-chemical objects, the standard TCL
scripting interface is enhanced with a collection of additional commands which do not belong to one
of the two big groups. This is a list of these commands:

• alarm
Access to the standard alarm() C library function. Only relevant for the Windows version,
because on Unix the equivalent alarm command provided by the TCLX library is available.

• avg
Compute average of arguments

• bitvector
Operate on string or optimized internal representations of bit vectors

• bread
Read binary data

• bwrite
Write binary data

• color
Decode color specifications

• creverse
Reverse string

• daemonize
Convert normal process into demon process (Unix versions only)

• decode
Decode data in various encoding and compression schemes

• encode
Encode data in various encoding and compression schemes

• fcgi
Perform I/O as a FASTCGI application

• fetch
Retrieve data via URLs

• filecheck
Check file formats

• insidepolygon
Check whether a point is within a polygon.

• ldelete
Delete selected elements from a TCL list

• lineintersect
Check whether line segments overlap
944 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• lreverse
Reverse TCL list

• lsearch
Extended features vs. the standard TCL version

• lsum
Compute sum over list elements

• lvardelete
Delete selected elements from a TCL list variable

• mailcap
get standard opener/viewer for MIME-typed files

• map
systematically apply command to list elements

• mimetype
get MIME type from file extension

• parse
verify decodability of strings representing of certain data types

• passwd
operations on standard Unix-style passwords

• post
simulate the posting of a HTML form

• prod
compute product of arguments.

• python
execute commands in a Python interpreter

• quote
properly quote strings

• random
generate thread-local random numbers

• rpc
get information about rpc services (Unix only)

• screen
perform structure fragment screening operations with bitvectors

• sqsum
compute sum of squared arguments

• stddev
compute standard deviation of arguments

• sum
compute sum of arguments
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 945

CACTVS Tcl and Python Scripting Language Reference
• tmpdir
get current temporary directory

• tmpfile
get TCL file handle of file opened for reading and writing in temporary directory.

• tmpname
obtain name of a new tmp file

• uncgi
decode WWW form data for CGI applications

• unzip
extract data from nested lists

• vec
basic vector operations

• zip
merge lists in an interleaved fashion

Mathematical expression enhancements
The CACTVS toolkit adds a number of commonly used mathematical functions to the interpreters. For
TCL, this means they are implemented as extensions to the math expression engine. The mathematics
enhancements are implemented as normal module functions in PYTHON. PYTHON does not distinguish
between normal and math functions.

The following functions are available:

• apos(a)
Normalize radian angle to 0..2

• astd(a)
Normalize radian angle to range -...

• bitrange(low,high)
Return a wide integer with all bits set between the specified positions, with the lowest bit
position starting as zero, and inclusive boundaries. If the low position is specified as a
negative number, the start position is the lowest bit (zero). If the high position is specified
as a negative number, the stop position is the highest bit in use in a wide integer, which may
be platform-dependent but usually is 63 for 64-bit wide integers. If both positions are
specified as negative numbers, the result is zero and not a word with all bits set.

• clamp(x,low,high)
Restrict x to minimum low and maximum high. This is an alias for the limit function.

• cmp(x,y)
Returns 0 if the values are equal, -1 if y is larger than x, or 1 otherwise.

• deg(x)
Convert radians to degrees
946 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• ffs(x)
Get the position of the first bit set in the input value interpreted as unsigned wide integer. Bit
position numbering begins with one. If no bits are set, zero is returned.

• fls(x)
Get the position of the last bit set in the input value interpreted as unsigned wide integer. Bit
position numbering begins with one. If no bits are set, zero is returned.

• gfraction(minvalue,maxvalue,nticks)
Suggest a nice value for the number of fractional digits for the numeric tick labels of a graph
display of data where the values for the axis lie between the minimum and maximum
arguments, and the axis has approximately the specified number of ticks.

• gmax(minvalue,maxvalue,nticks)
Suggest a nicely rounded maximum value for a graph display of data where the values for
the axis lie between the minimum and maximum arguments, and the axis has approximately
the specified number of ticks.

• gmin(minvalue,maxvalue,nticks)
Suggest a nicely rounded minimum value for a graph display of data where the values for the
axis lie between the minimum and maximum arguments, and the axis has approximately the
specified number of ticks.

• gstep(minvalue,maxvalue,nticks)
Suggest a suggest nicely rounded tick step value for a graph display of data where the values
for the axis lie between the minimum and maximum argument, and the axis has
approximately the specified number of ticks.

• htonl(x)
Get integer value in network byte order.

• hue2rgb(p,q,t)
A helper function for color conversion, see
https://stackoverflow.com/questions/2353211/hsl-to-rgb-color-conversion

• isign(x)
Get the sign of the argument as integer value (-1, 0 or 1).

• limit(x,low,high)
Restrict x to minimum low and maximum high.This is an alias for the clamp function.

• log10(x)
Get decadic logarithm.

• max(x,y)
Get the maximum of the two input values. The result type depends on the input data and
automatically uses the required type to represent the result in its full precision. This function
is not implemented in PYTHON because it is present right out of the box.

• min(x,y)
Get the minimum of the two input values. The result type depends on the input data and
automatically uses the required type to represent the result in its full precision. This function
is not implemented in PYTHON because it is present right out of the box.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 947

CACTVS Tcl and Python Scripting Language Reference
• mod(x,y)
Compute x modulo y. This function can process floating point values, whereas the standard
TCL % operator can not.

• nice(x,r)
Get a nice close number of x (i.e. something based on a power of 1,2,5,10,...), either by
rounding up (r is not null) or rounding down (r is null).

• ntohl(x)
Get integer value in host byte order

• pi()
Returns  with full precision.

• pix2pt(x)
Convert the pixel count argument to a points value, assuming a resolution of 72 dpi.

• pt2pix(x)
Convert the typographical points argument to a pixel count value, assuming a resolution of
72 dpi.

• rad(x)
Convert degrees to radians.

• rnd(x)
Get an integer random number between zero and the integer parameter minus one. This
function is integrated with the random command extension and is affected if the random
generator state is modified via this command. Every interpreter thread (but not slave
interpreter) has its own independent random number generator.

• range(x,low,high)
Check whether value is within range. The result is either boolean 0 or 1. To avoid name
collision with the standard range() function, the PYTHON version uses the function name
inrange.

• sqr(x)
Square value of x.

• zero(x)
Check whether value is close to zero. Usually, this means the argument is within +/- .00001
to zero, but this is configurable.

avg
avg arg ...

avg(arg,...)

Interpret the arguments as numeric values and compute their average.

bitvector
bitvector and vector ?vector?...
bitvector cmp vector1 vector2
bitvector cmpall vector1 vector2
948 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
bitvector count0 vector1 ?vector2?...
bitvector count1 vector1 ?vector2?...
bitvector create length ?basevalue? ?togglepositions?
bitvector distance vector1 vector2
bitvector or vector ?vector?...
bitvector nand vector ?vector?...
bitvector nor vector ?vector?...
bitvector not vector
bitvector parse vector
bitvector record0 vector ?offset? ?length?
bitvector record1 vector ?offset? ?length?
bitvector screen vector1 vector2
bitvector screenall vector1 vector2
bitvector size vector1 ?vector2?...
bitvector test0 vector ?offset? ?lengt?
bitvector test1 vector ?offset? ?lengt?
bitvector xor vector ?vector?...
Bitvector(length=,?basevalue=?,?togglepositions=?)

Bitvector.Create(length=,?basevalue=?,?togglepositions=?)

Bitvector.Parse(data)

bv.cmp(vector)

bv.cmpall(vector)

bv.compare(vector,?cmpflags?,?c1?,?c2?)

bv.count0()

bv.count1()

bv.distance(vector)

bv.m_and(?vector=?,...)

bv.m_not()

bv.m_or(?vector=?,...)

bv.nand(?vector=?,...)

bv.nor(?vector=?,...)

bv.record0(?offset=?,?length=?)

bv.record1(?offset=?,?length=?)

bv.screen(vector)

bv.screenall(vector)

Bitvector.Size(?vector?,...)

bv.test0(?offset=?,?length=?)

bv.test1(?offset=?,?length=?)

bv.xor(?vector=?,...)

This command provides basic functionality for the processing of bit vectors on a string level,
or as binary pre-parsed objects. String representations of bit vectors understood by this
command consist of 0 and 1 characters, optionally prefixed by a percent or B character.
Bitvectors with this encoding style can, for example, be obtained from a TCL data recall
command on chemistry object bitvector data items.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 949

CACTVS Tcl and Python Scripting Language Reference
In both the TCL and PYTHON interfaces, decoded bitvectors are internally represented as binary
custom language interface objects. This avoids re-parsing strings if the objects are used in
multiple processing commands.

Example:
set vector [ens get $ehandle E_SCREEN]

The following subcommands are available:
bitvector and vector ?vector?...
bitvector or vector ?vector?...
bitvector xor vector ?vector?...
bitvector nand vector ?vector?...
bitvector nor vector ?vector?...

These are the standard boolean operations. nand and nor yields the inverted result of the and and
or operations. If no arguments beyond the first are given, the result is the input vector for and,
or, xor, and the inverted input vector for the rest. In case the vectors are of different lengths, they
are virtually padded with zero bits to the size of the largest vector. eor is an alias name for the
xor operation.
bitvector not vector

Invert the vector in bit-wise fashion.
bitvector test1 vector ?offset? ?len?
bitvector test0 vector ?offset? ?len?

Return a list of the vector index positions (starting with zero) which have a set or unset bit.
Optionally, an offset for the first bit to be tested, and the maximum number of bits to be tested
may be specified. By default, testing begins with the first vector position (index 0) and continues
until the end of the vector. The subcommand test1 may be abbreviated to test. bitvector
index0 and bitvector index1 are aliases for this command.
bitvector record1 vector ?offset? ?len?
bitvector record0 vector ?offset? ?len?

These commands are equivalent to the test0/index0 and test1/index1 commands above,
except that they report the selected bit positions starting with one instead of zero, in the
customary fashion of file record counting.
bitvector create length ?basevalue? ?togglepositions?

Generated a new bitvector of the specified length. By default, it is set to all zeros. The base value
parameter, which may be 0 or 1, can be used to generate a vector with all set bits instead. If the
toggle positions argument is used, it is expected to be an integer list with 0-based vector indices
were the bit value in the new vector should be flipped.
bitvector parse vector

This command parses a vector representation (which can be a string representation, or already
a bitvector object, in which case no real work is performed) and creates a new pre-parsed
bitvector object.
bitvector screen vector1 vector2

Perform a screening operation on the first bitvector. The command returns the first 0-based
index position where a bit is set in the second vector, but not in the first. If all set bits in the
950 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
second vector have counterparts in the first vector, minus one is returned. The bitvectors may
be of different length. The shorter vector is assumed to be filled up with zero bits. In a standard
application, the first argument is a feature vector of a structure, and the second vector a feature
vector of a substructure.
bitvector screenall vector1 vector2

Perform a screening operation on the first bitvector. The command returns a list of all 0-based
bit positions where a bit is set in the second vector, but not in the first. If all set bits in the second
vector have counterparts in the first vector, an empty list is returned. The bitvectors may be of
different length. The shorter vector is assumed to be filled up with zero bits. In a standard
application, the first argument is a feature vector of a structure, and the second vector a feature
vector of a substructure.
bitvector count1 vector1 ?vector2?...
bitvector count0 vector1 ?vector2?...

Count the total number of set or unset bits in all the specified vectors. bitvector count is an
alias for bitvector count1.
bitvector distance vector1 vector2

Compute the Hamming distance between the vectors.
bitvector cmp vector1 vector2

Compare the two bitvectors and return the 1-based position of the first bit which disagrees. If
the bit is set in the first vector, a the position is returned as a positive number, and as a negative
number when the bit is set in the second vector. If both vectors are identical, or are identical if
the shorter vector is assumed to be filled up with zero bits, the return value is zero. The
alternative subcommand name compare is an alias.
bitvector cmpall vector1 vector2

Compare the two bitvectors and return a list of the 1-based bit positions where the two vectors
disagree. If at any such position the first vector has a set bit, the position is listed as a positive
number. In the opposite case, the position is entered as a negative number. If the vectors are
identical, or are identical if the shorter vector is assumed to be filled up with zero bits, the return
value is an empty list. The alternative subcommand name compareall is an alias.
bitvector size vector1 ?vector2?...

Returns the size of the largest bit vector in the argument set.

The PYTHON implementation additionally supports standard copy and pickle methods,
with-clause, and overloaded numeric operators ~,&, ̂ , | as well as &=, |=, ̂ =. The len() method
returns the vector length. A bitvector has a boolean true value if any of its bits are set. Setting
and retrieving individual bits via indices is also supported:
b[0] = b[1]

Due to syntactic limitations in the generic PYTHON parser, the and, or and not methods cannot
be named such - these are reserved words. Instead, they are accessible as m_and, m_or and
m_not. The other bit methods (nand, nor, xor) are implemented with their normal name, but also
accessible with the same prefix. The PYTHON-only method compare is equivalent to a prop
compare statement, except that it is an instance method, not a class method.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 951

CACTVS Tcl and Python Scripting Language Reference
bread
bread tcl_filehandle format ?var..?

This command reads formatted binary data from an output channel. The specified TCL channel
is automatically configured for binary data for the duration of the command and then restored
to the original state.

The command is complementary to the bwrite command described below and uses the same
formatting specifications.

Multiple values sharing the same format can be read in one statement with a set of recipient
variables is specified. The return value is the value of the last item read. If no variables are used,
one item is read and returned, but not stored in a variable.

This is a TCL-only command.

Example;
set s [bread $channel string16]

bwrite
bwrite tcl_filehandle format data ?data?...

This command writes formatted binary data to an output channel. The specified TCL channel is
automatically configured for binary data for the duration of the command and then restored to
the original state.

This is a TCL-only command.

If more than one data item is specified, the same format is used for all the data items. For most
formats, the binary data layout is not changed and it thus platform-dependent. The exception are
those formats which are prefixed with an X: These follow the platform-independent XDR
encoding standard (RFC 1014) in their layout (network byte order, MSB first), but not in the
stored item size (the byte size of smaller objects is not expanded to multiples of four). The
following formats are supported:

• long, int
4-byte signed integer

• ulong, uint
4-byte unsigned integer

• xlong, xint
4-byte signed integer, MSB layout

• xulong, xuint
4-byte unsigned integer, MSB layout

• short
2-byte signed integer

• ushort
2-byte unsigned integer
952 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• xshort
2-byte signed integer, MSB layout

• xushort
2-byte unsigned integer, MSB layout

• char, xchar
1-byte character

• ulong8
8-byte unsigned integer

• xulong8
8-byte unsigned integer, MSB layout

• float
4-byte floating point number

• xfloat
4-byte floating point number, MSB layout

• double
8-byte floating point number

• xdouble
8-byte floating point number, MSB layout

• string
character string. If no length is specified, it is terminated by a zero byte.

The string format may contain additional length and pad character specifications. If a pad
character is used, it must be supplied as its ISO Latin code. This makes it simple to use zero
bytes as filler.

Example:
bwrite stdout string16:[ctype ord x]

writes a string which always occupies exactly 16 bytes. If it is longer, the extra characters are
ignored. If it is shorter, it is padded with “x“ characters. A zero byte is not written, because this
string has an explicit length.

The bread command provides the complementary functionality to read binary data into
variables using the same format specifications as template.

cleanup
cleanup

cleanup()

A utility cleanup command which closes (where applicable) and removes all deletable
chemistry objects with valid handles. Removed object classes include ens, reaction, dataset,
molfile, network, table, biologics, hierarchy, and lhasa engines. The return value is the
number of deleted objects.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 953

CACTVS Tcl and Python Scripting Language Reference
color
color ?-alpha? ?-depth n? ?-hex? ?-javaint ?-name? ?-shade delta? ?-tuple?
colorname/colorspec

color(color=,?format=?,?depth=?,?alpha=?,?shade=?)

Decode a color name. On Unix systems, color names are looked up in the local X11 color
database. On the PC platform, a representative X11 color database dump is compiled into the
application. In addition to English color names, the standard hex color notation, such as #rrggbb
or #rgb, may be used, with or without alpha channel data. If a hex color notation has 4, 8 or 16
hex digits, the value is interpreted as #rgba, #rrggbbaa and #rrrrggggbbbbaaaa, respectively.
In case of 12 hex digits (12 is both divisible by 3 and 4), the interpretation #rrrrggggbbbb takes
precedence. Color names are case-insensitive.

By default, a color depth of 16 bits is assumed, and the returned color component values are thus
in the range 0..65535. Smaller or larger color component value ranges may be specified by an
explicit depth value, which must be in the range between 2 and 24. Depth 8 is used for the
commonly used format with 8 bits per channel.

If the -shade option is used, the decoded color value is darkened or brightened by the specified
amount by component-wise addition before it is output in the selected format. The shading value
is scaled according to the selected color depth, i.e. with a color depth of 8, the useful minimum
and maximum scale values are -255 and +255, while with a color depth of 16 the limits are
-65525 and +65535. The transformed color values are automatically clamped to the white and
black extremes, so the output will always be a valid color representation. Shading is not applied
to the alpha/opacity channel. A shading value of zero has no effect in any color depth.

The default return format is a list with the decimal RGB values of the decoded color. This
corresponds to the explicit mode -tuple. If the -hex option is set, the output is formatted as a
single hex-encoded color value, and -javaint returns a standard JAVA color signed int color value.
If the -alpha option is set, the format of the output includes the opacity value as the fourth
component in RGBA order, either as an additional list element or appended to the hex string.
The -javaint value always includes an alpha component.

With the -name option the command attempts to find the most closely matching color name in
the database for the decoded and transformed color values and return that name instead of a
color component list or hex encoding.

The PYTHON version uses a single format argument. It can be set to either tuple, hex, name or
javaint.

The command may also be spelled colour instead of color.

Example:
color -depth 8 -hex Red

returns #FF0000.
color -depth 8 -shade -0x10 -hex #808080

returns #707070

creverse
creverse string
954 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
creverse(string)

Reverse a string.

Example:
creverse abc

returns cba.

daemonize
daemonize ?priority? ?closefiles?

daemonize(?priority=?,?closefiles=?)

Transform the current process into a daemon process which is decoupled from all control
terminals and runs in the background until finished or terminated. The current process is forked,
and the old foreground process exited.

By default, the background process priority is unchanged. Alternatively, a new priority may be
specified as the first optional argument. If it not an empty string, an attempt is made to set the
process priority to the new value. No error message is generated when the attempt fails. Useful
priority values depend on the platform. On Linux, the range is 0...20, with 20 being the lowest
priority. Increasing the priority, by using a value lower than the current process value, requires
non-standard permissions, usually an effective application user ID of root.

By default, all open file handles are closed. If the optional closefiles parameter is set to 0, most
file handles are kept open. An exception are the standard input, output and error channels. These
are always redirected to /dev/null, regardless of the option value. Note that the closing of the file
descriptors does not automatically invalidate any TCL scripting language references to these,
such as standard TCL file or socket handles, or toolkit molfile handles. These should be
explicitly closed by the application script before this function is called. Otherwise, any use of
these stale handles results in errors.

This command is only available on Unix-based platforms.

decode
decode mode data ?extra?
decode(mode=,data=,?extra=?)

This command decodes a number of commonly encountered encoding formats for string and
binary data. The decoded data is returned as command result. The mode parameter decides
which decoding scheme is used. For the PYTHON version, the mode is usually specified without
the leading -, but this is not required. The following modes are available:

• -base64
The data argument is expected to be a standard base64 encoding or the URL variant thereof
(with - and _ replacing the + and = characters). The data characters may be either written
as one unbroken sequence or follow RFC2045, which mandates embedded line breaks and
an encoding data characters count divisible by four. The appropriate subformat is
automatically detected. The decoded data may be binary.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 955

CACTVS Tcl and Python Scripting Language Reference
• -bitset
Decode a collection of symbolic bit names via a standard toolkit bitset enumeration value
specification, as it is used for example in property definitions. The enumeration definition
syntax is documented in the paragraph dealing with the enum property attribute. This
command variant uses the syntax
decode -bitset symvalue enum_spec

The return value is a wide integer value with all bits set according to the decoded symbolic
value string. If the value cannot be decoded, an error results. An empty value argument
always yields zero as result. Example:
decode -bitset a|c none:a,alpha:b,beta:c:d

The return value is 5, which is combined from set bit index 0 for a and set bit index 2 for c.
For bitsets, the first colon-separated word in the enumeration specification contains one or
more aliases for zero set bits, which corresponds to the numerical result zero. Instead of a
vertical bar, whitespace may also be used as bit position name separators.

• -datauri
Decode the payload of a data URI in base64 or URL encoding. The MIME type and character
set information are not used and ignored if present. The URI may encode binary data.

• -dataurl
An alias for -datauri

• -enum
Decode a symbolic name via a standard toolkit enumeration value specification, as it is used
for example in property definitions. The enumeration definition syntax is documented in the
paragraph dealing with the enum property attribute. This command variant uses the syntax
decode -enum symvalue enum_spec

The return value is the integer value linked to the symbolic value argument. If the value
cannot be decoded, an error results. Example:
decode -enum b a,alpa:b,beta:c=99

The returned value is 1, which is the default value of symbolic name b, or its alias beta, taken
from its colon-separated word index. The word index is used in the absence of an explicit
value, as it is specified in the example for value c.

• -formula
The input is expected to be an Unicode string representing a molecular formula in standard
notation with element counts encoded in subscript digits, and charges encoded with
superscript digits or plus/minus characters. The output is the plain ISO-8859-1 string form
of the same formula.

• -gzip
Because the zlib and gzip formats are automatically distinguished, this is an alias for -zlib.

• -gzip64
Because the zlib and gzip formats are automatically distinguished, this is an alias for -zlib64.
956 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• -hex
The data is expected to be a sequence of hex digit pairs, specifying the ISO Latin1 value of
the decoded character at every position. White space between hex characters is ignored, but
other non-hex characters raise an error.

• -html
The input data is expected to be HTML text with entity encodings, such as " for a
quotation mark. These entity encodings are resolved to a standard ISO Latin encoding. Note
that there are entities which cannot be represented in the ISO Latin encoding. These are
passed unchanged. This mode also decodes XML encoding, which uses a smaller set of
entities. Neither HTML nor XML decoding removes tags.

• -json
Decode a JSON object into an equivalent TCL list (for array elements) and dictionary (for
map elements) representation. This option is only available if the interpreter was compiled
with JSON support.

• -loinc
Decode a LOINC ID (https://loinc.org/) and get the textual description of the data
content. The first call to the LOINC decoder takes a few seconds since the LOINC table needs
to be loaded from disk.

• -mysql
Decode a binary blob as produced by the MYSQL database function compress(). This is
primarily useful in the context of the MYSQL database cartridge. The data consists of a 4-byte
binary header with the decompressed data length, followed by zlib-compressed data. An
empty string is encoded verbatim.

• -paper
Decode a paper size such as A4 or letter. If the paper size is known, return a tuple with the
width and height of the format, in that order. If the format is unknown, an error results.

• -pdf
Decode input as a PDF string. If the first character is an opening parenthesis, and the last
character a closing parenthesis, these are also stripped.

• -python
Decode a standard PYTHON string object representation, for example a quoted string, a simple
number, or a tuple, list or dictionary. The result is a suitable TCL interpreter value object
containing the equivalent information.

• -quoted-printable
The input is expected to use quoted-printable representation, such as =20 for a space
character. The output is in ISO Latin1.

• -rc4
The input data are bytes encoded with an RC4 cipher. This command version requires an
additional argument after the data argument which is used as the decoder key.

• -rfc2045
This is the same as -base64.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 957

CACTVS Tcl and Python Scripting Language Reference
• -robustzip
Slower than -zip, but more robust against extreme compression factors and data corruption.

• -rtf
Strip formatting information from RTF text. Only the plain text parts, encoded as ISO
Latin1, remain. Leading and trailing white space is removed. The only formatting
instruction which leaves a trace in the decoded text is \par (paragraph break), which is
translated into a space character. The decoder implements a minimal RTF parser, so that any
legal RTF string can be submitted, regardless of the specific formatting instructions it
contains.

• -suffix
Get the name of the most common chemistry structure or reaction file format using the
suffix of a passed file name argument. If this is not a known suffix, the return value is
unidentified. The returned name is suitable for use with the filex command. The argument
file is not required to exist - it is only used to extract the suffix. This command does not try
to match table or network file extensions, but it ignores known compression suffixes such
as .gz, .Z or .bz in determining the applicable core file suffix.

• -time
Try to decode a time or date value using the standard set of internal patterns and default
mechanisms. The return value in case of success is the number of seconds since epoch time.
Non-obvious time formats should be decoded by the scripting-language specific parsers (for
example, clock scan for TCL, datetime.strptime for PYTHON)

• -url
The input data is expected to be in URL encoding, with + for space and/or %xx (such as %20
for space) hexadecimal three-letter encodings for other letters. These encodings are resolved
to ISO Latin1.

• -urlvbar
The input data is expected to be in URL encoding, with + for space and/or %xx (such as %20
for space) hexadecimal three-letter encodings for other letters. These encodings are resolved
to ISO Latin1. Vertical bar characters are translated to the system default line end
character(s).

• -zlib
The input data is expected to be zlib-compressed. Both direct zlib compression and string
images of gzip-compressed files (which use a different header) are accepted. The subformat
is automatically recognized. gzip header information, such as comments and the original file
name, will not be preserved.

• -zlib64
This is a convenient combination of base64 decoding and zlib decompression. It is
equivalent to first performing a -base64 decoding, followed by a -zlib step.

The decoded data may contain zero-bytes and other special characters and may thus need special
care in further processing. The counterpart of the decode command is the encode command,
which can be used to encode data in all recognized decoder formats.

For historical reasons, the -zlib* variants can also be invoked as the same command starting with
-zip*.
958 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
encode
encode mode data ?mode_arg?
encode(mode=,data=,?extra=?)

This command is the counterpart to the decode command. It is not completely identical, though
. There are encoding schemes for which no corresponding decoding method has been
implemented. Additionally, the decoder automatically recognizes certain variants of encoding
schemes, which need to be selected explicitly on the encoder side. The encoded data, which may
be binary, is returned as command result. In the PYTHON version , the mode is usually specified
without a leading -, but this is not required. The recognized encoding modes are:

• -alertpage
Encode a HTTP response with header (but without status code) and an empty HTML body
which opens up an alert box with the message when it is loaded. This is useful if the output
is directed to an invisible Web frame.

• -base64
Encode in base64 format. The result string contains only printable characters. All data is
packed into a long string without any line breaks. For line breaks after a maximum of 76
characters, use RFC2045 encoding.

• -base64url
This is the same as -base64, except that the (not-quite-standardized, but frequently
encountered) URL-safe encoding variant is used, which uses the ‘-’ and ‘_’ characters as
replacements for ‘+’ and ‘=’ which need to be escaped in URLs. This is not the same as the
more portable URL-encoding of the original base64 string, which would replace these
characters by escaped notations.

• -bitset
Encode an integer value to a combination of symbolic bit position names with a standard
toolkit bitset enumeration specification, as it is for example used in property definitions. The
syntax of this specification is explained in the paragraph on the enum property attribute. The
command requires an extra mode argument for the enumeration definition string. In case a
set bit in the numeric argument is not covered by the enumeration string, no error is raised.
Instead, the numerical value of the bit is inserted. Example:
encode -enum 3 a:b:c

returns ‘b|c’.

• -boolean
Decode a boolean value in any of the forms recognized by TCL and return it as true or false
string value.

• -boolobj
Decode a boolean value in any of the forms recognized by TCL and return is as a native Tcl
boolean result object. Normally, alternative boolean encodings such as integers or parseable
strings are automatically decoded in scripts. An exception is when a function, such as the
JSON encoder, needs to distinguish between, for example, an integer or boolean value, for
proper execution of its task. In such context, an explicit object encoding can be useful.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 959

CACTVS Tcl and Python Scripting Language Reference
• -countryalpha2
Get the 2-character country code as per ISO3166 from a recognized country name, or its
2-letter/3-letter/numeric ID.

• -countryalpha3
Get the 3-character country code as per ISO3166 from a recognized country name, or its
2-letter/3-letter/numeric ID.

• -countryname
Get the official country name as per ISO3166 from a 2-character, 3-character or numeric
country code. It is also possible to search by full country name to verify its validity.

• -countrynumeric
Get the numeric country code as per ISO3166 from a recognized country name, or its
2-letter/3-letter/numeric ID.

• -csource
Encode the data bytes as a comma-separated, hex-encoded byte sequence suitable for
inclusion in C source files.

• -cstring
Encode special characters such as tab, vtab, cr, lf as their C-style backslash encodings.

• -crc32
Compute the CRC32 checksum of the input data.

• -datatag
Output a complete HTML tag (or <object>) with an embedded data URI encoding of
the data argument with an appropriate MIME type and the data encoded in base64 format.
This is useful for the generation of HTML pages with images where the images need not to
be stored in external files. The encoded data must be a GIF, PNG, JPEG, SVG or PDF image,
which is verified by looking at the magical header bytes. PDF input results in an <object>
tag, the other types yield . This command variant accepts an optional third argument.
If it is set, it is used as the content of the “alt” tag attribute. Example:
prop set E_GIF datatype blob
encode -datatag [ens get $eh E_GIF] „Image of [ens get $eh E_IDENT]“

• -datauri
Create a data URI in the format data:mimetype;base64,payload from the input data in base64
encoding. The default MIME type is application/octet-stream, but this can be overridden by
using the optional extra parameter. No attempt is made to automatically determine the MIME
type of the input.

• -dataurl
This is an alias for -datauri.

• -enum
Encode an integer value to a symbolic name with a standard toolkit enumeration
specification, as it is for example used in property definitions. The syntax of this
specification is explained in the paragraph on the enum property attribute. For this mode,
extra mode argument is required and is the enumeration definition string. In case the
numeric argument value is not covered by the enumeration string, no error is raised. Instead,
the return value is the numeric input. Example:
960 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
encode -enum 2 a:b,beta:c,gamma

returns ‘c’.

• -formula
The input is a plain ISO-8859-1 string representing a molecular formula in standard
notation. The output is the same string, but with element count subscripts and charge
superscripts encoded as Unicode sub/superscript characters in UTF8 encoding.

• -gzip
Encode in the format of the gzip program.

• -gzip64
Encode in the format of the gzip program, and then encode the result in the -base64 format.

• -gzip64url
Perform gzip compression first, then encode the result in the -base64 format, and finally
perform URL encoding of the result, which is required because base64 can contain the
characters +, = and /, which need to be escaped for URL contexts.

• -hex
Encode by representing every input byte by a pair of hex digits.

• -hexbytes
Encode by representing every input byte by a pair of hex digits, with a space between digit
pairs.

• -html
Encode for HTML display, using entities like " for certain characters such as the
quotation mark which can interfere with the tag structure.

• -html0
Encode for HTML display, using entities like " for certain characters such as the
quotation mark which can interfere with the tag structure. This command variant however
passes zero bytes verbatim, instead of encoding them as �. Use of this command variant
is discouraged. It it a hack which can be used to pass 0 bytes in simulated file uploads on
certain browsers.

• -htmlmultiline
Encode for HTML display, as with the -html mode, but encode line breaks as
 tags.

• -htmlpage
Encode the data string as a minimal but properly formatted complete HTML page,
including HTTP headers (but no status code). This is primarily useful for for CGI or FCGI
scripts to display a debug browser message.

• -httpheader
Prepare a HTTP header string without the status code. The arguments are the content type
and, optionally, the content length. This is primarily useful for CGI or FCGI scripts.

• -imgtag
An alias for -datatag. Despite the name, this also covers auto-generated <object> and
<embed> tags.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 961

CACTVS Tcl and Python Scripting Language Reference
• -jsarray
Encode the argument, which must be a properly formed TCL list or PYTHON tuple/sequence,
as a JAVASCRIPT array initialization string suitable for inclusion into program-generated
JAVASCRIPT code.

• -jsdict
Encode the argument, which must be a properly formed TCL or PYTHON dictionary, as a
JAVASCRIPT named object attribute initialization string suitable for inclusion into
program-generated JAVASCRIPT code.

• -jsnative
Encode the argument in the JAVASCRIPT type corresponding most closely to the TCL or PYTHON
argument object type. This is not foolproof in TCL since a TCL object may temporarily be
represented as string, depending on how it was set up and which operations it was subjected
to, even if it could be represented as a more efficient type. However, usually it works, and
the TCL objects returned as the result of toolkit commands are of a suitable optimized type,
not generic TCL strings.

• -jsonstatus
Prepare an EXTJS JAVASCRIPT toolkit submission response status, complete with HTTP
header. The arguments are a boolean status value (1 = success, 0 = failure) and, optionally,
a dictionary of error condition and error message values, or a dictionary of auxiliary result
data. With a false status, the error dictionary is encoded under the errors: key in the
response. For success, the auxiliary response data in encoded under the data: key.

• -jsstring
Encode argument as a single-quoted JAVASCRIPT string suitable for inclusion into
program-generated JAVASCRIPT code.

• -quoted-printable
Encode using the quoted printable standard.

• -qrcode
Return a QR code as PNG data URL string encoding the argument value. Usually the message
content is a URL.

• -md5
Compute an MD5 hash code from the input string.

• -pdf
Encode input data as a syntactically correct PDF string. The outer parenthesis pair is added
automatically.

• -python
Encode a TCL interpreter value object, such as an integer, string, list or dictionary, into the
standard string representation of the equivalent PYTHON object. The proper operation of this
command depends on the TCL argument having the proper type. Since the command does not
know the expected type, care must be taken when passing arguments - no automatic
TCL-style conversion, for example from a string to a list or dictionary, is performed. These
operations must be explicitly coded if needed. This encoding scheme is not supported in
PYTHON.
962 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• -rc4
Encrypt data using the RC4 algorithm. This encoding scheme needs an extra argument. The
next argument after data is the encryption key. Encryption is symmetric. Re-application of
the encoder command with the same key on the encryption result restores the original data.

• -regsub
Encode special regular expression characters in a replacement string, such as & and \1, in
such a way that they are not substituted by the next regular expression substitution operation
and are afterwards again encoded in their original form.

• -rfc2045
Encode in base64 format, but enforce line breaks every 76 characters.

• -rtf
Encode in such as way that the character sequence does not break the file syntax when
inserted as string into an RTF file. Opening and closing curly brackets as well as backslash
characters are escaped.

• -savetodisk (or -save2disk)
Encode the data as header-complete HTTP response which triggers a receiving Web browser
to pop up a save panel. If the optional extra argument is used, it is the default output file
name pre-entered in the save panel.

• -sql
Escape characters so that a well-formed SQL string results. The string does not contain the
leading and trailing single quotes needed for use in an SQL statement.

• -tcl
Encode a PYTHON interpreter value object, such as an integer, string, list or dictionary, into
the standard string representation of the equivalent TCL object. The proper operation of this
command depends on the PYTHON argument having the proper type. Since the command does
not know the expected type, care must be taken when passing arguments - no automatic
TCL-style conversion, for example from a string to a list or dictionary, is performed. These
operations must be explicitly coded if needed. This encoding scheme is not supported in TCL.

• -url
Encode for use in URLs, replacing space characters by + and other interfering characters by
a %xx character triple, where the last two characters are hex digits for the ISO Latin1
character code. Additionally, linefeeds in the input in any format (Unix, PC, Mac) are
standardized to a CR/LF sequence.

• -urlbinary
The same as -url, except that linefeeds are not normalized. This is similar to the JAVASCRIPT
function encodeURI().

• -urlbinaryparameter
An alias to -urlbinarycomponent

• -urlbinarycomponent
The same as -urlcomponent, except that linefeed standardization of the encoded data is also
suppressed.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 963

CACTVS Tcl and Python Scripting Language Reference
• -urlcomponent
The same as -url, except that characters in the set &=?/;: are also percent-encoded to avoid
interference with the section structure of an URL. This is similar to the JAVASCRIPT
encodeURIComponent() function.

• -urlparameter
An alias to -urlcomponent.

• -urlvbar
Encode for use in URLs, replacing space characters by + and other interfering characters by
a %xx character triple, where the last two characters are hex digits for the ISO Latin1
character code. Additionally, line feeds in any of the standard forms (Unix, PC, Mac) are
translated into a single vertical bar character.

• -xml
Encode for usage in XML contexts. This encoding replaces the characters >, <, “, ’ and &
by entities, but leave other characters, which would be converted into entities in HTML
encoding, intact.

• -zlib
Perform zlib compression on the data. The result cannot be directly stored as a
gzip-compatible file. These files contain an extra header.

The result of this command is likely to contain zero bytes and other special characters.
Further processing of this data may require caution.

• -zlib64
Perform zlib compression first, and then encode the result in the -base64 format.

• -zlib64url
Perform zlib compression first, then encode the result in the -base64 format, and finally
perform URL encoding of the result, which is required because base64 can contain the
characters +, = and /, which need to be escaped for URL contexts.

The -zlib* encoding variants can also be invoked as the same command starting with -zip*.

fcgi
fcgi subcommand ?args?

This command manages I/O when running an application script as an FastCGI (FCGI) Web
application. Only selected interpreters provide this command, for example the standard
tclcactvs and the stand-alone csweb variant.

There is currently no PYTHON interface for this command.

In addition to providing the fcgi command, these interpreters also register additional
pre-opened TCL channels fcgi-stdin, fcgi-stdout and fcgi-stderr. Reading from or writing to these
channels with the normal TCL I/O commands directly moves the data to or from the FCGI server
communication channels.

The following subcommands are supported:
fcgi accept ?redirect? ?autoexit?
964 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This command enables FCGI-style socket communication with the Web server controlling this
application and is usually the first command in an FCGI application.

If the redirect argument flag is set (it is on by default), the stdout, stderr and stdin TCL channels
are redirected to the corresponding FCGI multiplex socket. All normal TCL I/O commands
automatically use the multiplex socket instead of the standard channels if they are referring
implicitly or explicitly to the standard channels. In addition, Web-typical properties like E_GIF,
E_VRML, E_PICT_IMAGE, E_EPS_IMAGE, E_SVG_IMAGE, E_EMF_IMAGE and X_GIF are aware of this
redirection and also send their output to the socket in case it is sent to one of the standard
channels instead of a disk file. The current redirection status is mirrored in the read-only control
variable ::cactvs(fcgi_redirect).

The standard output is sent to the remote browser. For normal Web applications, the output is
typically HTML or some image format. Output must be started with a standard HTTP header (but
no status code), which ends with an empty line. After that, the HTML or other content is added.
Standard error gets sent to the Web server error log. This is simple text. Standard input contains
form field data if the CGI call was from a form page. It can be decoded with the uncgi command.
Query data specified as part of the URL (after a question mark) can be read from the environment
variable ::env(QUERY_STRING).

If the autoexit flag is set (it is also set by default), the application automatically exits if the socket
communication results in an error or EOF. The return value is a status code and zero in case a
normal communication was initiated. In case automatic exiting is disabled, a negative status
code is returned if there is an error.

The process can be terminated by the FCGI Web server module after some time of inactivity, or
a fixed count of invocations. In addition, multiple processes with the same script may be started
by the module in parallel. In case there is a load balancer, subsequent requests may even be sent
to different physical hosts. For these reasons, it is generally not reliable to store global data in
the script which should still be available in the next invocation. Instead, internal state like
temporary objects should be cleaned up when a request has been executed and data which may
be needed in a later processing step offloaded to storage using a lightweight session key or
cookie as identifier - typically either to a disk file, or some distributed caching mechanism like
MEMCACHED (see the memcached command).

Since FCGI scripts remain running after processing a request, edits to the script file are not
immediately recognized. In order to pick up changes, all running interpreter processes with the
script must be killed. They are automatically restarted by the FCGI Web server module on the
next invocation.
fcgi finish ?redirect?

This command finishes the processing of a request. All buffered output is flushed to the server.
The next request can then be waited for by a new call to fcgi accept.

If the redirect flag is set (it is set by default), any existing stdout, stderr and stdin redirections
to the FCGI socket are canceled. All standard channels as seen by the script interpreter and
certain image properties (see description of fcgi accept command) are reconnected to their
original streams. The current redirection status is mirrored in the read-only control variable
::cactvs(fcgi_redirect).

fcgi puts ?-nonewline? ?channel? data
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 965

CACTVS Tcl and Python Scripting Language Reference
This command is the same as the standard TCL puts command, except that it operates on the
stdout and stderr equivalents of the FCGI communication model. In case a channel is specified,
only stdout and stderr are possible argument values. The command is primarily useful in case
the automatic redirection feature of the fcgi accept command was not used. Output is only
possible after the invocation of an fcgi accept command and before the issue of a closing fcgi
finish command.
fcgi read

This command reads the FCGI equivalent of stdin until EOF is encountered and returns the data
as a byte vector. In case FCGI redirection is active, the standard TCL read command can be used
as an equivalent.
fcgi redirect ?on/off?

This command may be used to explicitly invoke or cancel the redirection of the standard TCL
channels stdin, stdout and stderr to the FCGI equivalents. In case no boolean redirection
argument is given, the current redirection status is reported. In case a new status is set, the
command returns the previous status. The current redirection status is also mirrored in the
read-only control variable ::cactvs(fcgi_redirect).
fcgi status code

This command can be used to set the exit status when the automatic exiting feature of the fcgi
accept command is used. This command may be called any time.

Example:
while {[fcgi accept]>=0} {

set data [read stdin]

if {$data==””} { set data $env(QUERY_STRING) }

uncgi $data params

do_something $params(form_url_arg1) $params(form_url_arg2)

fcgi finish

}

This code snippet shows a typical main loop in an FCGI application. Standard I/O redirection is
used for convenience, and in case there are any communication errors with the Web server, or
shutdown instructions, like closing of the stdin channel, are received from the server, the
application exists. If the application scripts exits, it is (in a typical set-up, this depends on the
Web server configuration) be restarted by the Web server at a later time when the next request
comes in.

fetch
fetch ?-agent agent? ?-cookie cookie? ?-cookielist cookielist?

?-csrftoken token? ?-debug 0/1? ?-filename name? ?-header no/yes/exclusive?
?-modified time_in_secs? ?-password password? ?-referer referer?
?-setcookie cookie? ?-timeout nsecs? ?-tofile 0/1? ?-user username?
?-verification 0/1? ?-xheader1 header? ?-xheader2 header?
?-xheader3 header? url ?statusvar?

fetch(url=,?statusvariable=?,?agent=?,?cookie=?,?cookielist=?,?csrftoken=?
?filename=?,?header=?,?modified=?,?password=?,?referer=?,?setcookie=?,
?timeout=?,?tofile=?,?user=?,?verification=?,?xheader1=?,?xheader2=?,
?xheader3=?)
966 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
This command is used to retrieved data from network locations identified by URLs. The default
action is to fetch the data and return is as uninterpreted byte data, but without protocol header
information. The following options can be used to modify the command action:

• -agent agent
Transmit a specific User-Agent HTTP header string. The default is an innocuous Mozilla
browser name. If the parameter is set to an empty string, no agent name is transmitted.

• -cookie cookie
When requesting the data, transmit the cookie string as part of the request in protocols
which support this. Cookies may be required for access control, or encode modal
information. This option cannot be combined with -cookielist.

• -cookielist cookielist
A variant of the -cookie option. It cannot be combined with the -cookie option. The
argument is a list of simple (no domain or expiration component, in the name=value
format) cookie specifications, which are sent as a bundled collection.

• -csrftoken token
This option simplifies the handling of CSRF tokens. A token specified here is added to
the HTTP header in a X-CSRF-Token: header line.

• -debug 0/1
If set, print debug information about the connection and data transfer on standard error.

• -filename filename
The retrieved data is written to the specified file, and not to a temp file which is the
default if no filename is set and output is routed to a file. This flag implies -tofile 1.

• -header no/yes/exclusive
This option determines whether header information should be retrieved. By default,
header data is discarded. The exclusive mode only reports the header and discards any
body information. This option only makes sense for protocols which differentiate
between header and body information.

• -modified time_in_secs
Only fetch the data if it has been modified since the specified time stamp. The format of
the time value is seconds since epoch, this is the same type as returned by the standard
TCL clock seconds format.

• -password pwd
A password to be used with the user name to supply credentials to the remote server.
Alternatively, it can also be specified as part of the URL in standard notation.

• -referer referer
A referrer string to pass to the server. Yes, this is written with a single R.

• -setcookie cookie
When requesting the data, include header lines to set the specified cookie in protocols
which support this.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 967

CACTVS Tcl and Python Scripting Language Reference
• -timeout nsecs
Set the timeout in seconds. The default timeout is 30 seconds. If the data could not be
retrieved completely within the specified time frame, an error is produced.

• -tofile 0/1
Output to a temporary file instead of an in-memory image. The return value is the handle
of a TCL or PYTHON file channel. Option -file is an alias.

• -user username
A user name to present to the remote server. Alternatively, it can also be specified as part
of the URL in standard notation.

• -verification 0/1
This flag is set by default and forces a certificate verification when using encrypted
connections such as https. If not set, verification is skipped. This is faster, and may be
necessary for sites which have ill-configured certificates, but of course may hide site
identity problems.

• -xheader[123] headerline
These parameters allow the injection of custom lines into the HTTP header. The line data
should be provided without linefeeds, and must contain the header field name.

The url argument is a standard Internet URL. All standard protocol drivers also support the
transport of user id and password information. Internally, this command uses the CURL library.

If a status variable parameter is specified, it is interpreted as the name of a TCL array variable or
PYTHON dictionary which is created if necessary, reset and filled with status information. Its
elements are size (the download data size, without header), lastmodified (the remote file
modification date), location (the last download URL, which can be different from the original
retrieval URL in case of redirects), mimetype (the MIME type of the data, as perceived by the
remote server), various cookie data variants (see below) and finally status for the integer return
status code.

The elements for the cookie data element encoding variants are named cookies (a list/tuple of
all received cookies in Netscape format), cookiedicts (the same as list/tuple of dictionaries, with
dictionary keys identifying the cookie field data components), and individual per-cookie
elements cookie%d and cookiedict%d, where the placeholder is the cookie index starting with
zero. The Netscape cookie format is a tab-separated string of six elements encoding the cookie
domain, its domain access flag, the path, secure access flag, expiration date, cookie name and
value. Splitting these strings to access individual data items should be done explicitly on the tab
character since implicit list conversion is not reliable for this encoding. In the dictionary list and
individual cookie dictionary encoding variants, the dictionaries contain the same information
properly isolated under the keys domain, domainaccess, path, secureconnection, expiration,
name and value. The individual cookie strings are simplified data representations pre-formatted
in the style “name=value” or “name=value; Path=path” (the latter only if an explicitly path
was specified) which is usually the proper form to use when constructing a custom MIME header
with a Cookie: or SetCookie: tag.

If the program is run in -header exclusive mode, the command result is a list of the status
variable values size, lastmodified, mimetype, code, location and cookies, in the order listed,
instead of the fetched data.
968 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
The modification time as well as cookie expiration dates in the status are returned as an integer
(seconds since midnight, Jan 1st, 1970, epoch), suitable for formatting by means of the standard
TCL clock format command. If a modification or expiration date could not be determined, the
reported time value is minus one.

The mime type information may contain, after a semicolon separator, additional encoding
information if reported in this fashion by the server.

When the command is executed, the thread-local ::cactvs(lookup_timeout_occurred) flag
is reset. If the command fails because of a server timeout, but no other causes, the flag is set.

Example:
set data [fetch -timeout 10 ftp://$user:$passwd@$host/$path/$file v_status]

set mimetype $v_status(mimetype)

filecheck
filecheck type filename
filecheck(type=,filename=)

This command is used to check formats and attributes of files. The result is either boolean 1, if
the file is of the checked type, or 0 if it is not. In case of errors, such as a non-existing file, a
standard error condition is raised. These file type checks are currently supported:

• binary
Check whether file looks like a binary (not text) file.

• bzip2 (or bzip)
Check whether file is bzip2-compressed.

• compressed
Check whether file is of a recognized compression type.

• directory
Check whether path is an existing directory.

• dll
Check whether file is a shared library of any type (shared, DLL, bundle). Same as sharedlib
test.

• filter
Check whether file is a CACTVS filter definition file.

• factory
Check whether file is a CACTVS factory definition file. Factory parameter files are not factory
definition files.

• file
Check whether path is a normal file (and not a directory, link, socket, etc.)

• gif
Check whether file is a GIF image.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 969

CACTVS Tcl and Python Scripting Language Reference
• gzip
Check whether file is gzip-compressed.

• html
Check whether file is a HTML file.

• image
Check whether file is an image in a suitable Web format (GIF,JPEG,PNG)

• jpeg (or jpg)
Check whether file is a JPEG-encoded image.

• link
Check whether path is a link (and not a file, directory, socket, etc.)

• local
Check whether file resides on a local file system. Not supported on all platforms.

• object
Check whether file is a compiled object file.

• pdf
Check whether file is a PDF file.

• postscript
Check whether file is a POSTSCRIPT file.

• png
Check whether file is a PNG-encoded image.

• property
Check whether file is a CACTVS property definition file. Both the old keyword/value format
and the new XML format are recognized.

• repository
Check whether file s a CACTVS repository in SQLITE format.

• sharedlib
Check whether file is a shared library of any type (shared, DLL, bundle). Same as dll test.

• shellscript
Check whether file is a shell script.

• special
Check whether file name is one of the magic names recognized by CACTVS, such as stdin or
stdout.

• sqlite
Check whether file a s SQLITE version 3 database file.

• station
Check whether file is a CACTVS station definition file. Station parameter files are not station
definition files.
970 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• tmpfile
Check whether file is residing in the current tmp directory.

• ucs2encoded
Check whether file is encoded in 16-bit Unicode, in either of the two possible byte orders.

These tests operate by examining the first bytes of a file, not by a simple match of suffixes. File
checks which rely on platform-specific binary data layout information only work for the current
platform. On a Sun, a OSX bundle will not be recognized, and vice versa.

insidepolygon
insidepolygon {x y} {{x1 y1} {x2 y2} {x3 y3}...}

insidepolygon x y {{x1 y1} {x2 y2} {x3 y3}...}

insidepolygon x y x1 y x2 y2 x3 y3...

insidepolygon((x,y),((x1,y1),(x2,y2),(x3,y3),...))

insidepolygon(x,y,((x1,y1),(x2,y2),(x3,y3),...))

insidepolygon(x,y,x1,y1,x2,y2,x3,y3,...)

A boolean test to determine whether the test point is on the inside of the polygon defined by the
points {x1 y1}... The first and last points of the polygon are assumed to be connected, so one
should not supply a start and end point duplicate. The minimum polygon size is three points, and
there is no upper limit. The point encoding is determined by the number of arguments (2,3, or
more).

ldelete
ldelete ?mode? list pattern ?pattern?...

Delete elements from a list. The first optional parameter selects the match mode for the patterns.
If can be one of -exact, -nocase, -substring, -regexp, -glob or -index. The standard option list
terminator “--” may also be used. The default mode is exact. The index mode expects element
indices starting with 0 as pattern arguments.

All list elements which match any of the patterns are removed. The command returns the
shortened list, preserving the order of the surviving elements.

This command is not directly supported in the PYTHON interface - the function can easily be
implemented with standard list comprehensions (see for example
https://stackoverflow.com/questions/20349125/removing-a-pattern-from-a-list-items-in-python)

Example:
ldelete -regexp [list a aa ad] {a[abc]+}

returns “a ad”.

lineintersect
lineintersect x1 y1 x2 y2 x3 y3 x4 y4

lineintersect {x1 y1} {x2 y2} {x3 y3} {x4 y4}

lineintersect(x1,y1,x2,y2,x3,y3,x4,y4)

lineintersect((x1,y1),(x2,y2),(x3,y3),(x4,y4))
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 971

CACTVS Tcl and Python Scripting Language Reference
Test whether the line segments from x1/y1 to x2/y2 crosses the line segment from x3/y3 to
x4/y4.

The return value is a simple boolean value. It does not report the intersection coordinates.

lsearch
lsearch ?modeflags? list pattern

This is an extended, but compatible version of the standard TCL lsearch command.

The mode flags may be any combination of -exact, -nocase, -substring, -regexp, -glob, -first,
-all and the option terminator “--”. The default mode is the combination of glob and first, the
same as for the standard lsearch command.

Just as the standard command, matching list indices are returned. In mode first, which
corresponds to the default behavior, the result is the list index >= 0 of the first matching element,
or -1 if the pattern cannot be found. In mode all, a list of the indices of all matching list elements
is returned, or an empty list if no element matches.

The command is not directly supported in the PYTHON interface - use the standard list
comprehension and pattern match functions for this functionality.

Example:
lsearch -exact -all {a b c a b c} a

returns “0 3”.

lsum
lsum nmbers...

lsum(?number,...)

Sum up all number arguments and return the result. All arguments must be numbers.

sum is an command alias.

lvardelete
lvardelete ?mode? listvar pattern ?pattern?...

Delete elements from a list variable. The first optional parameter selects the match mode for the
patterns. If can be one of -exact, -nocase, -substring, -regexp, -glob or -index. The standard
option list terminator “--” may also be used. The default mode is exact. The index mode expects
element indices starting with 0 as pattern arguments.

All list elements which match any of the patterns are removed from the variable. Additionally,
the command returns the shortened list, preserving the order of the surviving elements.

The command is not directly supported in the PYTHON interface - use the standard list
comprehension and pattern match functions for for this functionality.

Example:
set mylvar [list a b c d]; lvardelete myar b d

returns “a c” and sets the variable to the same value.
972 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
mail
mail ?-attachment filename? ?-debug 0/1? ?-file filename?

?-from address? ?-secure 0/1?
?-smtphost hostname? ?-smptpassword password? ?-stmpport port?
?-smptuser userid? addresslist ?subject? ?message?

mail(addresses=,?subject=?,?message=?,?attachments=?,?debug=?,?filename=?,
?from=?,?secure=?,?smtphost=?,?smtppassword=?,?smtpport=?,?smtpuser=?)

Send a simple iso-encoded plain-text email message to one or more recipients. The only
required argument is the recipient email address list. Without subject and body arguments, an
empty message is sent. If the recipient address list is an empty list, or only contains empty
elements, the command silently does nothing. Address list elements which are not empty strings
and ignored must pass a simple email address pattern test before a mail delivery attempt is made.

The optional smtp* arguments specify the access parameters to the mail host. If these options
are not set, they are read from the corresponding control variable elements, i.e.
::cactvs(smpt_host), ::cactvs(smpt_port), etc. If the -secure option is set, an attempt is
made to use encrypted SMPTS communication instead of the plain SMTP protocol, though the
initial protocol negotiation still uses plain SMTP if the SMTP port is not explicitly set to 465. In
absence of an -from argument, the sender address is copied from ::cactvs(user_email).
There is no required relationship between the from address and the mail host access parameters.
The default SMTP port used by this command is 587, not the old standard 25.

Experience teaches that talking to mail servers can be tricky. When the -debug option is set, trace
output from the communication attempts is printed on standard error. This is highly useful to
pinpoint connection problems.

Finally, the -file option allows the direct upload of an existing, readable file as the message. The
file contents are sent as message data, not as an attachment. If both an upload file and a body
argument are specified, the file is inserted first.

The message content is sent as plain Latin1 (ISO8859-1) encoded message. The nature of
line-break characters in the message is not preserved, and additional line breaks are inserted if
any line is longer than 998 characters, the maximum line length in a standard SMTP message.

This command currently neither supports pop-before-smtp authorization, nor the sending of
attachments, though they are accepted as arguments. In the TCL command version, multiple
attachments are specified by repeating the -attachment command. In PYTHON, an attachment file
name tuple is expected, because named function arguments cannot be repeated.

The argument order of the PYTHON command is intentionally different to allow sending of
messages without setting more exotic options. All arguments after the first three must be
specified as named arguments.

Example:
mail -smtphost smtp.gmail.com -smtpuser $user -smtppassword $pw \

-secure 1 wdi@xemistry.com “Hi” "This\nis a message\n"

Above sample command sends a message via Google mail. Of course, a Gmail account bound
to the user and password variables must exist for this command to succeed.

mailcap
mailcap mimetype
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 973

CACTVS Tcl and Python Scripting Language Reference
mailcap(mimetype)

Return the standard opener/viewer for files of the specified MIME type. The result is dependent
of the local configuration.On Windows, the command attempts to find a suitable opener in the
registry, and if it is found, the return value usually contains Windows-specific placeholder tags.

Example:
mailcap chemical/pdb

might return something like “rasmol -pdb %s”

parse
parse base64 arg
parse binary arg
parse casrn arg
parse color arg
parse datauri arg
parse date arg
parse dictionary arg
parse doi arg
parse domain arg
parse element arg
parse elementlist arg
parse email arg
parse formula arg
parse hash arg
parse hex arg
parse inchi arg
parse inchikey arg
parse ipaddr arg
parse jme arg
parse json arg

parse lillyrule arg
parse linenotation arg
parse list arg
parse minimol arg
pasre nativequery arg
parse orcid arg
parse propertyname arg
parse propertylist arg
parse query arg
parse queryformula arg
parse retrievallist arg
parse sln arg
parse smarts arg
parse smiles arg
parse superatom arg
974 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
parse unii arg

parse uuid arg
parse xml arg

parse(class=,data=)

This command checks whether the argument can be parsed as the data type indicated. The result
is a boolean value. No error is raised if the parsing fails, and the parsed data structure is
discarded. The following data types are currently understood:

• base64
base64-encoded data

• binary
The file is binary, i.e. it contains bytes outside the Iso-Latin1 character set which are not
printable, whitespace or line control characters.

• casrn
a Chemical Abstracts registry number. Only the syntactical correctness, including the check
digit, is verified, not whether the number is valid.

• color
a valid color specification, either as a recognized name, or in hash notation.

• datauri
a valid data URI.

• dataurl
this is an alias to subcommand daturi.

• date
a date, time or datetime value of which the format can be automatically detected and parsed

• dictionary
a TCL-style dictionary, i. e. either a TCL dictionary object, or a properly formed list of
keyword and value pairs, as they are also used in some CACTVS interface functions, for
example the parameters attribute of property definitions.

• doi
a properly formed DOI (digital object identifier).

• domain
a properly formed domain name. Only the generic syntax is checked, no DNS look-up is
performed. The domain must contain at least one dot.

• element
an element symbol. Case is disregarded.

• elementlist
a list of element symbols, as they are for example used in the list field of the A_QUERY
property to specify an element list for substructure matching. Superatoms and other element
extensions are not allowed here.

• email
a properly formed email address.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 975

CACTVS Tcl and Python Scripting Language Reference
• formula
a plain molecular formula, without query expressions such as count ranges or pseudo
elements.

• hash
a CACTVS 64bit hash code

• hex
a hexadecimal number. Extra white space is allowed.

• inchi
an INCHI string. This is only supported in interpreter versions with INCHI support. INCHI
support needs to be compiled-in. It cannot be loaded as I/O module.

• inchikey
a INCHI key/hash string. This is only supported in interpreter versions with INCHI support.
INCHI support needs to be compiled-in. It cannot be loaded as I/O module.

• ipaddr
a properly formed IP4 address in dot-separated bytes in decimal encoding.

• jme
a MOLINSPIRATION Java Molecule Editor structure string. This requires the presence of the
JME I/O module. An attempt is made to auto-load it if it is not already in memory. If the
module cannot be loaded, an error results, even if the string is syntactically correct.

• json
a properly formatted JSON blob

• lillyrule
Check syntax of a match expression in Bruns/Watson notation (J. Med. Chem. 2012, 55,
9763-9772

• linenotation
a string which can be decoded as standard structure line notation, as recognized by ens
create without any extra flags.

• list
a properly formed TCL-style list

• minimol
a CACTVS Minimol in binary or hex-encoded variants

• multilineascii
A multi-line ASCII or Latin1 string. It must contain line breaks, and cannot contain
non-printing characters other than standard whitespace.

• nativequery
a query expression, as used in molfile scan and other scan commands, in native toolkit
notation. This excludes queries in the Lilly format.

• orcid
a properly formatted ORCID (www.orcid.org) identifier. The general format and the check
digit are verified, but not whether this ID has been issued.
976 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• propertyname
a string which conforms to the standard syntax of CACTVS property names. It is not checked
whether the property is defined.

• propertylist
a list of toolkit property names. An attempt is made to auto-load properties for which no
definition is in memory. This command can also be spelled as proplist.

• query
a query expression, as used in molfile scan and other scan commands. Both the native
toolkit style and the Bruns/Watson Lilly notation are recognized.

• queryformula
a formula query expression, as used in the molfile scan and other scan commands.

• retrievallist
a data retrieval list, as used in molfile scan and other scan commands.

• sln
a valid Sybyl line notation string. This requires the presence of the SLN I/O module. An
attempt is made to auto-load it if it is not in memory. If the module cannot be loaded, an error
results, even if the string is syntactically correct.

• smarts
a valid SMARTS string, including Recursive SMARTS

• smiles
a valid SMILES string

• superatom
a superatom which can be decoded from the current superatom table entries without
ambiguity

• uuid
an UUID in standard 8-4-4-4-12 notation, syntactically checked in case-independent fashion

• unii
a FDA UNII registry number in all-lower or all-upper case. Only the syntactical correctness,
including the check digit or letter, is verified, not whether the UNII is valid.

• xml
a well-formed XML document

passwd
passwd encode cleartext_pw ?salt?
passwd decode encrypted_pw cleartext_pw
passwd(mode=”encode”,password=,?salt=?)

passwd(mode=”decode”,password=,cleartext=)

The first command variant encodes a clear-text password with the standard Unix crypt()
algorithm. A salt value for the password generation may be specified as exactly two letters from
the set “a-zA-Z0-9./”. If no salt is specified, a random value is used. The command returns the
encoded version of the clear text.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 977

CACTVS Tcl and Python Scripting Language Reference
The second variant returns 0 or 1, depending on whether the clear text password matches the
encrypted version or not.

This command is supported on Windows, the crypt() function is provided by a compatibility
function compiled into the library code.

Example:
passwd encode topsecret XX

yields something like “XX9Kadd0cpq.o”.
passwd decode XX9 topsecret

returns 0, while
passwd decode XX9Kadd0cpq.o topsecret

returns 1. Note that without the specification of a salt parameter the encoded result is different
each time in a random fashion. However, the password check works without knowing the salt
with encrypted passwords encoded with each possible salt.

post
post ?-accept accepts? ?-agent agent? ?-boundary text? ?-cookie cookietext?

?-contenttype mimetype? ?-cookie cookietext? ?-csrftoken token?
?-debug 0/1? ?-fieldcontenttype type? ?-host hostname?
?-language languagecode? ?-password pwd?
?-raw? ?-referer referer? ?-setcookie cookie? ?-timeout secs?
?-uploads uploaddictionary? ?-user username? ?-verifyhost 0/1
?-xheader1 headerline? ?-xheader2 headerline? ?-xheader3 headerline?
url ?fielddictionary/rawdata? ?statusvariable?

post(url=,?data=?,?accept=?,?agent=?,?boundary=?,?cookie=?,?contenttype=?,
?csrftoken=?,?debug=?,?fieldcontenttype=?,?host=?,?languate=?,
?password=?,?raw=?,?referer=?,?setcookie=?,?timeout=?,?uploads=?,?user=?,
?verifyhost=?,?xheader1=?,?xheader2=?,?xheader3=?,?statusvariable=?)

Assemble the code for a HTTP or HTTPS POST message in (by default) multipart/form-data
encoding, transmit it to a remote server and read the response.

In the standard command mode, the field dictionary parameter is a list of field names and their
contents to include in the POST message. The transfer format is binary, so it is possible to send
byte array data. The default individual field mime format is text/plain, but PNG and GIF images
as field data are automatically recognized and sent as image/png and image/gif, respectively. In
order to mirror the data encoding characteristics of file upload HTML form elements faithfully,
an optional uploads dictionary can be provided. It is a key/value collection where the keys are
field names that are file upload elements in the emulated Web form. They also need to be
contained in the field dictionary as field name / field data pair. Field names only present in the
uploads directory are ignored. The upload dictionary values are the filename attribute of the
transmitted fields. The encoding of transmitted data for fields in this dictionary is modified so
that the content type is always set to application/octet-stream instead of text/plain. Whether the
configuration of the upload dictionary is required or not when emulating the submission of
forms with upload fields depends on the extent of the data analysis performed on the side of the
contacted server, but its use does not potentially introduce new problems. File contents are not
automatically opened and read. Their contents must be provided in the field dictionary.

If the -raw flag is set, no interpretation of the field dictionary parameter takes place. Instead, the
value of this parameter is transmitted verbatim as byte sequence in the message body. In this
mode, it is assumed that it already contains all field formatting and only needs to be augmented
978 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
with the HTTP header data. The TCL version of the command uses this flag as a stand-alone
parameter, while in the PYTHON version it requires a boolean value specification.

The other optional parameters allow the setting of additional fields in the header of the POST
command. The -boundary attribute is the MIME separator string. Its default value is a random
string that is highly unlikely to occur in any transmitted data. The default content type for the
form submission is multipart/form-data, but this may be adjusted with the -contenttype
parameter. The short argument forms multipart (or formdata) and urlencoded select the standard
encodings multipart/form-data and application/x-www-form-urlencoded. Other values of this
option are sent verbatim to the server after a Content-Type: keyword. The additional attributes
of file upload fields are ignored in urlencoded mode.

If the -accept option is set, this defines the accepted encoding formats of the data sent from the
server. The value corresponds to the the HTTP Accept: header format. The argument of the
-language option is passed to the Accept-Language: HTTP header field. By default the Host:
HTTP header is extracted from the destination URL, but a custom value can be set with the -host
option. The -xheader[123] parameters allow the injection of custom lines into the HTTP header.
The line data should be provided without linefeeds, and must contain the header field name. The
-csrftoken option simplifies the handling of CSRF tokens. A token specified here is added to the
HTTP header in a X-CSRF-Token: header line.

Field content is normally posted with a “text/plain; charset=utf8” type header, except for data
which is recognized to be in another well-known format (like GIF or PNG images), where the
proper standard type is substituted. The -fieldcontenttype attribute can be used to override
this default typing. If it is set to an empty string (or Python None), the fields are posted without
type information. Individual typing of fields is currently not supported.

If the -verifyhost option is set to false, and the connection uses SSL encryption, the remote host
identity is not rigorously checked against its SSL certificate. This allows interaction with hosts
which used mis-configured SSL certificates, but this lenient approach is obviously a potential
security issue and should only be used when necessary. The other parameters have the same
meaning as in the related fetch command.

If the name of a status variable is specified, it is created or reset in the local namespace, and filled
with the elements status (the HTTP server error code, 200 for normal retrieval), size (the length
of the received content in bytes), cookies (a list of all cookies received in Netscape string
format), cookiedicts (a list of cookies in dictionary form), location (the response URL, which can
be different from the command argument in case of server redirection), lastmodified (the
modification time stamp of the result data, if available, -1 otherwise) and contenttype and
mimetype (the MIME type of the response). In addition, every cookie is individually stored as
element cookiedict%d, starting with index zero and with the seven elements domain,
domainaccess, path, secureconnection, expiration, name and value that are contained in the
standard Netscape cookie encoding. The variable element names are compatible to those used
in the fetch command.

It is possible to omit the field dictionary argument if an empty message is to be sent. The URL
may also contain field arguments in URL encoding, but whether these are recognized in addition
to the data in the field dictionary depends on the destination server configuration.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 979

CACTVS Tcl and Python Scripting Language Reference
When the command is executed, the thread-local ::cactvs(lookup_timeout_occurred) flag
is reset. If the command fails because of a server timeout, but no other error causes, the flag is
set.

The argument order is intentionally different for PYTHON in order to allow simple submissions
without named arguments. All arguments after the data item must be set as named arguments.

Example:
set data [post -contenttype urlencoded -cookie $c -debug 0 \
-csrftoken [dict get $dcsrf value] \
-referer https://mcule.com/search/ \
https://mcule.com/search/post \
[dict create csrfmiddlewaretoken [dict get $dcsrf value] mode exact structure_2
$mdata]]

prod
prod args...

prod(?arg?,...)

Interpret the arguments as numeric values and compute their product. If called without
arguments, the function returns one.

python
python eval expression
python exec statements

Execute a PYTHON command or expression from TCL. This command is only available in
interpreters which include a PYTHON subsystem. This command is not supported in PYTHON, but
on that side, comparable tcl() and tcl1() method exist.

For the eval variant, only a single statement may be processed, and the result of that statement
is returned to TCL. Longer statement blocks can be processed with the exec command variant,
but in that case the result is always an empty string if no error occurs. This is a limitation of the
PYTHON API. In case an error is raised, its description is transferred back as TCL result string, and
the command also reports an error.

The PYTHON interpreter version is currently 3.6. It is fully featured with access to the complete
PYTHON standard library, and can be instructed to import additional modules.

At this time, only a single primary PYTHON interpreter exists in PYTHON-enabled toolkit
applications. It is mutex-protected and can be called from multiple TCL threads, but not
simultaneously. Property computation PYTHON sub-interpreters are internally used, but not
accessible via this command.

The PYTHON interpreter in the standard toolkit context (but not when loaded as PYTHON module)
has already imported the pycactvs and sys PYTHON modules. All pycactvs functions and other
objects are explicitly imported and can by used without a module prefix. The pycactvs.tcl()
and pycactvs.tcl1() functions allow scripts to double back and execute a Tcl command in
the main Tcl interpreter from within PYTHON.

Examples:
set five [python eval “2+3”]
980 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
python exec “print(‘hello world’)”

set eh [python eval “tcl(‘ens create CCC’)”]

The first example computes a simple expression in PYTHON and returns the result. It is
automatically efficiently encoded as a TCL integer object.

The last example executes a command in the PYTHON interpreter, which itself turns back to the
TCL interpreter to execute an ens create statement. Toolkit objects are shared between the
PYTHON and TCL interpreters. The newly created ensemble object is known and accessible in both
languages simultaneously.

quote
quote arg

Perform an efficient string quoting operation of a Latin1 string. The result is a string which
contains only 7-bit printable characters. Characters outside this range are encoded as
backslash-encoded octets or standard backslash escape sequences such as ’\t’ or ’\\’. The code
for this command was copied from the TCL Netscape plug-in.

The command is not supported in the PYTHON interface because of the different string handling
semantics in that language.

random
random limitval ?sequencesize ?seedval|reset?
random seed ?seedval?
random reset

random hex32 ?seedval/reset?
random hex64 ?seedval/reset?
random hex128 ?seedval/reset?
random uuid

random(limitval,?sequencesize?,?seedval|”reset”?)

random(“seed”,?seedval?)

random(“reset”)

random(“hex32”,?seedval|”reset”?)

random(“hex642”,?seedval|”reset”?)

random(“hex128”,?seedval|”reset”?)

random(“uuid”)

Generate integer pseudo-random numbers. In the simplest command variant, the limitval
parameter is an upper exclusive bound. The returned pseudo-random number is in the range 0
to limit-1. By default, only a single number is returned. If a non-empty sequencesize parameter
is added, the specified number of pseudo-random numbers is returned as a list. If the third
optional parameter is the string reset, the random number generator is reset to its default start
state. Alternatively, a numerical seed value can is used to initialize it to a different initial state
before computing the random numbers..The random numbers are always the same sequence for
a given initial state. If this is not desired, some pseudo-random seed, such as the current clock
click value, should be used.

The random seed and random reset command variants can be used to manipulate the state
without starting the random number generation. The seed subcommand without a seed
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 981

CACTVS Tcl and Python Scripting Language Reference
argument uses a combination of a high-resolution timer and the process ID as seed value and is
the recommended method to set up the generator for non-repeatable randomness.

The random hexxx variants directly return hex string encodings of 32, 64 or 128 bit integers,
which possess fixed string lengths of 8, 16 and 32 characters, respectively. Optionally, this
operation again can be combined with a reset operation or a seed value.

The uuid subcommand generates a new UUID. This function is independent of the normal
random state.

This command is thread-aware. Every script thread has its own random state, and random
number generation or state manipulation in one thread has no effect on any other interpreter
thread. The uuid subcommand is the sole exception - it is not thread-aware, and not coupled to
the thread-local random state of the other commands.

This random number command overrides the standard TCLX command of the same name and
provides a superset of its functionality, in addition to thread-awareness.

Example:
random seed

foreach r [random 16 8] {...}

rpc
rpc bynumber servicenumber
rpc byname servicename
rpc(mode=’bynumber’,arg=)

rpc(mode=’byname’,arg=)

Look up RPC services by name or service number. If the service can be found, the result is a list
consisting of the service name, the service number, and a list of all name aliases.

This command is supported on Linux/Unix only, and only in special builds.

screen
screen ?-aromatch lenient|normal|strict? ?-frags?

?-hydrogens ignore|match|mark? ?-mode ligands|smarts? ?-nobondorder?
?-tauto? ehandle patternlist ?exactmatchvar?

screen(ens=,patterns=,?aromatch=?,?frags=?,?hydrogens=?,?matchvariable=?,
?mode=?,?nobondorder=?,?tauto=?)

Perform fragment-based bit screening on an ensemble object. If the -frags option is not set, he
result is a bit vector of the same length as the pattern list, with bits set to zero or one depending
on whether a pattern fragment matches or not. If -frags option is set, the return value is a list of
the patterns which match, copied verbatim from the pattern list argument.

If the optional exact match variable parameter is given, it is the name of a TCL or PYTHON variable
which is set to one if the input ensemble is of exactly the same connectivity (without
stereochemistry or isotopes) as one of the pattern fragments. If no pattern is an exact match, it
is set to zero.

The expected format of the pattern list depends on the match mode. The default match mode is
ligands, which can be explicitly set by supplying the argument to -mode. The other possible
match mode is smarts, set by -mode smarts.
982 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
In smarts mode, the patterns are normal SMARTS strings. These are cached internally, so if
patterns are reused, and the total number of patterns is not too large for the cache, they are not
decoded anew for every command invocation.

In ligands mode, a simpler pattern language which is faster to decode and match is used. The
patterns are either two element symbols, connected by a bond symbol (- for single bond, = for
double, * for triple, # for quadruple, ~ for aromatic - note that this is different from SMILES!),
or an element, followed by a sequence of bracketed ligands, each with a preceding bond symbol.
Patterns like these describe one central atom (the first element in the pattern), with one or more
ligands. Examples are “P=O” or “C(-Cl)(=O)” or “C(-H)(~C)(~C)”. For internal reasons, all
multiple bonds in a pattern must be written before any aromatic bond.

The -aro option controls how aromatic systems in the ensemble are matched. The default is
normal, meaning that single and double bonds in SMARTS patterns match aromatic bonds in the
ensemble, regardless of their Kekulé bond order, and single bonds in ligands patterns match
aromatic ensemble bonds. In strict mode, non-aromatic bonds in the pattern do not match
aromatic ensemble bonds. This mode has an effect only for smarts matching, not ligand
matching. The aro match mode lenient only has an effect on matching ligand patterns. If not
selected, ligand pattern double bonds do not match aromatic ensemble bonds. If the mode is
lenient, they do.

If the -tauto flag is set, the matching of both ligand and SMARTS patterns is further modified.
In ligands mode, tautomeric ensemble bonds (as per property B_ISTAUTOMERIC) are excluded
from any match which requires an exact bond order match. In smarts mode, the matched
fragment must be compatible with a tautomeric form with shifted bond orders and relocated
hydrogen atoms. This flag is intended to be used to construct a screening bit string for
tautomer-tolerant substructure searches. Because less patterns can be positively identified to be
matching under these circumstances, these bit strings have generally less bits set, and are
therefore less effective filters.

If the -nobondorder flag is set, bond orders of pattern fragments of both types are ignored.

The -hydrogen option controls how patterns with hydrogen atoms are handled. By default, in
mode match, they are matched like any other pattern. In mode ignore, patterns with hydrogen
never match. This is the mode to use if a screen vector for superstructure search is constructed.
In mode mark, any pattern which contains a hydrogen atom reports a match, and any pattern
which does not a mismatch. This mode is intended to be used for construction of bit masks for
the removal of any bits from a screen vector which are hydrogen-dependent. This allows for
example the re-use of a substructure screen vector for superstructure search.

The PYTHON version of the command intentionally has a different argument order than the TCL
version. Additionally, single-word arguments in the TCL version must be specified as named
arguments with a boolean value. All parameters after the pattern set must be passed as named
arguments.

sqsum
sqsum args...

sqsum(?arg?,...)

Interpret the arguments as numeric values and compute the sum of the squared values.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 983

CACTVS Tcl and Python Scripting Language Reference
stddev
stddev arg arg ?args?...

stddev(arg,arg,?arg?,...)

Interpret the arguments as numeric values and compute their standard deviation. A minimum of
two arguments is required.

sum
An alias for lsum.

tmpdir
tmpdir

tmpdir()

This command returns the current potentially application-specific directory for temporary files
(/tmp or C:/temp or similar).

tmpname
tmpname ?prefix? ?directory? ?suffix?
tmpname(?prefix=?,?directory=?,?suffix=?)

Generate a valid name for a temporary file. The file name prefix, the suffix as well as the
directory may be specified. If these parameters are omitted, or set to empty strings (including
None for PYTHON) a temporary file in the standard tmp directory and with a file name prefix
derived from the application name (obtained via invoking the command infox appname in the
current TCL interpreter, where the standard TCL features to configure its results apply) is
generated.

Example:
tmpname myapp {} .res

returns something like /tmp/mya2462.res, dependent on the operating system and local set-up.

uncgi
uncgi ?-noreset? cgi_string ?variable? ?untrimmedfields?

?fieldname default?...
uncgi(cgi_string=,?defaults=?,?noreset=?,?untrimmedfields=?,?variable=?)

This command decodes CGI data, as it is delivered to a CGI application from data input in a
WWW form via the Web server. It automatically recognizes the two standard transfer formats
application/x-www-form-urlencoded and multipart/form-data and adjusts the decoding process
accordingly.

The cgi_string input data can be obtained either from the QUERY_STRING environment variable
(PUT forms, or direct CGI URLs), or from reading the stdin channel (POST forms). A typical code
snippet in case the data submission method is not known is:
fconfigure stdin -translation binary

set data [read stdin]

if {$data==””} { set data $env(QUERY_STRING) }
984 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
uncgi $data params

The return value of this command is a dictionary with name/value pairs. This dictionary can be
read into an array variable by the standard array set TCL command. If the optional variable
parameter is used, an array variable of that name is automatically created or reset and filled with
the decoded data in the form of array elements.

By default, leading and trailing white space is removed from the decoded data. Fields for which
this white space removal should not be performed can be listed as a standard TCL list in the
untrimmedfields parameter. These fields are decoded without any processing.

Note that it is generally advisable to set the stdin input channel to binary mode before reading
the CGI data. On Unix, this is likely to be a no-op, but the transfer of binary data on Windows
usually does not work at all without this setting.

For security reasons, certain XML/HTML-style tags, including their inner text if they possess it,
are automatically removed from the input data. The currently deleted tag list is <embed>,
<frame>, <iframe>, , <object>, <script> and <style>. This tag deletion cannot be
suppressed.

Data of type multipart/form may transfer additional parameter attributes for the data together
with the actual content. In case of file uploads from Web forms, the original client-side file name
is captured in an additional result element named by appending “_filename” to the basic data
field name. The MIME type of the data, if transmitted, is similarly stored in an extra element with
the appended name part “_type”.

A single unnamed field in the data string is accepted by the decoder. The data is stored as
element unnamed in the decoded result.

In case a field name is occurring more than once in a data string, the additional instances are
appended to the first instance as list elements. The final content of the decoded field is then a
list of all values found in the input.

If an output variable parameter is used, all existing array elements are removed before decoding
starts. In case results should be accumulated, the -noreset option can be used to suppress the
variable reset step.

After the parameter listing fields not to be trimmed an arbitrarily long list of pairs of field names
and their default values can be specified. If a field name listed there was not present in the input
data, it is set in the result list and array variable with the default value following the field name.

The structure of the arguments is intentionally different in the PYTHON version of the command.
All arguments after the CGI data must be passed as named arguments. The noreset option
requires a boolean argument value. Instead of an open argument set for field names and their
default after the standard arguments a dictionary with field names as key and defaults as values
is used.

Example:
URL: http://www.example.com/cgi-bin/doit.tcl?a=alpha&b=beta&b=gamma

The data sent by invoking the CGI script via this direct URL can be decoded in the doit.tcl script
with the statement
uncgi $env(QUERY_STRING) params
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 985

CACTVS Tcl and Python Scripting Language Reference
An array variable named params is set up, or reset if already present, and it contains exactly two
elements: Element a with value “alpha”, and element b with value “beta gamma”

unzip
unzip nested_list ?index?
unzip(data=,?index=?)

Extract a list of indexed elements from a nested list. From each element of the nested input list,
the element indicated by the index parameter is selected and appended to the result list. If the
index parameter is omitted, the default is zero. If a selected list element does not exist, an empty
string is substituted.

Example:
set l2 [unzip {{a 1} {b 2}} 1]

The l2 variable is set to a list with elements 1 and 2.

upload
upload filename url ?mimetype?
upload(filename=,url=,?mimetype=?)

Upload a file to a remote destination. The first argument is a path to a local, readable file. The
second argument is an URL which indicates the transfer protocol and the remote location. The
optional final argument is e MIME type specification which is transferred to the remote host in
addition to the file content. If it is not specified, the type is implicitly
application/octet-stream.

The supported protocols currently are:

• sftp and ftp
Standard or secure file transfer protocol. The URL follows the standard schema
ftp://?user?:password?@?host?:port?/?path/??filename?
sftp://?user?:password?@?host?:port?/?path/??filename?

• Amazon S3
Store the file in an Amazon S3 bucket. The URL follows the standard schema
s3://bucket/?path/?filename
Additionally, the URL query parameters secret, key, acl and region are recognized. If the
AWS parameters are not specified in the URL, the values are taken from
::cactvs(default_aws_secret), ::cactvs(default_aws_key),
::cactvs(default_aws_acl) and ::cactvs(default_aws_region).

The ACL can be any of private, public-read, public-read-write, authenticated-read,
aws-exec-read, bucket-owner-read, bucket-owner-full-control or log-delivery-write (see AWS
documentation). The default is private. The available AWS regions are frequently updated,
please refer to the AWS documentation. The specified value is not checked on the client side.

Example:
upload mydata.sdf s3://$bucket/folder1/mydata.sdf?region=eu-central-1

In this example, the global control variable settings for the AWS key, secret and ACL are used,
while the storage region is explicitly specified.
986 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
vec
vec add v1 ?v2?...
vec centroid p1 p2 ?p3?...
vec create vspec
vec crossproduct v1 v2
vec degangle v1 v2
vec distance p1 p2 ?p3?...
vec dotproduct v1 v2
vec fitline p1 p2 ?p3?...
vec fitplane p1 p2 p3 ?p4?...
vec len v1
vec len p1 p2 ?p3?...
vec negate v
vec normalize v
vec plane p1 p2 p3 ?p4?...

vec planenormal p1 p2 p3

vec pt_line_distance p1 p2 v2
vec pt_plane_distance p1 d v1
vec radangle v1 v2
vec scale v d
vec subcommands

vec subtract v1 ?v2?...
Vec(vspec)

Vec.Create(vspec)

dir(Vec)

v.add(?v1?,...)

Vec.Add(?v1?,...)

Vec.Centroid(p1,p2,...)

p.centroid(p1)

v.crossproduct(v1)

v.degangle(v1)

Vec.Distance(p1,p2,?p3?,...)

p.distance(p1)

v.dotproduct(v1)

Vec.Fitline(p1,p2,?p3?,...)

Vec.Fitplane(p1,p2,?p3?,...)

Vec.Len(v1)

Vec.Len(p1,p2,?p3?...)

v.len()

p.len(p1,?p2?,...)

v.negate()

v.normalize()

Vec.Plane(p1,p2,p3,?p4?,...)

Vec.Planenormal(p1,p2,p3)

Vec.PtLineDistance(p1,p2,v2)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 987

CACTVS Tcl and Python Scripting Language Reference
p.ptLineDistance(p2,v2)

Vec.PtPlaneDistance(p1,d,v1)

p.ptPlaneDistance(d,v1)

v.radangle(v1)

v.scale(d)

v.subtract(?v1?,...)

Vec.Subtract(?V1?,...)

v + v1

v - v1

v += v1

v -= v1

v * v1

-v

This command provides a couple of useful 3D vector and point manipulation commands. In the
TCL case, the points and vectors are internally standard TCL list objects with floating point
elements, so operations are not blazingly fast but still reasonably effective for routine vector
arithmetic. Vectors are not toolkit objects, there is nothing to destroy when they are no longer
needed. In the PYTHON implementation, there is a custom point/vector object which holds a triple
of floating-point values.

This simple utility command only supports vectors and points of 3 dimensions. There is no
syntactic difference between vectors and points. The exact interpretation depends on the
context.

Vectors can be decoded from a variety of string representations. A vector can be made from

• one of the reserved names x, y, z, xy, xz, yz or xyz, optionally prefixed by a minus sign.
These forms generate a 3D vector of length one pointing into the indicated positive or
negative direction.

• By the reserved name origin (or o). This sets up a 0.0/0.0/0.0 origin point.

• A triple of floating point values.
The vector components are directly taken from these numbers. No normalization takes
place. The triple can be specified either as three numbers, or a string which is parsed.

• A pair of floating point values.
The z coordinate is set to zero. The x/y parts are not normalized.

• A single floating point value.
All vector components are initialized to that value. No normalization is performed.

The following subcommands are understood:
vec create arg1 ?arg2 arg3?

Create a point or vector and return its fully expanded numerical representation. If only one
argument is given, any of the standard representations is accepted. In case three arguments are
provided, they are internally concatenated and this list submitted to the decoding procedure. The
command result, if the arguments could be decoded, is the numerical vector representation. The
vector commands generally understand both resolved vectors, and the short forms which can be
decoded by this command, to in many cases, explicit syntax resolution is not required.
988 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
vec add v1 ?v2...?

Add two or more vectors. The return value is the vector sum. Subcommand aliases are plus and
+. The PYTHON implementation provides both class and object methods. Additionally, the + and
+= numerical operators are overloaded.
vec subtract v1 ?v2...?

Add two or more vectors. The return value is the vector sum. Subcommand aliases are minus
and -. The PYTHON implementation provides both class and object methods. Additionally, the -
and -= numerical operators are overloaded.
vec degangle v1 v2
vec radangle v1 v2

Compute the vector angle between v1 and v2 in degrees or radians. The subcommand may be
shorted to deg or rad.
vec len v1
vec len p1 p2 ?p3...?

If only a single argument is specified, interpret the argument as vector and compute its length.
In case multiple arguments are used, compute the length of the straight, acyclic path between
the points.
vec distance p1 p2 ?p3...?

Return a list of the distances between point one and two, two and three, and so on. For two
arguments, the result is the same as using vec len, but if there are additional points, the
individual distances between the waypoints are returned as a list instead of the total length of
the path.
vec centroid p1 p2 ?p3...?

These command aliases compute the centroid of the points passed as argument. The return value
are the centroid point coordinates. midpoint is a subcommand alias.
vec dotproduct v1 v2

Compute the dot product of the two vectors. The result is a floating point value. dot and * are
subcommand aliases.
vec crossproduct v1 v2

Compute the vector cross product of the two passed vectors. The return value is the cross
product vector. The subcommand may be abbreviated as cross, and additionally prod, product
and x are subcommand aliases. In Python, the * multiplication sign is overloaded with this
function.
vec negate v1

Negate the vector. This is equivalent to scaling with minus one.
vec normalize v1

Normalize vector to length one. The normalized vector elements are the return value. unit is a
subcommand alias.
vec scale v1 d

Scale length of vector v1 by the specified floating point factor. The return value is the scaled
vector.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 989

CACTVS Tcl and Python Scripting Language Reference
vec fitline p1 p2 ?p3...?

Fit a line to a set of points. The return value is a list of a line point and the direction vector.
vec fitplane p1 p2 p3 ?p4...?

Fit a plane to a set of points. The result is returned in Hesse normal form: The closest distance
of a plane point to the origin, and the normal vector of the plane.
vec plane p1 p2 ?p3...?

Compute a plane (fitted in case more than three points are specified) spanned by the specified
vectors. The result are two orthogonal plane vectors.
vec planenormal p1 p2 p3

Get the normal vector of the plane specified by the three points.
vec pt_line_dist pt l_point l_vec

Compute the distance between a point (coordinates in first argument) and a line in 3D space
(specified by an anchor point on the line and the direction vector).
vec pt_plane_dist pt p_dist p_normalvec

Compute the distance between a point (coordinates in first argument) and a plane in 3D space
(specified in Hesse form, i.e. smallest distance of any point on the plane to the origin and plane
normal vector).

zip
zip list1 ?listn?...
zip(sequence,?sequence...?)

Merge one or more lists. The result is a nested list where each element is a sequence of input
list elements at the corresponding position. The size of the largest input list determines the
output. If any input lists are shorter than another input list, empty elements (None for PYTHON)
are substituted.

Example:
set l [zip {a b c} {1 2}]

The result is a single list „{a 1} {b 2} {c {}}“

It is possible and sometime useful to use only a single argument list. Here, every element is
reformatted so that itself is a proper nested list. Example:
set l [zip {a {b c} d}]

The result is a list „{a {{b c}} d}“ with an extra nesting level to protect the middle element
so that it can a reclaimed unchanged by un-zipping with a command like
set l0 [unzip $l 0]
990 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Tcl and Python Environments

When a TCL script is started, the standard set of TCL and, if running with the TK widgets support, TK
variables is available in the interpreter.

In addition, the toolkit provides access to internal toolkit status information via the global array
variable ::cactvs in TCL, or a dictionary with the same name in PYTHON. It is automatically visible
both in the top-level interpreter and in slave and thread interpreters. Additionally, the control
variables in the language interpreters are linked, i.e. a change made by TCL is visible in the PYTHON,
and vice versa.

Many of the elements in the array may be modified by script commands. If they are manipulated this
way, their effects are immediate, but not persistent, and usually visible in all interpreters and, if the
value is linked to a core library value, throughout the library for compiled code. The exception are
specific elements which are thread-local. Changes to these only modify the seen data to all
interpreters in that thread, and library code executing in that thread context.

Parameter changes are forgotten the next time the interpreter is executed.

• cactvs(allowed_read_locations)
A set of directories which are accessible to the software as data file input locations. If it is
an empty set, no directory access check is performed. All toolkit commands which use file
I/O perform check their access rights against this list. This option is primarily useful when,
for example, allowing a Web tool to execute external script code. Such a feature should then
always be combined with a standard safe TCL interpreter configuration. This is a read-only
element. It can be modified by the start-up configuration file.

• cactvs(allowed_write_locations)
A set of directories which are accessible to the software as data file output locations. If it is
an empty set, no directory access check is performed. All toolkit commands which use file
I/O perform check their access rights against this list. This option is primarily useful when,
for example, allowing a Web tool to execute external script code. Such a feature should then
always be combined with a standard safe TCL interpreter configuration. This is a read-only
element. It can be modified by the start-up configuration file.

• cactvs(application)
Short application name.

• cactvs(application_build_date)
The build date of the main program or interpreter, in seconds since 1970, suitable for use
with clock format.

• cactvs(application_long_name)
Long name of application.

• cactvs(application_mode)
A code for the type of application context the TCL interpreter is operating in. Possible values
are 0 (undefined), 1 (simple standalone executable), 2 (executable running encapsulated TCL
script), 3 (full interactive interpreter), 4 (restricted interactive interpreter), 5 (full interpreter
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 991

CACTVS Tcl and Python Scripting Language Reference
running command script), 6 (restricted interpreter running command script), 7 (link library
for 3rd party application), 8 (TCL module for 3rd party TCL interpreter), 9 (TCL module for
TCL Web browser plug-in), 10 (PYTHON module with secondary TCL partner interpreter for 3rd
party PYTHON interpreter) or 11 (database UDF module).

• cactvs(aromaticity_model)
The aromaticity model to use. Possible values are cactvs (the default), daylight (which has
some nasty problems, but using it will improve compatibility of the results of Smarts
matching with Daylight software, and tripos, for a really weird and not very useful system.

• cactvs(async_computation_receiver_port)
Port number used for asynchronous networked property computation requests.

• cactvs(auto_container_creation)
If set, wrapper containers implied by property data retrieval statements on potential
container element objects are automatically created. By default, such a data query fails if the
container does not yet exist. Examples are the retrieval of reaction property data from an
ensemble (if the ensemble is not yet part of a reaction, a reaction is created, and the ensemble
becomes the reagent component), or dataset property data from any object which could be
a dataset element (ensembles, reactions, tables, networks, but not datasets themselves, here
the query accesses the data content of the original dataset).

• cactvs(auto_exit_timeout)
The spent CPU time in milliseconds after the program automatically terminates. If the value
is zero, no timer is set.

• cactvs(auto_vector_extension)
A boolean flag which controls the behavior of the toolkit when individual elements of vector
property data are set with an element index that is larger than the current size of the vector.
By default, only existing vector indices (0 to $size-1) and the new element just beyond
current vector size ($size) may be used. If the flag is set, any vector index may be
addressed. Missing vector elements between the newly set element and the current vector
size are filled with default values.

• cactvs(auxdatapath)
Search path for auxiliary data files required by computational modules.

• cactvs(base_os)
The operating system core version, i.e. something like Linux 2.6 or Linux3.11 for Linux
distributions. This is a read-only string.

• cactvs(biologics_count)
The current number of biologics objects in memory. This is a read-only attribute.

• cactvs(biologics_table)
The handle of the table with biologics fragment expansion data (usually this is table3). This
attribute is read-only.

• cactvs(biologics_support)
Read-only boolean flag indicating whether this toolkit version has been compiled with
biologics object support.
992 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(bmp_support)
Read-only boolean flag indicating whether this toolkit version support image generation in
various legacy Windows bitmap formats.

• cactvs(bunzip2_program)
The fully resolved path name of the bunzip2 program used for I/O of bz2-compressed files.

• cactvs(byte_order)
A read-only element informing about the byte order of the current platform. It is set to to
either littleendian or bigendian.

• cactvs(cache_lifetime)
CACTVS maintains a cache in the user‘s home directory to cache files obtained from databases
and Internet URLs. This parameter defines the lifetime of objects in the cache in seconds.
Older files are ignored and searched again via their type-specific standard search path.

• cactvs(captcha_image_file)
The name of the file with last CAPTCHA image received as result of an attempt to contact an
Internet service. This can happen for example when up- or downloading a Google Docs
spreadsheet table file. If no such file exists, the element is an empty string. The file is also
deleted and the variable is reset when a decoded CAPTCHA was successfully used for log-in.

• cactvs(captcha_string)
The decoded contents of the CAPTCHA image file above. Its contents are used when
attempting to access protected Internet sites. This variable must be set with user interaction.
By default, it is a NULL string.

• cactvs(captcha_token)
The access token associated with the CAPTCHA image file and decoded string. This is used
as credential for Internet service log-ins. The variable is typically set together with the
CAPTCHA image file when a service requires additional authentication. Scripts would then
present the image, get the user to decode it, store the decoded string in the
cactvs(captcha_string) variable and then attempt another log-in. Modules which
support CAPTCHA log-ins automatically read and set the CAPTCHA variables in the course of
their operation.

• cactvs(cmdxpath)
Search path for TCL command extension modules. The standard TCL package path is
automatically added to this search path. The main difference between a CACTVS TCL
expansion and a standard TCL package is the presence of a descriptor structure with
metadata. CACTVS TCL extensions may be loaded as normal TCL packages, but then do not
provide access to the module description data via the cmdx command.

• cactvs(color_support)
A read-only boolean flag indicating if the decoding of named colors is supported, either by
access to a local X11 color names database or by a compiled-in database.

• cactvs(compatible_os_variants)
Read-only regular expression used to match compatible OS variants for dynamically
loading modules.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 993

CACTVS Tcl and Python Scripting Language Reference
• cactvs(compress_support)
A read-only boolean flag indicating that the processing of compressed data is supported.
This includes zlib and gzip compression and on most platforms bzip2. Internally, some data
file formats use the lzo compression format.

• cactvs(connect_timeout)
The maximum number of seconds to wait and, if necessary, retry after a short break in the
process of establishing a socket connection. If set to zero, only a single connection attempt
is made. Setting it to a negative value configures an unlimited number of connection
attempts - but then a command trying to connect to a dead service never returns.

• cactvs(corina_support)
A boolean read-only flag indicating whether the application was build with an integrated
CORINA module for computing atomic 3D coordinates (A_XYZ, A_CONFORMER). CORINA
support is limited to special toolkit editions and not contained in normal academic or
commercial toolkit packages.

• cactvs(cpu_limit)
A read-only variable describing any hard CPU execution time limits set for the interpreter.
If the value is -1, which is the default, no limits have been set. Setting a CPU limit is only
supported for specific interpreters on certain platforms (for example, tclcactvs on Linux),
and limits must be set at start-up (option -C for tclcactvs).

• cactvs(crypt_support)
A read-only boolean flag indicating whether the application support encryption by the crypt
(and other) algorithms.

• cactvs(currency_converter_host)
The default currency exchange rate host. If set to an empty string, Internet-based currency
conversion is disabled. Conversion is automatically run if a monetary value is requested in
a different currency from the one the data is stored in, and the exchange rate has not yet been
cached. Example:
ens set $eh E_PRICE “100.50 EUR”
ens get $eh E_PRICE(USD)

• cactvs(custom_config_file)
The name of a custom toolkit configuration file specified as command line argument. It is
an empty string if no such file was set. The value is read-only.

• cactvs(custom_python_attributes)
A modifyable value which determines whether PYTHON wrapper objects of core toolkit
objects may store additional custom attributes, in addition to the standard
toolkit-implemented attributes. By default this flag is not set in order to catch errors in the
naming of attributes. If set, any attribute that is not a standard attribute is stored in a private
object dictionary, without rasing an error.

• cactvs(data_directory)
The name of the installation directory which contains - mostly in well-known subdirectories
- script libraries, loadable modules, filters, property definitions, images, help files and other
auxiliary files needed for the proper operation of the toolkit. The stand-alone interpreter
csweb (and its variants) are the only toolkit applications which do not access this resource.
994 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(database_file_key)
An integer indicating that for access to data files a suitable file key must be present. The
default value is zero, meaning that no such key is needed. This is only used in very special
circumstances when a Cactvs library was built to allow operation only on specifically
named files.

• cactvs(database_log_file)
The name of a file to write logging information for database accesses to.

• cactvs(database_log_mode)
An boolean value indicating the current log mode. Disabled logging is represented by value
0.

• cactvs(databasepath)
Search path for database connector modules.

• cactvs(dataset_count)
The current number of dataset objects. Note that not all datasets necessarily have TCL
handles or PYTHON wrapper objects, so there may be a discrepancy between this value and
the result list length of the dataset list command.

• cactvs(dataset_swap_threshold)
Maximum size of datasets before disk swapping of contained objects is automatically
performed. The default value is 10000. A negative value disables automatic disk swapping.

• cactvs(datatool_program)
The name or, if not found in a standard location, fully specified path of the NCBI datatool
program. This program is needed to process PubChem ASN.1 data in text format. For binary
ASN.1 data, this program is not used.

• cactvs(db_support)
A read-only boolean flag indicating whether this interpreter supports database access
functions and loadable database client modules (dbase and dbx TCL commands).

• cactvs(default_aws_acl)
The default file ACL for newly uploaded AWS files. A null value means it is unset.

• cactvs(default_aws_key)
The default public key string for accessing AWS bucket store as identified user. A null value
means it is unset.

• cactvs(default_aws_region)
The default region for newly uploaded AWS files. A null value means it is unset.

• cactvs(default_aws_secret)
The default local secret for encrypting access parameters for the AWS bucket store. A null
value means it is unset.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 995

CACTVS Tcl and Python Scripting Language Reference
• cactvs(default_currency)
The default currency, which is implicitly assumed when dealing with currency data without
an explicit currency indicator. The string should be set to the standard international trade
name of the selected currency (i.e. EUR, USD, JPY) though a couple of colloquial names
are also recognized (Euro, US$, Yen). In any case, a maximum of four characters are
significant.

The attribute is thread-local. Changing it has sets the default for future threads only if the
modification is performed in the base thread, otherwise these inherit the current setting in
the base thread.

• cactvs(default_database)
Name of the default database. These default values are used to initialize dbx database
interface objects and do not directly influence operation.

• cactvs(default_database_host)
Default database host.

• cactvs(default_database_options)
Default database options to use in the connection string. The format is database-dependent.

• cactvs(default_database_password)
Default database access password.

• cactvs(default_database_type)
Type of the default database connector (mysql, oracle, etc.), normally mysql.

• cactvs(default_database_user)
Default database user.

• cactvs(default_element_count_property)
The property used by default for getting element counts for formula matching, usually
E_ELEMENT_COUNT.

• cactvs(default_http_agent)
The default agent string sent to Web sites when using http-based communication. By
default, it uses the string of a reasonably modern Firefox browser.

• cactvs(default_hydrogen_addition_mode)
The default hydrogen processing mode for file objects. Possible values are asis, add, strip,
stripall, and addblind. More information can be found in the documentation of the molfile
set command in the section describing the hydrogens attribute.

• cactvs(default_license)
The default license class for newly created objects which have a license class field. It can
be one of xemistry, gpl2, gpl3, lgpl, apache, creativecommons, publicdomain, proprietory,
confidential, classified or usgovwork. For commercial toolkit versions, the default is
proprietary, and for US government clients usgovwork.

• cactvs(default_reaction_isotope_hash_property)
The default property for isotope- but not stereo-specific reaction hash codes (usually
X_ISOTOPE_HASH128)
996 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(default_reaction_isotope_stereo_hash_property)
The default property for stereo- but not isotope-specific reaction hash codes (usually
X_ISOTOPE_STEREO_HASH128)

• cactvs(default_reaction_simpleo_hash_property)
The default property for stereo- and isotope-specific reaction hash codes (usually
X_HASH128)

• cactvs(default_reaction_stereo_hash_property)
The default property for stereo- but not isotope-ignorant reaction hash codes (usually
X_STEREO_HASH128)

• cactvs(default_reaction_screen_property)
The default property to use for reaction query screening. This is typically X_SCREEN.

• cactvs(default_similarity_property)
The default property to use for similarity queries. This is typically E_SCREEN.

• cactvs(default_spinach_formula)
Thew default formula for matching EliLilly-inspired spinach-class query superatoms
indicating a small structural decoration. The initial value is ">=C0-2[Het]0-2", i.e. zero to
two carbons, zero to two hetero atoms, no hydrogen specification. Larger substituents do not
qualify as spinach.

• cactvs(default_structure_isotope_hash_property)
The default property for isotope- but not stereo-specific ensemble hash codes (usually
E_ISOTOPE_HASH128)

• cactvs(default_structure_isotope_stereo_hash_property)
The default property for stereo- but not isotope-specific ensemble hash codes (usually
E_ISOTOPE_STEREO_HASH128)

• cactvs(default_structure_simpleo_hash_property)
The default property for stereo- and isotope-specific ensemble hash codes (usually
E_HASH128)

• cactvs(default_structure_stereo_hash_property)
The default property for stereo- but not isotope-ignorant ensemble hash codes (usually
E_STEREO_HASH128)

• cactvs(default_substructure_screen_property)
The default property to use for substructure query screening. This is typically either
E_SCREEN or E_QUERY_SCREEN.

• cactvs(default_superstructure_screen_property)
The default property to use for superstructure query screening. This is typically either
E_NO_HYDROGEN_SCREEN or E_NO_HYDROGEN_QUERY_SCREEN.

• cactvs(default_system_encoding)
The character encoding used by the environment. It is typically UTF-8 or ISO8859-1

• cactvs(default_tauto_hash_property)
The standard tautomer structure hash property (usually E_TAUTO_HASH128)
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 997

CACTVS Tcl and Python Scripting Language Reference
• cactvs(default_warmup_reaction)
A line encoding of the default reaction to use with the prop use command if a property does
not have its own specific computation warm-up reaction definitions.

• cactvs(default_warmup_structure)
A line encoding of the default structure to use with the prop use command if a property
does not have its own specific computation warm-up structures. The standard structure
contains aliphatic and aromatic rings, multi-ring ringsystems, atom and bond
stereochemistry, aromatic and aliphatic pi systems, an isotope label and other structural
attributes which might play a role in property computation.

• cactvs(dependency_warning)
If set, warn about property dependencies detected when parsing a property definition which
involves dependent properties which are not yet defined. Having such dependencies is not
illegal, and the dependencies are updated at a later time when the unresolved, referred
property has been set up. However, in case these properties are never read, dangling
dependencies are never resolved and ignored, and this may indicate a programming error.

• cactvs(disable_io_modules)
If set to 1, no file format extension modules are loaded, even if they are listed in the local
system configuration file for automatic loading. Also, automatic look-up for extension
modules on file suffixes is blocked.

• cactvs(disable_toolkit_rpc)
If this flag is set, RPC communication with other CACTVS applications is disabled. Since the
Windows port currently does not support RPC inter-process communication, this flag has no
effect on that platform. This flag only applies only to internal RPC between toolkit
applications, not to operating the interpreter as KNIME RPC server.

• cactvs(distribution)
The platform this package was compiled for, including distribution information. Example:
Linux2.6-SuSE10.2-64. This element is read-only.

• cactvs(do_database_lookup)
If set, look-up of extension modules in databases is enabled.

• cactvs(do_signals)
If set (which is the default), untrusted or flaky property computation modules may be
executed with a set of signal handlers in place, which try to recover from segmentation fault
errors and other signals. Recovery is not guaranteed to work if the module corrupted
working memory. The signal handler overhead is not insignificant, and properties should be
configured to rely on installed signal handlers only if required, and where the problem is not
fixable, for example because the source code is not available.

• cactvs(do_timeouts)
If set, allow time-outs in property computations to occur. This flag is on by default.
998 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(dynamic_loader_mode)
If this flag is to a positive value (it is set by default), the toolkit allows the loading of
dynamic extension modules of all supported classes if not prohibited by class-specific flags.
Specifically, a value of one allows loading of modules found in the trusted path, a value of
two loading from both the standard and trusted path, with the trusted path having preference,
and a value of three again loading from both paths, but the the standard path having
preference.

• cactvs(element_sequence)
A list of the numbers of the elements of the periodic system in standard Hill formula
sequence (6 = carbon, 1=hydrogen, 0 = pseudo-atoms, 89= Actinium, and so forth).

• cactvs(element_table)
The handle of the table with element data (usually this is table0). This attribute is read-only.

• cactvs(ens_count)
The current number of ensemble objects. Note that not all ensembles necessarily have TCL
handles or PYTHON wrapper objects, so there may be a discrepancy between this value and
the result list length of the ens list command.

• cactvs(eol_chars)
The platform-dependent default end-of-line character(s).

• cactvs(eutils_contact)
The contact email to include in NCBI EUTILS queries. By default, it is a generic xemistry.com
address.

• cactvs(eutils_host)
The name of the host with the NCBI EUTILS suite of ENTREZ database access services. If set to
an empty string, ENTREZ access is disabled. Setting it to a different host is only useful if you
run an ENTREZ clone in-house. The default is eutils.ncbi.nlm.nih.gov.

• cactvs(eutils_toolname)
The tool name to report when submitting NCBI EUTILS queries. The default is CactvsToolkit.

• cactvs(executable_type)
The platform model the executable was compiled for. It is either 32 or 64 bits. This
information is read-only.

• cactvs(executablepath)
Search path for executable external programs, such as compressors and decompressors,
which in some circumstances are automatically launched for I/O operations.

• cactvs(explicit_stereo_h)
A global formatting flag used by various property computation routines and file I/O
modules which indicates preference to retain hydrogens at stereo centers for maximum
interpretation reliability, or whether to strip them and to rely on the proper re-attachment by
a reader or decoder. By default this flag is set, i.e. stereo hydrogen is preferentially retained.

• cactvs(expr_support)
A read-only boolean flag which indicates whether the application supports SQL-style
expressions on data attached to objects, for example via the expr object commands.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 999

CACTVS Tcl and Python Scripting Language Reference
• cactvs(extension_support)
A read-only boolean flag which indicates whether this interpreter is capable of loading
extension modules, for example file I/O format handlers or datatype handler modules.

• cactvs(external_colordb)
If set, the software tries to preferably access a locally installed X11 color database,
overriding the built-in color collection. The internal color set is used as fall-back is the flag
is not set, or no X11 color database can be found.

• cactvs(extra_format_flags)
A list of the names of extra formatting bits which should be used for property data
formatting in the interpreter. By default this is an empty list.

• cactvs(fcgi_redirect)
This read-only boolean variable is an indicator on whether the stdout, stderr and stdin
standard I/O channels are currently redirected to the corresponding FCGI channels. To
activate or cancel redirection, use the fcgi TCL command, which is available in some
interpreter versions (tclcactvs, csweb).

• c actvs(fcgi_support)
A read-only boolean flag indicating whether this application was compiled with FCGI (fast
CGI) support. This flag informs about the availability of the fcgi script command as well
as the ability of various output mechanisms to directly stream into an FCGI channel, or a
standard channel redirected into a FCGI channel.

• cactvs(filexpath)
The search path for structure and reaction file I/O module extensions

• cactvs(filterpath)
The search path for filter definitions.

• cactvs(fontpath)
The search path for TrueType fonts used by several imaging modules.

• cactvs(full_smarts_support)
A read-only boolean flag indicating whether this interpreter was compiled with a full
SMARTS parser. SMILES and some basic SMARTS (essentially the flat match attribute level
as found in query Molfiles) can be processed even if this capability was not added.

• cactvs(gdbm_support)
A read-only boolean flag indicating whether this interpreter was compiled with GDBM
key/value store support.

• cactvs(gunzip_program)
The fully resolved path name of the gunzip program used for I/O of gzip-compressed files.
An external decoder is only forked if the file is a simple file, and might contain formatting
features which cannot be resolved by the simple zlib-based internal program emulation.

• cactvs(gzip_program)
The fully resolved path name of the gzip program used for I/O of gzip-compressed files. An
external decoder is only forked if the file is a simple file, and might contain formatting
features which cannot be resolved by the simple zlib-based internal program emulation.
1000 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(host)
The name of the computer the interpreter is running on. Read only.

• cactvs(host_domain)
Domain name of the host. This is often not automatically identifiable, but can be set by
scripts.

• cactvs(host_ip)
The IP address of the computer the interpreter is running on. Read-only. Depending on the
number of network interfaces detected, additional read-only entries named host_ip2 etc.
may be present, including IP address 127.0.0.1 for localhost.

• cactvs(https_enforcement)
If set, use https instead of http for external communication where possible.

• cactvs(iconv_program)
The fully resolved path name of the iconv program used for I/O of files encoded in UCS-2
and other non-Latin1 encodings of text data.

• cactvs(inchi_support)
A read-only boolean flag indicating whether this interpreter supports operations with InChI
strings, including decoding of such strings in the ens create command, computing the
E_INCHI, E_STDINCHI, E_INCHIKEY and E_STDINCHIKEY properties, and I/O support for
InChI files with or without auxiliary data.

• cactvs(internet_lookup_level)
This element controls the extent to which Internet-based operations can be implicitly
executed. If set to level 0, no external Internet communication takes place. Level one
enables the use of Internet services in computational modules and file I/O modules. They
are still subject to fine-grained control from the settings of the host control variables and the
structure security flag. Level 2 additionally enables the lookup of property definitions and
extension modules in Internet repositories named in the search paths. The default Internet
lookup level is one.

• cactvs(internet_support)
A read-only boolean flag informing whether this interpreter was compiled with support for
accessing Internet resources, for example via URLs or SOAP messages.

• cactvs(interrupted)
A thread-local flag set when an interrupt (user pressing ctrl-c, time-out of operation with
time limit) occurred. Commands which can be interrupted reset the variable to 0 when the
command execution begins. Examples: The molfile scan and ens transform commands.

• cactvs(io_support)
A read-only boolean flag indicating whether this interpreter supports file-based chemistry
data I/O. This flag is only unset in a few specialized link libraries where chemistry data is
directly stored in the internal data structures by a third-party application program.

• cactvs(is_slave)
A read-only boolean flag indicating whether this interpreter is a slave interpreter (for
example, a property computation interpreter for scripted properties) or not. Thread main
interpreters are not slaves.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1001

CACTVS Tcl and Python Scripting Language Reference
• cactvs(itcl_support)
A read-only boolean flag indicating whether the ITCL TCL object-oriented programming
extension commands are available in this interpreter as a compiled-in component. If not, the
Itcl module may still be loaded with standard TCL load or package commands.

• cactvs(java_class_path)
The Java VM class path, if this is an executable which also has a Java VM compiled in.

• cactvs(java_error_message)
The last error message generated by a JAVA tool.

• cactvs(json_support)
A read-only boolean flag indicating whether the application was compiled with an
integrated JSON parser. This flag informs about the availability of the json script command,
and support for various json-based encoding and decoding schemes, for example for table
data I/O.

• cactvs(keyxpath)
The database key extension module search path.

• cactvs(kill_object_limit)
The maximum number of toolkit objects to be present in memory at any time before the
program auto-terminates in order to avoid memory hogging. This is primarily a safety
feature to prevent scripts which leak objects from wrecking havoc. A negative value
indicates that no limit is enforced.

• cactvs(knimenode_deadman_timeout)
The number of milliseconds a KNIME node function may execute in a single invocation
before the application is terminated to protect the server integrity. If this attribute is used, it
should be set to a somewhat larger value than the soft node invocation timeout. A value of
zero or less disables the deadman timer.

• cactvs(knimenode_debug)
If set to a true value, KNIME nodes are run in debug mode.

• cactvs(knimenode_default_editurl)
If compiled with KNIME node support, the URL of an Internet-accessible node editor
application such as https://xemistry.com/NodeDesigner.

• cactvs(knimenode_default_host)
If compiled with KNIME node support, the name of the default RPC host compiled into nodes.

• cactvs(knimenode_default_password)
If compiled with KNIME node support, the default RPC password. If the program is run as a
KNIME node RPC server, this is the password external node users must provide to gain access
if no specific user/password combinations are configured.

• cactvs(knimenode_default_port)
If compiled with KNIME node support, the default RPC port compiled into nodes. The default
port is 16570.
1002 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(knimenode_default_rpc_logfile)
The name of a file to log the RPC communication between a node server and a KNIME
workbench.

• cactvs(knimenode_default_user)
If compiled with KNIME node support, the name of the default RPC user. If the program is
run as a KNIME node RPC server, this is the user name external node users must provide to
gain access if no specific user/password combinations are configured.

• cactvs(knimenode_fork)
If the program is run as KNIME RPC server, and this flag is set, individual KNIME nodes are
executed on forked server application instances instead of a shared executable. Nodes which
use a PYTHON interpreter are always forked, due to PYTHON multi-threading limitations.

• cactvs(knimenode_max_exectime)
If the program is run as KNIME RPC server, this is the maximum wall time in seconds allowed
to be spent in the execution script per node invocation. If the time is exceeded, the script
execution is stopped and an error reported to the workbench.

• cactvs(knimenode_max_file_size)
If the program is run as KNIME RPC server, this is the maximum size of transferred file blobs
(for example, reading upload files which are not accessible on the local file system). A
negative value disables the check.

• cactvs(knimenode_max_rows_per_port)
If the program is run as KNIME RPC server, this is the maximum number of rows accepted
or sent per table port per node invocation.

• cactvs(knimenode_max_rows_total)
If the program is run as KNIME RPC server, this is the maximum number of rows combined
over all table-type input and output ports of a node which are accepted and sent per node
invocation across all ports.

• cactvs(knimenode_max_statements)
If the program is run as KNIME RPC server, this is the maximum number of TCL statements
which may be executed per node invocation. If this number is exceeded, script execution is
terminated and an error reported.

• cactvs(knimenode_safe_interpreters)
If set, all KNIME nodes are executed in safe interpreters, which limits the type of script
statements they can use.

• cactvs(knimenode_support)
A read-only flag indicating whether this interpreter was compiled with support for working
with KNIME nodes (knode command).

• cactvs(largefile_support)
A read-only boolean flag indicating if this version of the library supports 64-bit file
operations. There are probably no platforms that are still supported which do not allow
operations on files with more then 2 or 4GB.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1003

CACTVS Tcl and Python Scripting Language Reference
• cactvs(lhasa_support)
A read-only boolean flag indicating that the interpreter supports the lhasa object which
understands LHASA reaction transforms and the parsing of PATRAN and CHMTRN data.

• cactvs(library_compile_date)
The read-only compilation date of the main toolkit library in seconds since 1970. This value
is suitable for use with clock format.

• cactvs(library_compile_flags)
The C compiler flags used for compiling the main toolkit library. The value is read-only.

• cactvs(library_compiler)
The compiler which compiled the main toolkit library. The value is read-only.

• cactvs(library_directory)
The path of the directory where the bundled link libraries for this installation are stored. For
stand-alone applications, this element is empty.

• cactvs(library_error_code)
The numerical error code of the last CACTVS library error of the current thread. Custom
errors, for example raised by modules which use a custom message and not the standard
message table have an error code of minus one. This is a read-only element, and
thread-local.

• cactvs(library_error_message)
The last raw CACTVS library error message of the current thread, without any formatting for
the TCL interpreter. Most library messages also generate a TCL error message, but there are
many error messages in the toolkit related, for example, to command syntax problems which
are part of the scripting layer and not handled by the core library. Such errors do not change
the library message. This is a read-only element, and thread-local.

• cactvs(license_comment)
Comments regarding the license. Read only.

• cactvs(license_developer)
Name of the developer of an application. Read only.

• cactvs(license_hostname)
Name of licensed host, empty if not set. Read-only.

• cactvs(license_hostid)
Host-ID of licensed host, 0 if not set. More elements license_hostid2 to license_hostid10 are
present if multiple host IDs are covered by a license. Since academic packages are not bound
to host IDs, this array element is not present in such packages. If present, this is a read-only
element.

• cactvs(license_ip)
IP-address for licensed host, 0 if not set. More fields license_ip2 to license_ip10 are
provided if multiple IP addressed are covered by a license. Since academic packages are not
bound to IP addresses, this array element is not present in such packages. If present, this is
a read-only element.
1004 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(license_maxversion)
Maximal toolkit version covered by license. 0 if not set.

• cactvs(license_minversion)
Minimal toolkit version covered by license. 0 if not set.

• cactvs(license_netmask)
Network mask for license. 0 if not set. Read only.

• cactvs(license_network)
Network address for license. 0 if not set. Read only.

• cactvs(license_serial)
Serial number of license. 0 if not set. Read only.

• cactvs(license_support)
A read-only boolean flag indicating whether this interpreter support license handling.

• cactvs(license_timeout)
Time-out date for license in standard Unix notation (seconds since 1970). 0 for permanent
licenses. Read only. Use the clock format command to convert it into a readable
representation.

• cactvs(license_type)
License type (commercial, academic, government, evaluation). Read only.

• cactvs(license_user)
Licensed host account user name. The element is not present if not set. More elements
license_user2 to license_user10 are present if multiple user names are covered by a license.
Since academic packages are not bound to users, this array element is not present in such
packages. If present, this is a read-only element.

• cactvs(licensee)
Licensee of the basic toolkit. Read only. This is a free-form string, not a host account name
(see above).

• cactvs(licensor)
Licensor name. Read only.

• cactvs(lookup_hosts)
A list of the names of the hosts used for lookup operations (such as chemical name and CAS
number resolution in the ens create command). The default host list is cactus.nci.nih.gov
(NCI resolver) and opsin.ch.cam.ac.uk (systematic name resolver). www.genome.jp (KEGG)
and chemspider.com are also supported as an additional resolvers and can be added or
replaced if desired.

If this array element is set to an empty string, compound name lookup/resolution is disabled.
Operations involving contacting the name lookup hosts are not controlled by the
::cactvs(structure_security) variable setting, because no connection tables are
transmitted.

It is possible to attach a directory/file part to the host name for the NCI resolver. If a lookup
host is specified in this fashion, the default path (/chemical/structure/) is overridden. This
feature allows access to experimental releases of this service.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1005

CACTVS Tcl and Python Scripting Language Reference
• cactvs(lookup_mode)
This array element can be used to fine-tune the operation of the NCI resolver. By default, this
element is unset, and the default resolver mode is selected when the resolver host is
contacted. One useful supported value is name_pattern, which invokes substring name
search on the resolver.

• cactvs(lookup_timeout)
The thread-local maximum number of seconds to wait for an answer from an Internet-based
structure identifier resolver (such as PubChem for CIDs and SIDs, or KEGG for KEGG
IDs). A zero value indicates no timeout.

• cactvs(lookup_timeout_occurred)
This thread-local flag is cleared before the auxiliary TCL or PYTHON commands fetch or post
are executed, or an attempt is made to resolve a structure identifier (see ens create
command) by contacting a remote server. If any of these operations fail due to a server
timeout, but not other causes, this flag is set and remains set until the next look-up operation
is performed, or the flag is explicitly reset in a script.

• cactvs(lzo_support)
A read-only boolean flag indicating whether the interpreter supports the LZO
compression/decompression scheme. This method can for example be used in Minimol
compression, resulting in a somewhat faster decompression compared to standard ZLIB.

• cactvs(malloc_bytes)
Total count of allocated bytes. Only updated when memory debugging is active.

• cactvs(malloc_count)
Count of memory allocation operations. Only updated when memory debugging is active.

• cactvs(malloc_free)
Count of memory release operations. Only updated when memory debugging is active.

• cactvs(malloc_total)
Currently allocated memory byte count. Only updated when memory debugging is active,
and only valid on Windows (where you can obtain the original allocation size of a memory
block from its address).

• cactvs(max_scan_threads)
The maximum number of scan threads on a single handle which can concurrently use the
library. This is a read-only value. Earlier toolkit versions also had limitations on the
maximum numbers of library and TCL threads - these are now unlimited.

• cactvs(maximum_ring_count)
The maximum number of rings allowed in an ensemble. This value is primarily intended to
act as a safeguard against the processing of structures with insane numbers of rings, as it can
happen while decoding overlapping 3D structures, and not as a principal limitation of the
toolkit. The default value of 1000 is certainly sufficient even for large proteins.

• cactvs(maximum_ring_size)
The number of atoms in the largest rings which will be detected. The standard value is 80.
1006 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(maximum_stereo_distance)
The maximum number of bonds traversed to check stereogenicity, and, indirectly, compute
various stereo descriptors. Ligands which differ only beyond this bond distance are not
considered different for the purpose of stereo handling. The default value is 22, which
corresponds to the maximum required value to handle all entries in the FDA registry.

• cactvs(memory_limit)
A read-only variable indicating hard memory consumption limits in bytes which have been
set for the application. In case this value is -1, no limits are set, which is the default. Memory
limits can only be set for certain interpreter versions (for example, tclcactvs on Linux), and
only on start-up (option -M for tclcactvs).

• cactvs(minimol_support)
A read-only boolean flag which indicates whether this interpreter has support for Minimols.

• cactvs(mmap_buffer_size)
The maximum length of the memory map buffer for field-based file I/O, in bytes. This
attribute affects only a few file formats which can utilized large memory buffers, most
notably the cbs search file format. If the data size of a field exceeds this limit, the data are
read by means of traditional file I/O and not consume system memory resources.

• cactvs(mmap_high_threshold)
Maximum size of files which should use memory mapping for accelerated reading. Note
that this limited applies only to full file mapping - file formats with direct access query fields
will still map those fields for accelerated access.

• cactvs(mmap_low_threshold)
Minimum size of files read via memory mapping for accelerated reading.

• cactvs(molecule_bond_set)
A bit set of those bond types which contribute to grouping atoms into molecules. The default
set consists of the bond types normal, dative, complex, ionic and 3center.

• cactvs(molfile_count)
The number of currently active molfile object handles. Note that not all structure file access
objects necessarily have TCL handles or PYTHON wrapper objects, so there may be a
discrepancy between this value and the result list length of the molfile list command.

• cactvs(multithreaded_script_support)
A read-only boolean flag indicating whether this interpreter supports multi-threaded scripts.
This is not equivalent to the thread_support flag. The latter is a prerequisite and indicates
that the core library supports multiple threads.

• cactvs(namespace)
The local URN namespace, which is for example used during property look-up. By default,
it is set to .local.

• cactvs(namespacepath)
The namespace resolution path.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1007

CACTVS Tcl and Python Scripting Language Reference
• cactvs(network_count)
The current number of network objects. Note that not all networks necessarily have TCL
handles or PYTHON wrapper objects, so there may be a discrepancy between this value and
the result list length of the network list command.

• cactvs(network_support)
A read-only boolean flag indicating whether this application was compiled with support for
the network object, including its vertex and connection minor objects, plus the associated
script commands of the same name.

• cactvs(netxpath)
The search path for network file I/O modules.

• cactvs(nitrogen_valence_check)
The default mode for checking nitrogen valences with the ens/mol/atom valencecheck
commands. The default is ionic, meaning that pentavalent nitrogen is rejected. The possible
values are xionic, ionic, asis, pentavalent and xpentavalent.

• cactvs(object_auto_scope)
This thread-specific flag controls whether major objects with TCL handles (ensembles,
reactions, datasets, molfiles, tables and networks) which are generated within a thread
interpreter or slave interpreter are automatically scoped to that interpreter (see
::cactvs(object_scope)), meaning that their handle can only be resolved by that
interpreter.

• cactvs(object_scope)
This flag controls whether object handles can be resolved in all TCL interpreters of an
application or can be limited to an interpreter which claims them and hides them from global
visibility. By default, all objects with handles are globally resolvable, regardless of their
creation mode. The main purpose of this flag is that is allows scripted computation modules
to hide objects (such as substructure ensembles) which they set up once and which persist
after the computation finishes. Hidden objects still count for the global object counts (such
as ::cactvs(ens_count)), but, for example, no longer appear in ens list executed in a
main interpreter when they are created and hidden in a property slave interpreter. This
makes the detection of object leaks simpler.

• cactvs(objectpath)
Search path for compiled objects used by property computation modules, including
dynamic shared objects, OSX bundles or Windows DLLs.

• cactvs(ocrhost)
The host to use when performing chemical structure drawing OCR, for example when
reading GIF or PNG files as chemical structure files where these image do not possess hidden
embedded structure data. The default host cactvs.nci.nih.gov runs the OSRA service.

• cactvs(online)
Flag indicating whether the local host has Internet access. Automatically updated.

• cactvs(openphacts_id)
The application ID for accessing OPENPHACTS data.
1008 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(openphacts_key)
The key for accessing OPENPHACTS data.

• cactvs(os)
The name of the operating system the interpreter is running on, in the full nomenclature used
also to name the toolkit packages, i.e. with the name of the operating system distribution.
Read only.

• cactvs(osra_program)
The name or full path of a local installation of the OSRA chemical OCR program. If it is found,
it is used in preference to the Web service, which is advantageous in case of confidential
data.

• cactvs(overwrite_protection)
If this flag is set, most toolkit chemistry commands which write files (but not standard TCL
or PYTHON file commands) will refuse to overwrite existing files, even if the file permissions
would allow it

This is a thread-local flag. Changing it has an effect for future threads only if the change is
performed in the base thread. Otherwise, new threads inherit the current setting of the base
thread.

• cactvs(paper_size)
The default paper size. Usually set to A4, or Letter, but the standard range of DIN and US
sizes is recognized.

• cactvs(persistent_bond_set)
Bit set of bonds which are persistent, meaning that they are not completely discarded when
the structure changes. The default set consists of the bond types normal, dative, ionic,
complex, 3center, nobond, and rgroup.

• cactvs(platform)
Platform information - unix, mac or windows.

• cactvs(preload_datatype_extensions)
A list of datatype handler extension modules which should be automatically loaded at
start-up (as per typex load command). This variable is typically set via a start-up
configuration file since modifying it at run-time has no effect.

• cactvs(preload_db_extensions)
A list of database connector extension modules which should be automatically loaded at
start-up (as per dbx load command). This variable is typically set via a start-up
configuration file since modifying it at run-time has no effect.

• cactvs(preload_file_extensions)
A list of structure and reaction I/O extension modules which should be automatically loaded
at start-up (as per filex load command). This variable is typically set via a start-up
configuration file since modifying it at run-time has no effect.

• cactvs(preload_network_extensions)
A list of network I/O extension modules which should be automatically loaded at start-up
(as per netx load command). This variable is typically set via a start-up configuration file
since modifying it at run-time has no effect.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1009

CACTVS Tcl and Python Scripting Language Reference
• cactvs(preload_table_extensions)
A list of table I/O extension modules which should be automatically loaded at start-up (as
per tablex load command). This variable is typically set via a start-up configuration file
since modifying it at run-time has no effect.

• cactvs(processor_count)
The number of processor cores seen by the interpreter. There is no distinction between
multi-core and multi-die processors. This attribute is read-only.

• cactvs(property_definition_count)
The number of properties currently registered in the core. This attribute is read-only.

• cactvs(property_lock)
If set, properties cannot be deleted from the internal property database, and many operations
changing the character of a property are also disabled. This is normally only used in
multi-threaded scripts where locking the property database can give a significant speed
boost because it eliminates the need to look and unlock individual property definitions.

• cactvs(propertypath)
The search path for property definitions.

• cactvs(proxy_bypass_hosts)
A comma-separated list of host names which should be contacted directly, not via the proxy
host. This variable is only used if a proxy has been configured. The default is an empty list.

• cactvs(proxy_host)
The name of a proxy server which is used as an indirect Internet access gateway. All
standard Internet-access operations will automatically reroute requests via this proxy, if a
proxy host is set. If the string is empty, which is the default, direct Internet access without
a proxy is used.

• cactvs(proxy_password)
A password which is supplied to the Internet proxy server, if one has been configured.

• cactvs(proxy_user)
The username to supply to the Internet proxy server, if one has been configured.

• cactvs(pubchemhost)
The host name which is used for PubChem-related data retrieval via the PUG interface, or
screen scraping of certain information pages. The default is pubchem.ncbi.nlm.nih.gov.

• cactvs(python_error_nessage)
The last error message generated by a PYTHON interpreter. If the current application does not
contain an embedded PYTHON interpreter, this is always an empty string. This attribute is
thread-specific (though currently there can only be a single PYTHON thread).

• cactvs(python_object_autodelete)
This flag controls whether in the PYTHON interface major objects behave like in TCL, where
they are persistent until explicitly deleted, or in standard PYTHON fashion. In the latter style,
objects are deleted when their last PYTHON reference goes out of scope and it is not otherwise
protected from deletion (such as being property data, or a member of a dataset). Objects
which never instantiate a PYTHON reference are never auto-deleted either. For compatibility,
the default mode is the TCL style. In this mode, major chemistry objects are only deleted by
1010 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
explicitly calling their delete() methods, or when used in a with clause. The del command
only deletes (more precisely: decrements the reference count of) the associated PYTHON
wrapper object, without touching the underlying chemistry object, and variable scope
tear-downs have no effect either. If auto-delete is enabled, the deletion of reference objects
by the latter two methods also deletes unprotected chemistry objects. delete() and with
clauses continue to work as in the TCL mode.

• cactvs(python_support)
A boolean read-only flag indicating whether a parallel PYTHON interpreter is available in this
application, which can be accessed with the python command, or indirectly by using
properties with computation functions written in PYTHON.

• cactvs(qlz_support)
A read-only boolean read-only attribute indicating whether the object swap system uses the
faster QLZ compressor instead of slower ZLIB compression.

• cactvs(reaction_count)
The current number of reaction objects. Note that not all reactions necessarily have TCL
handles or PYTHON wrapper objects, so there may be a discrepancy between this value and
the result list length of the reaction list command.

• cactvs(release_date)
Release date of the toolkit, in standard Unix format as seconds since 1970, intended for use
with the clock format command. Read only.

• cactvs(repository_support)
A read-only boolean flag indicating whether this interpreter supports repository objects.

• cactvs(repxpath)
The alternate representation module search path

• cactvs(ring_bond_set)
Bit set of bond types which define rings in structures. The default set consists of the bond
types normal, dative, ionic, complex, and 3center.

• cactvs(ringset)
The type of ring set computed by default. The default is esssr.

• cactvs(rpc_id)
ID of the RPC communication protocol between CACTVS processes.

• cactvs(rpc_support)
A read-only boolean flag indicating whether this application was compiled with support for
RPC-based socket-facilitated data exchange between CACTVS applications, for example
remote property calculations. This flag only informs about that specific data exchange
mechanism. The availability of other socket-based mechanisms (remote datasets, remote
query processing, table row data transfer, file access via URLs, etc.) are not covered.

• cactvs(rpc_version)
The version of toolkit-internal RPC communication protocol.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1011

CACTVS Tcl and Python Scripting Language Reference
• cactvs(safe_interpreter)
A boolean read-only flag. If set, the current interpreter is safe, i.e. has been stripped of
potentially dangerous commands.

• cactvs(script)
The read-only name of the currently executed application script. Empty if no script is run.
Depending on the main interpreter type, this is either a TCL or a PYTHON script.

• cactvs(script_url)
If the script interpreter executes a script obtained by Internet access via an URL, the URL is
listed here. Read only.

• cactvs(secondary_script)
The read-only name of the secondary application script, i.e. the helper PYTHON script when
running a main TCL script, or the helper TCL script when running a main PYTHON interpreter.
If no such string is used, this is an empty value.

• cactvs(setsize_exceeded)
A thread-local flag indicating that a command which allows the specification of a maximum
number of result objects to create has attempted to exceeded this number. Commands which
can be controlled in this manner reset the variable to 0 when the command execution begins.
Example: The ens transform command.

• cactvs(smartsmacro_table)
The handle of the table with SMARTS macro expansion data (usually this is table2). This
attribute is read-only.

• cactvs(smiles_hypervalent_hydrogen_addition)
If this flag is set, the addition of implicit hydrogens follows the strict Daylight specification
demanding that hydrogens are added until the next standard valence is reached. This means
that, for example, an uncharged S(III) or S(V) atom is hydrogenated to S(IV) or S(VI).
Chemically, this usually does not make sense, but it can be useful for interoperability testing
or porting of legacy Daylight functionality. By default, hydrogens are not added to
hypervalent atoms in PSE groups 15 and 16, which makes automatic correction of the
structure to much more likely S+(III) and similar species simpler.

• cactvs(smiles_version)
The version of SMILES/SMARTS to use. Currently, it can be set to 4.9 or 4.3 (or any value
below 4.9). The difference is that in version 4.9 the x atom attribute is interpreted according
to the newly introduced DAYLIGHT definition (number of ring bonds), while before that this
letter was unused and interpreted as an CACTVS extension (number of hetero atom ligands).
In 4.9 mode, the former x extension is now accessed via the letter z. The default is 4.9, i.e.
full support of the most current DAYLIGHT definition.

• cactvs(smtp_host)
The default mail host to use when sending email with the mail command.

• cactvs(smtp_password)
The password to use when connecting to above mail host.
1012 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(smtp_port)
The port to use to connect to the mail host. The default is 587, the newer recommended value
both for smtp and smpts transfers. Some mail host may require other ports, such as the old
standard 25, or the alternative port 465 for direct smpts without negotiation.

• cactvs(smtp_user)
The user ID to use when connecting to above mail host.

• cactvs(soap_method)
Name of default method called via SOAP request.

• cactvs(soap_schema)
Default SOAP communication schema name.

• cactvs(soap_uri)
Default URI associated with SOAP communication schema.

• cactvs(source_lookup)
If this boolean flag is set, the toolkit will attempt to retrieve source code of modules obtained
via Internet connections, in addition to the executable format.

• cactvs(sourcepath)
The search path for source code for extension modules.

• cactvs(sql_dialect)
The SQL dialect to be used when generating SQL code fragments, such as in a sqlget
command. This can be the name of any database connector module, though currently
dialect-specific formatting is only used for mysql, postgresql and sqlite.

• cactvs(ssl_client_cert_file)
The name of the SSL client certificate file if one was specified at start-up.

• cactvs(ssl_server_cert_file)
The name of the SSL server certificate file if one was specified at start-up. The certificate
is only used for acting as a KNIME node processing server with encrypted communication
support. Fetching data from encrypting Internet sites, such as via https, does not require a
server certificate.

• cactvs(ssl_server_key_file)
The name of the SSL server key file if one was specified at start-up. The certificate is only
used for acting as a KNIME node processing server with encrypted communication support.
Fetching data from encrypting Internet sites, such as via https, does not require a server
certificate.

• cactvs(ssl_server_support)
A read-only flag indicating if the software was compiled with support for acting as an
SSL-enabled KNIME node processing server, and additionally a valid certificate and key file
set was provided at start-up and successfully used for initial SSL configuration. If no cert file
is specified explicitly, a default localhost certificate/key file set stored in the knime
subdirectory of ::cactvs(data_directory) is used, if the application was compiled with SSL
server support and the file can be found.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1013

CACTVS Tcl and Python Scripting Language Reference
• cactvs(standalone)
A read-only boolean flag which is set for applications which encapsulate an application
script and an interpreter into a single, stand-alone executable.

• cactvs(stationpath)
The directory path where to look for auto-loaded station definition files.

• cactvs(strict_kekulization)
If this flag is set, failures to generate a complete Kekulé structure when reading formats
which encode aromatic bonds without an explicit bond order (such as some SMILES
schemes) raises an error. By default, a structure with a partially resolved Kekulé system or
single bonds is generated if no full resolution can be found, which might still be useful for
structure matching, feature inspection, etc.

• cactvs(strict_smarts)
If set, SMARTS specifications are interpreted according to strict Daylight specification. The
default interpretation is more lenient, for example the aliphatic attribute of upper-case
element symbols is not enforced to avoid the need for lengthy aromatic/aliphatic alternative
symbols or # notation. Even without this flag, there are various methods to decode a
substructure specification according to strict Daylight rules, for example by appending a !
character to the SMARTS string, or using appropriate decoder flags in ens create or
molfile read commands. This option only applies to newly decoded SMARTS
substructures. Substructures read from files such as cbin/cbase/bdb which encode the
internal object structure of the toolkit already contain the interpretation implicitly and
persistently as part of the atom and bond attribute set.

• cactvs(structure_security)
If this boolean flag is set, no structure or reaction information is sent over Internet
connections as a decodable connection table. It is off by default for academic distributions,
but on for commercial packages.

If it is on, Internet lookup is still allowed by means of sending identifiers which are likely
to be non-confidential (for example, CAS numbers, or PUBCHEM CIDs and SIDs) or which
cannot be reversed (CACTVS hash codes). However, implicit sending of the structure as
connection table to Internet services which provide computation or identifier lookup is
suppressed if the flag is on. For example, computation of property E_CID for the PubChem
identifier by means of contacting the PUBCHEM database then always fails, regardless
whether the structure has a CID or not, because that operation would require a potentially
confidential structure to be sent as decodable InChI string to that database.

This flag can be changed by developers who know what they are doing. Also, direct
scripting of any type of Internet access is possible regardless of the flag setting. This flag is
a basic safeguard against unintentional data leakage.

The attribute is thread-local. Changing it has sets the default for future threads only if the
modification is performed in the base thread, otherwise these inherit the current setting in
the base thread.

• cactvs(superatom_table)
The handle of the table with superatom expansion data (usually this is table1). This attribute
is read-only.
1014 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(swap_count)
The number of objects which are currently swapped out (see ens swapout, reaction
swapout commands). This element is read-only.

• cactvs(swap_directory)
The name of a directory to use for ensemble and reaction swapping. By default it is initially
an empty string, which is replaced by an automatically created process-specific subdirectory
of the system temp directory once the swap subsystem has been initialized.

If this element is set to the name of an existing, writable directory before the first swap
operation commences, that directory will be used instead. Changing the control variable
value after the first object has been swapped has no effect. An automatically set up swap
directory is deleted upon program shutdown. In a user swap directory, only the swap files
are removed when the program exits.

• cactvs(swap_store_type)
Select the type of object store used to swap out excessive numbers of ensemble and reaction
objects (see for example the swapthreshold dataset object attribute). The default store is
gdbm (simple key/value store), but it may also be set to none (use separate native CACTVS
binary files) or tokyocabinet (advanced key/value store). The tokyocabinet store is not
supported on Windows. Setting this attribute has only an effect before the first object is
swapped out. If a method is set which is not supported, the best available method is instead
automatically selected when the first object is swapped out, and the array variable element
updated to the actually employed method.

• cactvs(swap_support)
A read-only boolean flag indicating whether this interpreter supports the swapping of
objects to a disk store.

• cactvs(system_encoding)
The currently configured system encoding. By default, it is the same as
::cactvs(default_system_encoding).

• cactvs(table_count)
The current number of table objects in the application. Note that not all tables necessarily
have TCL handles or PYTHON wrapper objects, so there may be a discrepancy between this
value and the result list length of the table list command.

• cactvs(table_support)
A read-only boolean flag indicating whether this application was compiled with support for
the chemistry-aware table object, and the associated table and tablex commands.

• cactvs(table_swap_threshold)
Maximum object count of the datasets embedded in tables before disk swapping of these
objects is automatically initiated. The default value is 10000. A negative value disables
automatic disk swapping. This object-specific control value overrides the generic dataset
object swap threshold in ::cactvs(dataset_swap_threshdold).

• cactvs(tablexpath)
The search path for table I/O module extensions
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1015

CACTVS Tcl and Python Scripting Language Reference
• cactvs(tcl_error_message)
The last TCL error message generated by the interpreter. This is a read-only element, and
thread-local.

• cactvs(tcl_reference_objects)
A flag indicating what type of TCL interpreter data value objects are used for toolkit objects.
The default value of zero indicates that object handles and object labels returned by
executed commands are simple strings or numbers which are decoded when a new
command is executed which uses them as arguments. A value of one indicates that the
interpreter objects are actually wrappers for pre-resolved pointers. Using reference objects
speeds up scripts, but slightly changes the pattern of handle allocations, and under many
circumstances requires extra memory because toolkit objects remain in a zombie state until
all interpreter references to a chemistry object have been reclaimed.

• cactvs(tcl_support)
A read-only boolean flag indicating whether this interpreter support TCL as scripting
language. If seen from the TCL side, this is obviously always true, but there may be
PYTHON-only interpreters where this flag is not set.

• cactvs(tcl_thread_count)
A read-only integer with the total number of TCL main interpreter threads. It is incremented
for example by using thread::create or dataset addthread commands.

• cactvs(test_interpreter)
The name of a TCL slave interpreter which has been set up for regression testing. Usually an
empty string and not used in user applications.

• cactvs(testdatapath)
The search path for test data associated with extension modules for self-tests.

• cactvs(thread_count)
The current number of threads registered with the core library. Every Tcl thread is also a
library thread, but not every thread needs to be Tcl-enabled.

• cactvs(thread_support)
A read-only boolean flag indicating whether the core library supports multiple threads. This
is not equivalent tot he multithreaded flag, which indicates that multi-threaded TCL script
interpreters are supported. There are configurations which do not allow multiple parallel
scripts, but support implicit multi-threading on operations such as file scanning from a
single Tcl interpreter.

• cactvs(timezone)
The current time zone in minutes west of GMT. This is used when setting up and storing
time/date values. If the system clock is on GMT time, the value is always zero.

• cactvs(tk_support)
A read-only boolean flag indicating whether this interpreter supports the TK graphical toolkit
as a compiled-in module. If not set, it is still possible to load TK as dynamic module with the
standard load or package TCL commands.
1016 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(tmpdir)
The name of the directory for temporary files. This path can be changed and all future
temporary files are then placed in that directory - and also automatically deleted if their
controlling object is deleted. By default its value is the standard system temp directory.

• cactvs(tokyocabinet_support)
A read-only boolean attribute indicating support of the Tokyo Cabinet key/value store. It
this is available, the default object swap store is a Tokyo Cabinet file (instead of gdbm or
separate native binary object serialization files), and the tc TCL command extension module
is present. Currently, the Windows version of the CACTVS suite does not support Tokyo
Cabinet.

• cactvs(trace)
A bit combination of flags to trace various subsystems. Symbolic names for the subsystems
are translated into the proper bit. Example:
set cactvs(trace) ss

traces substructure matching.

• cactvs(tre_support)
A read-only boolean flag indicating whether this interpreter supports extended regular
expressions and approximate regular expressions by means of the TRE library, in addition to
standard regular expressions. If it is not set, only standard PCRE/PERL regular expressions
are supported.

• cactvs(trusted_executable_directory)
The name of a directory which contains only trusted executables which may be invoked by
the toolkit. Usually, this is the installation directory for executables bundled with the toolkit.

• cactvs(trusted_objectpath)
A search path for trusted shared libraries, OSX bundles and Windows DLLs implementing
extension modules. Depending on the extension loaded mode, objects in this path may still
be loaded even if the loading of modules from the full set of search paths is disabled. See
also ::cactvs(dynamic_loaded_mode).

• cactvs(trusted_scriptpath)
A search path for sources of trusted scripts. Scripts from this source may be loaded and
executed even if normal script auto-loading is disabled.

• cactvs(typexpath)
The search path for handlers of additional data types.

• cactvs(update_package)
The package name this software was installed under, and which is used as file name
component to find suitable updates in combination with the version and operating system
data. For standard packages, this is cactvstools.

• cactvs(update_url)
The directory URL where updates for this installation can be found. For commercial
customers, this leads to a specific private area on our server, the academic version page is
at https://xemistry.com/academic.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1017

CACTVS Tcl and Python Scripting Language Reference
• cactvs(use_bad_property_cache)
If this boolean flag is set, the toolkit remembers property names for which the look-up of
property definition records failed. Since the look-up path can potgentially involve lengthy
database searches and Internet accesses, this flag can in some cases prevent poor
performance because of repeated failure to identify the same property name. On the other
hand, if this flag is set, adding a new property definition during the runtime of an application
after a look-up for this new property has failed has no effect and such a property definition
needs to be loaded explicitly via its file.

• cactvs(user_address_city)
The city part of the user contact address.

• cactvs(user_address_country)
The country part of the user contact address. The country name must follow ISO3166.

• cactvs(user_address_state)
The state part of the user contact address. Empty if no applicable.

• cactvs(user_address_street)
The street address of the user contact address. Includes floor, house number, etc.

• cactvs(user_address_zip)
The ZIP code (or equivalent postal processing code) of the user address.

• cactvs(user_affiliation)
The company, university or other institution the user is working for. This information is used
in pre-setting various header data blocks. The veracity of this item is not checked. It is
typically set by a configuration file.

• cactvs(user_affiliation_duns)
The DUNS number of the user institution.

• cactvs(user_affiliation_url)
A URL describing the user institution.

• cactvs(user_email)
The e-mail address of the user, initially guessed by the library. This information is used in
pre-setting various header data blocks, and also for Web data sources which require some
identification. The veracity of this item is not checked. It is typically set by a configuration
file.

• cactvs(user_id)
The current system user name, as extracted from the login data or similar sources. Read
only.

• cactvs(user_name)
The full name of the user, if it could be determined from password database information.
This information is used in pre-setting various header data blocks. The veracity of this item
is not checked. It is typically set by a configuration file.

• cactvs(user_orcid)
The ORCID of the user. The veracity of this item is not checked. It is typically set by a
configuration file.
1018 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• cactvs(user_phone)
A phone number of the user.

• cactvs(user_url)
A URL with info on the user. The veracity of this item is not checked. It is typically set by
a configuration file.

• cactvs(uuid_support)
A read-only flag indicating whether the toolkit was compiled with support for handling and
generating UUIDs. This is usually true.

• cactvs(value_buffer_size)
The maximum size of a single property data element may request when it is converted to a
string. Normally set to something big like 256K, but can be reduced to cope with external
tools which have maximum line sizes, etc.

• cactvs(verify_modified_property_values)
If set, property values which are set or modified by script commands are immediately
verified and the command fails of the verification fails. The verification process checks the
new value complies with any constraints defined as part of the property definition, and
whether the property check function (if it exists) also accepts the new value.

• cactvs(version)
Version number of the CACTVS toolkit. Read only.

• cactvs(wedge_interpretation)
This attribute can be used to switch the stereochemical interpretation of wedge bonds. The
default model is cactvs, the other possible value is idbs for compatibility with IDBS software.
In CACTVS mode, the stereo center is always at the wedge tips. In IDBS mode, bonds which
go down have the wedge base at the stereo center. This flag also changes the style of
generated wedges in 2D layouts (properties A_XY and B_FLAGS).

• cactvs(wrapper)
A read-only string which holds the name of a wrapper program (usually a Bourne shell or
MSDOS script) invoking the interpreter, and possibly also setting a program script as hidden
argument. For standard CACTVS installations, these are the cs?? scripts. In case a raw
interpreter without a wrapper is run, this string is empty.

• cactvs(xdr_support)
A read-only boolean attribute which indicates whether this application supports XDR-based
CACTVS object streams. This feature is required for native CACTVS file I/O, handling serialized
packed object strings, the object swap store, and other toolkit functions.

• cactvs(xml_support)
A read-only boolean attributes which indicates whether the application was compiled with
an integrated XML parser. This affects the availability of the soap command, as well as
support for various XML-based chemical structure and reaction or table data file formats.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1019

CACTVS Tcl and Python Scripting Language Reference
Standard Filters

This section lists the filters which are built into the standard library or are shipped as filter definition
files in the standard distribution.

A more detailed description of the filters can be found in the auto-generated documentation file
$::cactvs(data_directory)/autodocs/filters.html

The following table contains the filter name in the first column and the property the filter operates
on in the second column. The third column is an explanation.

Standard Filter Table
0neighbors
1neightbor
2neighbors...
12neighbors

A_NEIGHBORS An atom with a specific number of bonded neighbor atoms.

3datom A_TYPE An atom or pseudo atom which may have a 3D coordinate.
This includes classical atoms, 3D points, open valences,
electron pairs, super atoms and polymers.

3dplotatom A_XYZ Atom has defined 3D coordinates
3dplotbond A_XYZ All bond atoms have defined 3D coordinates
3dpoint A_TYPE An pseudo atom which is just a point in 3D space, but

probably with property data such as NMR shielding values
which are also applicable to classical atoms.

acidicatom A_HYDROGEN_BONDING A hydrogen atom which is acidic.

acspecial A_CSPECIAL Atom is a special carbon (i.e. is usually drawn with atom
symbol)

ahspecial A_HSPECIAL A special hydrogen, i.e. one which is usually displayed in
depictions, such as hydrogen at stereo centers or stereo
double bonds, or on aldehydes.

ametal A_ISMETAL A metal atom.

anion A_FORMAL_CHARGE Atom has a negative charge.
anyatom A_QUERY The atom is an any atom specification for substructure

searching.
aopen A_TYPE Open valence pseudo atom
apicenter A_PICENTER An atom which is a  center.

aradical A_RADICAL An atom with unpaired electrons.

aroatom A_ARORING_COUNT An atom which is part of an aromatic system.

arobond B_ARORING_COUNT A bond which is part of an aromatic system.

aroring R_AROMATIC An aromatic ring.

aroringsystem Y_AROMATIC A ring system that is fully aromatic, i.e. all rings in it are
aromatic rings.

arotautobond B_ISAROTAUTOMERIC Test whether the bond is within an extended (possibly
aromatic-system-spanning) tautomer system

arrowbond B_FLAGS The bond is marked with one of the display attribute bits for
parallel arrows.
1020 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
asidechain A_FRAMEWORK An atom which is a side chain in the framework
nomenclature (ring/chain/linker).

astereogenic A_STEREOGENIC An atom which can be a stereo center.
aunmapped A_MAPPING Atom which is unmapped
aunsub A_HETERO_COUNT An atoms which is not substituted by hetero atoms.

basicatom A_HYDROGEN_BONDING An atom which is basic, i.e. is easily protonated.

bondangle B_TYPE A filter for pseudo bonds of type bond angle. The toolkit
supports as a pseudo-bond type the encoding of bond
angles (angle between two bonds, involving three atoms
with one atom common to both bonds).

bondtorsion B_TYPE A filter for pseudo bonds of type torsion angle. The
toolkit supports as a pseudo-bond type the encoding of
torsion angles (angle between the planes formed by three
atoms each, with two atoms joined by a common bond in
the middle).

boronatom A_ELEMENT The element of the atom is boron.
boxedatom A_FLAGS The boxed attribute has been set for the display flags of the

atom.
bromineatom A_ELEMENT The element of the atom is bromine.

bstereogenic B_STEROGENIC The bond can be a stereo center.
carbocycle A_ELEMENT The ring contains only carbon.

carbonatom A_ELEMENT The element of the atom is carbon.

cation A_FORMAL_CHARGE Atom with positive formal charge
cbond A_ELEMENT A bond with one or more carbon atoms in it.

ccbond A_ELEMENT The bond is a carbon-carbon bond. This is a real bond filter
- the atom property is used in a special mode to check on all
bond atoms directly

chalcogen A_IUPAC_GROUP The atom is a chalcogen (PSE group VIa).
chargedatom A_FORMAL_CHARGE The atom bears formal charge.

chbond A_ELEMENT The bond is a carbon-hydrogen bond. This is a real bond
filter - the atom property is used in a special mode to check
on all bond atoms directly

chlorineatom A_ELEMENT The element of the atom is chlorine.

classicatom A_TYPE A classical atom from the periodic system. The toolkit
supports operation with pseudo atoms, such as superatoms,
atom query specifications, or 3D points. The class of atoms
is set in the property A_TYPE. This filter checks that
A_TYPE is normal

classicbond B_TYPE A classical bond between two classical atoms with a
defined bond order and valence electrons which are
subtracted from the free electron count of the participating
atoms. The type of bonds is stored as data of property
B_TYPE, which is also the property this filter operates on.

classicmol M_ATOM_RANGE The molecule/fragment has at least one classic atom.

Standard Filter Table
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1021

CACTVS Tcl and Python Scripting Language Reference
classicring A_TYPE The ring only consists of classical atoms and no pseudo
atoms, such as 3D points, superatoms, query specifications,
etc

cneighbor A_ELEMENT The atom is bonded to at least one carbon atom.

complexbond B_TYPE The bond is of type complex.
crossedbond B_TYPE The bond has the crossed display attribute set.

cxbond A_ELEMENT The bond is a carbon-hetero bond.

dashbond B_FLAGS The bond has any of the display attribute bits for
dashed/stippled rendering set.

doublebond B_ORDER The bond is a double bond (bond order 2). This includes
Kekulé bonds in aromatic systems.

edgebond B_FLAGS The bond is displayed. This bit is usually set by the TK
plotbond command and is not computable.

envelopering R_TYPE The ring is an envelope ring.

epairatom A_FREE_ELECTRONS Atom with two or more electrons not participating in VB
bonds.

esssrring R_TYPE The ring is in the ESSSR set
flagbond B_FLAGS The bond has any display attribute flag set.

fluorineatom A_ELEMENT The element of the atom is fluorine.

h0atom
h1atom
h2atom
h3atom

A_HCOUNT The atom has exactly n bonded hydrogens. This are aliases
for filter names hydrogen0..3.

hacceptoratom A_HYDROGEN_BONDING The atom is a hydrogen acceptors, i.e. its
A_HYDROGEN_BONDING value is either basic or acceptor.

halogen A_IUPAC_GROUP The atom is a halogen (PSE group VIIa).

hdonoratom A_HYDROGEN_BONDING The atom is a hydrogen donor, i.e. its
A_HYDROGEN_BONDING value of either donor or acidic.
This attribute applies to the hydrogen atom directly, not the
atom the hydrogen atom is bonded to.

hbond A_ELEMENT A bond with one or more hydrogen atoms participating.

heteroatom A_ELEMENT The atom is a hetero (not C, not H) atom.

heterocycle A_ELEMENT The ring is heterocycle.

highlightatom A_FLAGS An atom where the highlight flag in A_FLAGS is set
highlightbond B_FLAGS A bond where the highlight flag in B_FLAGS is set
hneighbor A_ELEMENT The atom is bonded to a hydrogen atom.

hxbond A_ELEMENT A bond between hydrogen and hetero atom.

hydrogenatom A_ELEMENT The atom is hydrogen.
interferingatom A_FLAGS Atom for which the interfering bit has been set, for example

while interpreting a Lhasa transform
iodineatom A_ELEMENT The element of the atom is iodine.

ionicbond B_TYPE The type of the bond is ionic.
isotopeatom A_ISOTOPE The atom has an isotope label.

Standard Filter Table
1022 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
kring R_TYPE The ring is in the K set.

largering R_SIZE The ring is larger than 7 members.

lhasapathatom A_LHASA_PATH_LABEL The atom is in the path, as matched by a pattern in a Lhasa
transform

listatom A_QUERY The atom is an element list for substructure searches.

macrocycle R_SIZE The ring is of size 12 or more.

magent M_REACTION_ROLE Molecule has agent reaction role.
mbyproduct M_REACTION_ROLE Molecule has byproduct reaction role.
mcatalyst M_REACTION_ROLE Molecule has catalyst reaction role.
mediumring R_SIZE The ring is of size 5-7.

mimpurity M_REACTION_ROLE Molecule has impurity reaction role.
minorganuc M_ORGANIC The fragment is inorganic according to the normal

definition.
mintermediate M_REACTION_ROLE Molecule has intermediate reaction role.
morganic M_ORGANIC The fragment is organic according to the normal definition
mproduct M_REACTION_ROLE Molecule has product reaction role.
mreagent M_REACTION_ROLE Molecule has reagent reaction role.
msolvent M_RACTION_ROLE Molecule has solvent reaction role.
multibond B_ORDER This is a multiple bond with bond order > 1. Kekulé

aromatic bonds are included.
multiringatom A_RING_COUNT The atom is member in more than one (non-envelope) ring.

multiringbond B_RING_COUNT The bond is member in more than one ring.

multiringsystem Y_RING_COUNT The ring system consists of two or more rings.

mwaste M_REACTION_ROLE Molecule has waste reaction role.
nitrogenatom A_ELEMENT The element of the atom is nitrogen.

nodeatom A_FLAGS The atom is displayed as a node (bond line node or symbol)
or is completely omitted (for example, normal hydrogen
atoms). The A_FLAGS bit is usually set by the TK
plotatom command. However, it may also the set by a
standard computation of A_FLAGS.

nofilter E_NONE This filter does nothing. Convenient in places where an
empty string causes formatting or syntactic problems.

nomatchatom A_QUERY The atom is a substructure match specification which
should not be matched.

openvalenceatom A_HYDROGENS_NEEDED The atom has open valences.

oxygenatom A_ELEMENT The element of the atom is oxygen.

participatingatom A_FLAGS Atom is participating in a reaction, outside of direct
reaction center. This is for example annotated by Lhasa
reaction transforms.

phosphorusatom A_ELEMENT The element of the atom is phosphorus.

plotatom A_XY The atom has valid 2D display coordinates.

Standard Filter Table
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1023

CACTVS Tcl and Python Scripting Language Reference
plotbond A_XY The bond has valid 2D display coordinates. This is
indirectly determined via display coordinates of the atoms
of the bond.

pnicogen A_IUPAC_GROUP The atom is a pnicogen (PSE group Va).
protectedatom A_FLAGS Atom which needs protection in a reaction. Annotated for

example by Lhasa transforms.
queryatom A_TYPE An atom which is purely a query specification.

querytreeatom A_QUERY An atom with a query tree specification in A_QUERY.
querytreebond B_QUERY A bond with a query tree specification in B_QUERY.

racemicatom A_RACEMATE A stereogenic atom which is explicitly declared a racemate.

racemicbond B_RACEMATE A stereogenic bond which is explicitly declared a racemate.

reactionagent E_REACTION_ROLE The role of an ensemble in a reaction is agent.
reactionaltreagent E_REACTION_ROLE The role of an ensemble in a reaction is altreagent.
reactionbyproduct E_REACTION_ROLE The role of an ensemble in a reaction is byproduct.
reactioncatalyst E_REACTION_ROLE The role of an ensemble in a reaction is catalyst.
reactionimpurity E_REACTION_ROLE The role of an ensemble in a reaction is impurity.
reactionintermediate E_REACTION_ROLE The role of an ensemble in a reaction is intermediate.
reactionprecursor E_REACTION_ROLE The role of an ensemble in a reaction is precursor.
reactionproduct E_REACTION_ROLE The role of an ensemble in a reaction is product.
reactionreagent E_REACTION_ROLE The role of an ensemble in a reaction is reagent.
reactionsolvent E_REACTION_ROLE The role of an ensemble in a reaction is solvent.
reactionwaste E_REACTION_ROLE The role of an ensemble in a reaction is waste.
redatom A_COLOR The atom color is red.
repeatatom A_QUERY An atom which has a repeat count range for structure

searches
rgroupanchor A_QUERY The atom is an R-group anchor.

rgroupatom A_QUERY The atom belongs to an R-group definition.

rgroupbond B_TYPE The bond is linking an R-group definition to a core
structure.

ring3...
ring10

R_SIZE Ring is of the specified size.

ringatom A_RING_COUNT The atom is a a member of a ring.

ringbond B_RING_COUNT The bond is a a member of a ring.

ringlinkeratom A_FRAMEWORK An atom which is a ring system linker in the framework
nomenclature (ring/chain/linker).

ringlinkerbond B_FRAMEWORK A bond which is a linker bond in the framework
nomenclature (ring/chain/linker).

satring R_UNSATURATED The ring is saturated.

selectedatom A_FLAGS An atom where the selected flag in A_FLAGS is set
selectedbond B_FLAGS A bond where the selected flag in B_FLAGS is set
siliconatom A_ELEMENT The element of the atom is silicon.

Standard Filter Table
1024 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
simplering R_TYPE The ring is a simple (non-envelope) ring

singlebond B_ORDER A single bond. This includes Kekulé bonds encode with a
single bond order.

slashbond B_FLAGS The slashed display attribute bit has been set on the bond.

smallring R_SIZE The ring is of size 3-4.

spatom A_HYBRIDIZATION The atom is sp-hybridized.
sp2atom A_HYBRIDIZATION The atom is sp2-hybridized.
sp3atom A_HYBRIDIZATION The atom is sp3-hybridized.
sp3sp3bond A_HYBRIDIZATION The bond is between two sp3-hybridized atoms.
spiroatom A_SPIRO The atom is a spiro atom.
splitbond B_FLAGS The split display attribute bit has been set on the bond.
sssrring R_TYPE Ring is in the SSSR set.

standardatom A_TYPE An atom which is either a classical atom, or a search
specification.

starredatom A_FLAGS The attribute bit for an asterisk marker is set.

stereoatom A_STEREOINFO The atom has a valid stereo descriptor.

stereobond B_STEREOINFO The bond has a valid stereo descriptor.

stereosphere A_STEREOGENIC An atom which is a ligand to a possible atomic stereo center

structurebond B_TYPE A bond or type normal or complex. These are the bonds
which usually define which atoms in an ensemble belong to
a common molecule.

sulphuratom A_ELEMENT The element of the atom is sulphur.

superatom A_TYPE The atom is a super atom pseudo atom.

superatomsgroup G_TYPE The group encodes a superatom.
symbolatom A_FLAGS The atom is displayed with a symbol, and not suppressed or

only display as node without a symbol. The A_FLAGS bit is
usually set by the TK plotatom command. However, it
may also be set by a standard computation of A_FLAGS.

tautoatom A_TAUTOMER_SYSTEM Atom is part of a tautomer system.
tautobond B_ISTAUTOMERIC The bond is part of a tautomer system.

terminalatom A_TERMINAL_DISTANCE The atom is terminal, i.e. among the outermost atoms in the
structure.

terminalbond A_TERMINAL_DISTANCE The bond is terminal, i.e. leads to an atom which is among
the outermost atoms in the structure.

triplebond B_ORDER A triple bond with bond order 3.

unsatring R_UNSATURATED The ring is unsaturated. Aromatic rings are not considered
to be unsaturated. The xunsatring filter does not have this
extra condition. insatring is an alias.

v0atom..
v8atom

A_VALENCE An atom with specific valence. These filters may also be
abbreviated as v0, v1, .. v8.

varbond B_QUERY The bond has been specified to match different bond orders
in a substructure query specification.

wavybond B_FLAGS The wavy display attribute flag has been set for the bond.

Standard Filter Table
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1025

CACTVS Tcl and Python Scripting Language Reference
This table only lists the most important element filters (the built-in set, plus the standard set of
external filter definitions). The full set of elements in the periodic system is also provided as an
element filter. Initially, only the most common elements are entered as pre-defined filters in the filter
table and are listed here. However, the name of any element in the PSE can be used as filter name,
and the filter is then automatically created if it has not yet been set up. All simple element filters have
an alias name which corresponds to their atomic symbol, so using filter c is equivalent to using the
filter carbon or carbonatom.

Most of these filters have additional aliases, and some scripts still use the old, non-systematic filter
names. In order to obtain the listed name of a filter from any alias, use the following command:
lindex [filter get $name aliases] 0

wedgebond B_FLAGS The bond has a wedge bit set

xbond A_ELEMENT A bond with one or more hetero atoms participating.

xneighbor A_ELEMENT The atom is bonded to hetero atom.

xunsatring B_ORDER This is a ring with double bonds in the ring. In contrast to
the insatring filter, this filter does not take aromaticity into
account. A phenyl ring with Kekulé double bonds passes
this filter, but not the insatring filter.

xxbond A_ELEMENT A bond between two hetero atoms.

Standard Filter Table
1026 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
System Tables

CACTVS TCL interpreters with table support start up with three predefined tables, which are accessible
via their standard handles table0, table1 and table2. They are write-protected by default, but by
setting the editable attribute this can be changed.

If an interpreter is started in a KNIME context, additional tables may be automatically present.

The PSE table
This table has handle table0. It contains basic physical and display data for all elements. The rows
are addressable via the periodic system number or the standard element symbol. Row zero contains
pseudo data for an undefined element.

The columns are:
• symbol

The element symbol as a string.
• name

The English name of the element.
• number

The element number in the PSE as an integer.
• group

The PSE group using new-style IUPAC group indices 1..18, plus 19 for lanthanides and 20
for actinides.

• pserow
PSE row, starting with 1.

• shellelectrons
The standard number of shell electrons.

• ismetal
Flag for metals

• weight
The standard atomic weight in gr/mol.

• vdwradius
Standard Van-der-Waals radius in Ångstrom.

• covradius
Standard covalent bonding radius in Ångstrom.

• color1
Default rendering color for bright backgrounds

• color2
Default rendering color for dark backgrounds.

• valences
Standard accessible atomic valences in compounds with this element. This column is an
integer vector. For example, for sulfur the cell contains the values 2, 4 and 6.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1027

CACTVS Tcl and Python Scripting Language Reference
• isotopes
Standard isotopes of the element occurring naturally, or with precedence for chemical use
as isotope label etc. This column is a compound vector. Every vector element is a list of the
nucleon count (integer), the isotope mass (double, gr/mol), the natural abundance (double,
range 0..1) and the half life in seconds. Stable isotopes have an infinite half life.

• allisotopes
As above, but with a full set of known isotopes, obtained from
http://www.sisweb.com/referenc/source/exactmas.htm

• sequence
The precedence of the element in constructing an elemental formula, following the
C/H/alphabetic convention (Hill formula). The value for C is one.

The Superatom table
This table has handle table1. It contains information about common superatom fragments. This
information is for example used superatom expansion or contraction of chemical groups for display.

The columns are:
• name

An expanded, human-readable name of the fragment
• codes

A string list of recognized names for the fragment. There is often more than one code, and
the list contains reversed entries such as MeO plus OMe, since superatom name matching
does not automatically match reversed names - that could lead to mis-classifications in some
cases.

• smiles
A SMILES representation of the fragment. The first atom is always a * placeholder indicating
the primary connection point. Secondary connection points may be present in any position.
On expansion, the connection points are not used.

• expandable
Flag indicating that this fragment is handled by normal expansion commands, such as ens
expand.

• contractable
Flag indicating that this fragment can be contracted as superatom in structure renderings.

• level
The minimum contraction level to actually perform group contraction for rendering. This is
currently a value between 1 (routinely abbreviated) to 3 (exotic case only recognized by
specialists).

• flags
Substructure match flags to be added to the standard set when trying to detect the fragment
in a structure, such as forcing a match which does not link via a simple alkyl chain,
preventing for example the use of an n-propyl group as a partial abbreviation for an n-octyl
group.

• textlabel
The standard display symbol of the contracted group, as it is stored in property
A_TEXTLABEL.
1028 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
• structure
The handle of the decoded SMILES from the third column. Decoding is performed in a lazy
fashion, so initially this cell is empty.

• substructure
The handle of the SMARTS-decoded SMILES from the third column. Decoding is performed
in a lazy fashion, to initially this cell is empty.

The SMARTS Macro table
This table has handle table2 and is initially empty. If content is added, it is automatically used in all
SMILES and SMARTS expansions which use macro syntax.

The columns are

• name
A name for the macro. This is what is recognized in the input SMILES.

• pattern
The SMILES/SMARTS pattern this macro expands to

• set
A set name for this fragment. Set names are an argument to SMILES/SMARTS decoder
functions. Only those macros in the table that match the set name are used, if it is not an
empty string.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1029

CACTVS Tcl and Python Scripting Language Reference
SMILES and SMARTS dialects

The toolkit supports the complete range of the Daylight SMILES, SMARTS, Reaction SMILES and SMIRKS
standards, including Recursive SMARTS.

The global control variable ::cactvs(smiles_version) can be set to a Daylight release number. The
setting of this variable influences various aspects of encoding and decoding of SMARTS data. The default
value is 4.9 - the version best known for finally introducing the x ring bond count atom attribute. This
is the most recent major Daylight SMILES/SMARTS definition update.

In SMARTS context a simple ’H’ atom attribute without a count is always interpreted by the toolkit as a
hydrogen atom for explicit matching, not the hydrogen neighbour count. This behaviour is standard in
Daylight tools since the 4.51 release.

Octahedral and bi-pyramidal stereochemistry in SMILES is read and written, but currently not checked
by the substructure match routines. Allenes and square planar stereochemistry are fully supported.

Besides supporting the standard syntax and attributes of both atoms and bonds, a significant number of
enhancements are also recognized:

Attribute ranges
In addition to a simple numerical count (as in ’[X2]’), bracketed open and closed ranges are
supported, as in ’[X{1-}]’, [X{-3}]’ or ’[X{2-3}]’. This feature is available for every attribute which
can take a count. It is also possible to use the Eli Lilly operator extensions for the same purpose, as
in ‘[X>1]‘ or [X<=3]‘. The exception is the closed range, which cannot be expressed in Lilly syntax.

Match count prefixes
The SMARTS expression may be prefixed by a simple count, or an operator and a count. The SMARTS
must then match the required number of times. The match mode is automatically adjusted if
required. Example:
set ss [ens create {>4a-[F,Cl,Br,I]} smarts]

This matches compounds which contain 4 or more halogens substituting aromatic rings.
set ss [ens create {0[R]} smarts]

This matches compounds which do not contain rings.

Strict interpretation suffix
The default SMARTS interpretation in CACTVS is more lenient than the original Daylight definition.
Specifically, the aliphatic attribute of upper-case element symbols is not enforced by default. Most
match commands provide options to fine-tune the interpretation, and it is also possible to switch the
toolkit globally into a strict SMARTS interpretation mode.

As a convenience, it is possible to request strict interpretation of a SMARTS string regardless of
command options and global configuration by appending an exclamation mark to the string.

Example:
set ss [ens create C1CCCCC1!]

This SMARTS does not match benzene, which in default toolkit mode without the suffix is matched.
1030 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
Additional atom attributes
• a

Besides supporting its standard meaning without a suffix, the toolkit version allows a count
to this attribute. If a count is set, the atom must be part of the count or more aromatic bonds.
The associated property is A_AROBOND_COUNT. For example, [a3] matches the two central
carbon atoms of naphthalene, but not the other ring atoms.

• b
Followed by a 0 or 1 value, this attribute requires branching or chain character of the
matched atom (i.e. up to 2, or 3 or more heavy atom substituents). The associated property
is A_SUBSTITUENT_COUNT.

• d
Heavy atom substituent count. Different from the D degree attribute, this one ignores even
explicitly specified hydrogen atoms. A count suffix is required. The associated property is
A_SUBSTITUENT_COUNT.

• D
If used without a count, this symbol defines a deuterium atom.

• e
An atom attribute for the ring pi electron count of all ESSSR rings the atom is part of. If there
is more than one such ring, a match in any of these is sufficient. If no number modifier is
supplied, the condition requires the presence of one or more pi electrons in the ring. The
associated property is R_PI_ELECTRON_COUNT.

• G
The same as the ’i’ attribute. This is an Eli Lilly internal tools compatibility feature.
Example:
set ss [ens create {[aD3]-[G0;CH>0,O,N]} smarts]

• HA
A hydrogen acceptor atom. This interpretation has precedence over the rather pointless
“hydrogen&aliphatic” standard SMILES interpretation.

• HD
A hydrogen donor atom.

• i
An atom attribute checking for in/unsaturation. If a number modifier is specified, it requests
a specific number of  bond participations (e.g. i2 on carbon matches either an allene, or an
alkyne). The associated property is A_UNSATURATION.

• T
With a count, it is the same as the z attribute. This is an Eli Lilly internal tools compatibility
feature. If used without a count, it defines a tritium atom. Example:
set ss [ens create {[CT1]#C} smarts]

• X
If used without a number modifier, which is illegal in standard SMARTS, this matches a
hetero atom.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1031

CACTVS Tcl and Python Scripting Language Reference
• z
An atom attribute indicating a required number of hetero atom neighbors. If no numeric
modifier is supplied, one or more hetero neighbors are required. The property associated
with this attribute is A_HETERO_SUBSTITUENT_COUNT.

• Z
An atom attribute indicating a required number of aliphatic hetero atom neighbors. If no
numeric modifier is supplied, one or more hetero neighbors are required. The property
associated with this attribute is A_ALIHETERO_SUBSTITUENT_COUNT.

• ^[0123456]
An atom attribute where a following digit is required. This attribute checks the atom
hybridization: 0=s, 1=sp, 2=sp2, 3=sp3, 4=sp3d, 5/6=sp3d2. The property associated with
this attribute is A_HYBRIDIZATION.

• * and ?
These two symbols both specify an ’any’ atom.

• #X
This atom symbol matches a hetero atom. It is a MOE compatibility feature.

• $$(...)
This is a variation of normal recursive SMARTS. Standard recursive SMARTS does not know
about atoms and bonds already matched in upper levels - the complete structure can be
matched by the atoms in the recursive expression. This variant blocks all atoms and bonds
already matched in any previous recursion level.

• |
The vertical bar as bond symbol encodes a bond of type complex. This is a bond which is
similar to a standard valence bond, for example with respect to defining molecular
fragments, but is not electron-counted.

• /IWfss
An EliLilly extension: number of SSSR rings in the ring system the atom is a member of.
Example:
set ss [ens create {[/IWfss1o,s]1:c:c:c:c1} smarts]

• /IWspch
An EliLilly extension: The 0 or 1 suffix requires that the matched atom is part of the core,
or the Molecular Spinach part of the structure. The associated property is
A_LILLY_SPINACH, the literature reference is J. Med. Chem. 2012, 55, 9763-9772.
Example:
set ss [ens create {[/IWfss1o,s]1:c:c:c:c1} smarts]

• /IWhr
An EliLilly extension: Number of hetero atoms in one SSSR ring the atom is a member of.
Example:
set ss [ens create {[/IWhr1n]} smarts]

• /IWrid
An EliLilly extension. Atoms marked with the same ring ID must be a member of a common
SSSR ring. Atoms with a different ring ID must be a member of at least one different SSSR
ring. The set of chain atoms forms a pseudo-ring class and can also be tagged. Example:
1032 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tcl and Python Scripting Language Reference
set ss [ens create {Cl-[/IWrid1a].Cl-[/IWrid1a]} smarts]
set ss [ens create {Cl-[/IWrid1].Cl-[/IWrid2]} smarts]

• /IWfsid
As above, but applies to ring systems, not rings. Example:
set ss [ens create {Cl-[/IWfsid1a].Cl-[/IWfsid1a]} smarts]

• /IWAr
An EliLilly extension. The attribute checks whether the atom is alpha to an aromatic ring.
The associated property is A_ALPHA_ARO_COUNT. Example:
echo [match ss {[/IWAr1Cl]} c1ccccc1Cl=CCl] (expect 1)

• /IWVy
An EliLilly extension. The attribute checks whether the atom is alpha to a vinyl,
non-aromatic group. The associated property is A_ALPHA_UNSAT_COUNT. Example:
echo [match ss {[/IWVy1Cl]} C=CCl] (expect 1)

Operator-chained matches
The toolkit supports to a limited degree the EliLilly extensions for chained matches. In these,
multiple SMARTS fragments (which each may consist of multiple dot-disconnected parts) are linked
via &&, || or ^^ two-character operators. Each fragment is handled independently, as a separate
structure object, without regard to match overlaps as in Recursive SMARTS or explicit setting of
the fragment overlap mode in substructure matching.

Example:
set ss [ens create {[nD3]-S(=O)(=O)&&0[aD3]-[G0;CH>0,O,N]} smarts]

The current implementation does not take operator precedence into account, as the original Lilly
code does. It is possible to combine, for example, || and && parts in one query string, but the
fragments are checked in strict left-to-right order, without precedence for the and part.

Only those parts of the expression are checked which are require to obtain the final match results.
In case of an or expression, the match processing stops after the first fragment match has been found.

Eli Lilly extended SMARTS
As described above, the toolkit has near complete support for the published Eli Lilly SMARTS
extensions, including match count prefixes, custom attributes, attribute count operators and chained
matches.

Extended hydrogen handling
The H symbol may be used as an explicit hydrogen atom outside brackets, even though it is not in
the official organic subset element set.
Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 1033

CACTVS Tcl and Python Scripting Language Reference
1034 CACTVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

	CACTVS Tcl and Python Scripting Language Reference
	The atom Command
	atom anchormatch
	atom angle
	atom append
	atom atom
	atom bondangles
	atom bonds
	atom change
	atom charge
	atom create
	atom defined
	atom delete
	atom dget
	atom deprotonate
	atom distance
	atom dup
	atom ens
	atom exists
	atom expand
	atom expr
	atom fill
	atom filter
	atom get
	atom groups
	atom hadd
	atom hdelete
	atom hdup
	atom hstrip
	atom hydrogenate
	atom index
	atom invert
	atom isotopecheck
	atom jget
	atom jnew
	atom jshow
	atom local
	atom match
	atom mol
	atom neighbors
	atom new
	atom nget
	atom paths
	atom pis
	atom protonate
	atom purge
	atom ref
	atom replace
	atom rings
	atom ringsystems
	atom set
	atom show
	atom sigmas
	atom sqldget
	atom sqlget
	atom sqlnew
	atom sqlshow
	atom stereoligands
	atom subcommands
	atom surfaces
	atom topodistance
	atom torsion
	atom uncharge
	atom valencecheck
	atom vicinity
	atom xdelete
	atom xhdelete

	The bioitem Command
	bioitem append
	bioitem defined
	bioitem delete
	bioitem dget
	bioitem exists
	bioitem fill
	bioitem filter
	bioitem get
	bioitem index
	bioitem jget
	bioitem jnew
	bioitem jshow
	bioitem item
	bioitem links
	bioitem new
	bioitem nget
	bioitem ref
	bioitem set
	bioitem show
	bioitem sqldget
	bioitem sqlget
	bioitem sqlnew
	bioitem sqlshow
	bioitem subcommands

	The biolink Command
	biolink append
	biolink defined
	biolink delete
	biolink dget
	biolink exists
	biolink fill
	biolink filter
	biolink get
	biolink index
	biolink items
	biolink jget
	biolink jnew
	biolink jshow
	biolink link
	biolink new
	biolink nget
	biolink ref
	biolink set
	biolink show
	biolink sqldget
	biolink sqlget
	biolink sqlnew
	biolink sqlshow
	biolink subcommands

	The biologics command
	biologics append
	biologics assign
	biologics create
	biologics dataset
	biologics defined
	biologics delete
	biologics dget
	biologics dup
	biologics exists
	biologics expr
	biologics fill
	biologics filter
	biologics get
	biologics getparam
	biologics hierarchy
	biologics index
	biologics items
	biologics jget
	biologics jnew
	biologics jshow
	biologics links
	biologics list
	biologics lock
	biologics max
	biologics metadata
	biologics min
	biologics move
	biologics mutex
	biologics need
	biologics new
	biologics nget
	biologics nnew
	biologics pack
	biologics properties
	biologics purge
	biologics ref
	biologics rename
	biologics set
	biologics setparam
	biologics show
	biologics sqldget
	biologics sqlget
	biologics sqlnew
	biologics sqlshow
	biologics subcommands
	biologics transfer
	biologics unlock
	biologics unpack
	biologics valid
	biologics verify

	The bond Command
	bond align3d
	bond append
	bond atoms
	bond bond
	bond change
	bond create
	bond cut
	bond defined
	bond delete
	bond delfrag
	bond dget
	bond ens
	bond exists
	bond expr
	bond fill
	bond filter
	bond flip
	bond get
	bond groups
	bond hadd
	bond hcreate
	bond hstrip
	bond hydrogenate
	bond index
	bond jget
	bond jnew
	bond jshow
	bond local
	bond match
	bond mols
	bond neighbors
	bond new
	bond nget
	bond partner
	bond partners
	bond pis
	bond permute
	bond purge
	bond ref
	bond rings
	bond ringsystem
	bond rotate
	bond set
	bond show
	bond sigmas
	bond sqldget
	bond sqlget
	bond sqlnew
	bond sqlshow
	bond stereoligands
	bond subcommands
	bond surfaces
	bond transform
	bond uncharge
	bond xdelete

	The chemobj command
	chemobj class
	chemobj eval
	chemobj get
	chemobj list
	chemobj pythoncommand
	chemobj tclcommand

	The connection Command
	connection append
	connection connection
	connection create
	connection defined
	connection delete
	connection dget
	connection network
	connection exists
	connection filter
	connection get
	connection index
	connection jget
	connection jnew
	connection jshow
	connection network
	connection new
	connection nget
	connection ref
	connection set
	connection show
	connection sqldget
	connection sqlget
	connection sqlnew
	connection sqlshow
	connection subcommands
	connection vertices

	The dataset Command
	dataset add
	dataset addthread
	dataset append
	dataset assign
	dataset biologics
	dataset cancelthreads
	dataset cast
	dataset clear
	dataset count
	dataset create
	dataset dataset
	dataset datasets
	dataset defined
	dataset delete
	dataset dget
	dataset dup
	dataset ens
	dataset exists
	dataset expr
	dataset extract
	dataset filter
	dataset find
	dataset forget
	dataset get
	dataset getparam
	dataset hadd
	dataset hdup
	dataset hierarchies
	dataset hierarchy
	dataset hread
	dataset hstrip
	dataset index
	dataset intersect
	dataset intersect3
	dataset jget
	dataset jointhreads
	dataset jnew
	dataset jshow
	dataset ldup
	dataset lhdup
	dataset list
	dataset lock
	dataset loop
	dataset match
	dataset max
	dataset metadata
	dataset min
	dataset molfile
	dataset move
	dataset mutex
	dataset need
	dataset networks
	dataset new
	dataset nget
	dataset nnew
	dataset nitrostyle
	dataset objects
	dataset pack
	dataset pop
	dataset properties
	dataset purge
	dataset reactions
	dataset read
	dataset ref
	dataset remove
	dataset rename
	dataset request
	dataset rewind
	dataset scan
	dataset set
	dataset setparam
	dataset show
	dataset sort
	dataset sqldget
	dataset sqlget
	dataset sqlnew
	dataset sqlshow
	dataset statistics
	dataset subcommands
	dataset tables
	dataset taint
	dataset threadexec
	dataset transfer
	dataset transform
	dataset unique
	dataset unlock
	dataset unpack
	dataset valid
	dataset verify
	dataset wait
	dataset weed
	dataset xlabel

	The ens Command
	ens add
	ens align3d
	ens append
	ens assign
	ens atoms
	ens bondangles
	ens bonds
	ens cast
	ens clear
	ens compare
	ens copy
	ens create
	ens dataset
	ens defined
	ens delete
	ens dget
	ens dup
	ens exists
	ens expand
	ens expr
	ens fill
	ens filter
	ens forget
	ens formulamatch
	ens fragment
	ens get
	ens getparam
	ens groups
	ens hadd
	ens hdup
	ens hfragment
	ens hierarchy
	ens hstrip
	ens hydrogenate
	ens image
	ens index
	ens isotopecheck
	ens jget
	ens jnew
	ens jshow
	ens ldup
	ens lhdup
	ens list
	ens lock
	ens loop
	ens mask
	ens match
	ens max
	ens merge
	ens metadata
	ens min
	ens mols
	ens move
	ens mutex
	ens need
	ens new
	ens nget
	ens nnew
	ens nitrostyle
	ens op2d
	ens pack
	ens pis
	ens prepare
	ens properties
	ens purge
	ens reaction
	ens rebuild
	ens ref
	ens rename
	ens replace
	ens replicate
	ens rings
	ens ringsystems
	ens rotate
	ens scan
	ens set
	ens setparam
	ens setup
	ens show
	ens sigmas
	ens sort
	ens split
	ens sqldget
	ens sqlget
	ens sqlnew
	ens sqlshow
	ens subcommands
	ens surfaces
	ens swapin
	ens swapout
	ens tables
	ens taint
	ens torsions
	ens transfer
	ens transform
	ens translate
	ens trim
	ens uncharge
	ens unlock
	ens unpack
	ens valencecheck
	ens valid
	ens vector
	ens verify
	ens weed
	ens xhandle

	The group Command
	group add
	group append
	group atoms
	group bonds
	group create
	group defined
	group delete
	group dget
	group dup
	group ens
	group exists
	group expr
	group fill
	group filter
	group formulamatch
	group get
	group group
	group groups
	group hdup
	group index
	group jget
	group jnew
	group jshow
	group local
	group match
	group mols
	group new
	group nget
	group objects
	group pis
	group ref
	group remove
	group replicate
	group rings
	group ringsystems
	group set
	group show
	group sigmas
	group sqldget
	group sqlget
	group sqlnew
	group sqlshow
	group subcommands
	group surfaces
	group xbonds

	The hierarchy Command
	hierarchy add
	hierarchy append
	hierarchy assign
	hierarchy biologics
	hierarchy create
	hierarchy dataset
	hierarchy datasets
	hierarchy defined
	hierarchy delete
	hierarchy dget
	hierarchy dup
	hierarchy ens
	hierarchy exists
	hierarchy expr
	hierarchy fill
	hierarchy filter
	hierarchy get
	hierarchy getparam
	hierarchy hdup
	hierarchy hierarchies
	hierarchy hierarchy
	hierarchy index
	hierarchy jget
	hierarchy jnew
	hierarchy jshow
	hierarchy list
	hierarchy lock
	hierarchy max
	hierarchy metadata
	hierarchy min
	hierarchy move
	hierarchy mutex
	hierarchy need
	hierarchy networks
	hierarchy new
	hierarchy nget
	hierarchy nnew
	hierarchy objects
	hierarchy pack
	hierarchy properties
	hierarchy purge
	hierarchy reactions
	hierarchy ref
	hierarchy remove
	hierarchy rename
	hierarchy set
	hierarchy setparam
	hierarchy show
	hierarchy sqldget
	hierarchy sqlget
	hierarchy sqlnew
	hierarchy sqlshow
	hierarchy subcommands
	hierarchy tables
	hierarchy transfer
	hierarchy unlock
	hierarchy unpack
	hierarchy valid
	hierarchy verify

	The majorobj Command
	majorobj delete
	majorobj dget
	majorobj dup
	majorobj exists
	majorobj get
	majorobj hadd
	majorobj hdup
	majorobj hstrip
	majorobj jget
	majorobj jnew
	majorobj jshow
	majorobj ldup
	majorobj lhdup
	majorobj new
	majorobj nget
	majorobj nnew
	majorobj show
	majorobj sqldget
	majorobj sqlget
	majorobj sqlnew
	majorobj sqlshow
	majorobj subcommands
	majorobj valid

	The mol Command
	mol append
	mol align3d
	mol atoms
	mol bondangles
	mol bonds
	mol compare
	mol defined
	mol delete
	mol dget
	mol dup
	mol ens
	mol exists
	mol expand
	mol expr
	mol fill
	mol filter
	mol get
	mol groups
	mol hadd
	mol hdup
	mol hstrip
	mol hydrogenate
	mol image
	mol index
	mol isotopecheck
	mol jget
	mol jnew
	mol jshow
	mol local
	mol match
	mol mol
	mol new
	mol nget
	mol pack
	mol pis
	mol ref
	mol replicate
	mol rings
	mol ringsystems
	mol rotate
	mol set
	mol show
	mol sigmas
	mol sqldget
	mol sqlget
	mol sqlnew
	mol sqlshow
	mol subcommands
	mol surfaces
	mol torsions
	mol translate
	mol valencecheck

	The molfile Command
	molfile add
	molfile append
	molfile assign
	molfile backspace
	molfile blob
	molfile close
	molfile copy
	molfile count
	molfile dataset
	molfile defined
	molfile delete
	molfile dget
	molfile dup
	molfile exists
	molfile extract
	molfile filter
	molfile fullscan
	molfile get
	molfile getline
	molfile getparam
	molfile hloop
	molfile hread
	molfile jget
	molfile jnew
	molfile jshow
	molfile list
	molfile lock
	molfile loop
	molfile lopen
	molfile max
	molfile metadata
	molfile min
	molfile mutex
	molfile need
	molfile new
	molfile nget
	molfile nnew
	molfile open
	molfile peek
	molfile properties
	molfile purge
	molfile putline
	molfile read
	molfile ref
	molfile rename
	molfile reorganize
	molfile rewind
	molfile rewrite
	molfile scan
	Query expression syntax classes
	Branch node expression classes
	Leaf node expression classes
	record and vrecord expressions
	filename expressions
	isnull and notnull expressions
	random/subset expressions
	property expressions
	structure expressions
	smartsearch expressions
	formula expressions
	reaction expressions
	Scan modes
	Pseudo properties for retrieval
	Record visitation order
	Query parameters
	More typical examples
	Distributed queries

	molfile set
	molfile setparam
	molfile show
	molfile skip
	molfile sort
	molfile sqldget
	molfile sqlget
	molfile sqlnew
	molfile sqlshow
	molfile string
	molfile subcommands
	molfile sync
	molfile toggle
	molfile transfer
	molfile truncate
	molfile unlock
	molfile upgrade
	molfile valid
	molfile vappend
	molfile vdelete
	molfile verify
	molfile vinsert
	molfile vreplace
	molfile vrewrite
	molfile write

	The network Command
	network append
	network assign
	network connections
	network create
	network dataset
	network defined
	network delete
	network dget
	network dup
	network exists
	network expr
	network filter
	network get
	network getparam
	network hierarchy
	network index
	network jget
	network jnew
	network jshow
	network list
	network lock
	network max
	network metadata
	network min
	network move
	network mutex
	network need
	network new
	network nget
	network nnew
	network pack
	network properties
	network purge
	network read
	network ref
	network rename
	network rewind
	network scan
	network set
	network setparam
	network show
	network sqldget
	network sqlget
	network sqlnew
	network sqlshow
	network subcommands
	network transfer
	network unlock
	network unpack
	network valid
	network verify
	network vertices
	network write

	The pi Command
	pi append
	pi atoms
	pi bonds
	pi create
	pi defined
	pi delete
	pi dget
	pi ens
	pi exists
	pi expr
	pi fill
	pi filter
	pi get
	pi groups
	pi index
	pi jget
	pi jnew
	pi jshow
	pi local
	pi match
	pi mol
	pi new
	pi nget
	pi pi
	pi ref
	pi rings
	pi ringsystems
	pi set
	pi show
	pi sigmas
	pi sqldget
	pi sqlget
	pi sqlnew
	pi sqlshow
	pi subcommands
	pi surfaces
	pi xbonds

	The query Command
	query create
	query delete
	query get
	query list
	query print
	query ref
	query set
	query subcommands

	The reaction Command
	reaction add
	reaction append
	reaction assign
	reaction cast
	reaction clear
	reaction copy
	reaction create
	reaction dataset
	reaction defined
	reaction delete
	reaction dget
	reaction dup
	reaction ens
	reaction exists
	reaction expand
	reaction expr
	reaction filter
	reaction forget
	reaction get
	reaction getparam
	reaction hadd
	reaction hdup
	reaction hierarchy
	reaction hstrip
	reaction hydrogenate
	reaction index
	reaction jget
	reaction jnew
	reaction jshow
	reaction ldup
	reaction lhdup
	reaction link
	reaction links
	reaction list
	reaction lock
	reaction loop
	reaction max
	reaction merge
	reaction metadata
	reaction min
	reaction move
	reaction mutex
	reaction need
	reaction new
	reaction nget
	reaction nnew
	reaction nitrostyle
	reaction pack
	reaction properties
	reaction purge
	reaction ref
	reaction remove
	reaction rename
	reaction reorder
	reaction reverse
	reaction scan
	reaction set
	reaction setparam
	reaction show
	reaction sort
	reaction split
	reaction sqldget
	reaction sqlget
	reaction sqlnew
	reaction sqlshow
	reaction subcommands
	reaction swapin
	reaction swapout
	reaction tables
	reaction taint
	reaction transfer
	reaction trim
	reaction unlink
	reaction unlock
	reaction unpack
	reaction valid
	reaction verify
	reaction weed
	reaction xdelete
	reaction xdup

	The ring Command
	ring append
	ring atoms
	ring bonds
	ring defined
	ring delete
	ring dget
	ring ens
	ring exists
	ring expr
	ring fill
	ring filter
	ring formulamatch
	ring get
	ring groups
	ring hydrogenate
	ring index
	ring jget
	ring jnew
	ring jshow
	ring ligands
	ring local
	ring match
	ring mols
	ring new
	ring nget
	ring pis
	ring ref
	ring ring
	ring ringsystem
	ring set
	ring show
	ring sigmas
	ring sqldget
	ring sqlget
	ring sqlnew
	ring sqlshow
	ring subcommands
	ring surfaces
	ring xbonds

	The ringsystem Command
	ringsystem append
	ringsystem atoms
	ringsystem bonds
	ringsystem create
	ringsystem defined
	ringsystem delete
	ringsystem dget
	ringsystem ens
	ringsystem exists
	ringsystem expr
	ringsystem fill
	ringsystem filter
	ringsystem formulamatch
	ringsystem get
	ringsystem groups
	ringsystem hydrogenate
	ringsystem index
	ringsystem jget
	ringsystem jnew
	ringsystem jshow
	ringsystem ligands
	ringsystem local
	ringsystem match
	ringsystem mols
	ringsystem new
	ringsystem nget
	ringsystem pis
	ringsystem ref
	ringsystem rings
	ringsystem ringsystem
	ringsystem set
	ringsystem show
	ringsystem sigmas
	ringsystem sqldget
	ringsystem sqlget
	ringsystem sqlnew
	ringsystem sqlshow
	ringsystem subcommands
	ringsystem surfaces
	ringsystem xbonds

	The sigma command
	sigma append
	sigma atoms
	sigma bonds
	sigma create
	sigma defined
	sigma delete
	sigma dget
	sigma ens
	sigma exists
	sigma expr
	sigma fill
	sigma filter
	sigma get
	sigma groups
	sigma index
	sigma jget
	sigma jnew
	sigma jshow
	sigma local
	sigma mol
	sigma new
	sigma nget
	sigma pis
	sigma ref
	sigma rings
	sigma ringsystems
	sigma set
	sigma show
	sigma sigma
	sigma sqldget
	sigma sqlget
	sigma sqlnew
	sigma sqlshow
	sigma subcommands
	sigma surfaces
	sigma xbonds

	The surface command
	surface append
	surface atoms
	surface bonds
	surface create
	surface defined
	surface delete
	surface dget
	surface ens
	surface exists
	surface expr
	surface fill
	surface filter
	surface get
	surface groups
	surface index
	surface jget
	surface jnew
	surface jshow
	surface local
	surface mols
	surface new
	surface nget
	surface pis
	surface ref
	surface rings
	surface ringsystems
	surface set
	surface show
	surface sigmas
	surface sqldget
	surface sqlget
	surface sqlnew
	surface sqlshow
	surface subcommands
	surface surface

	The table Command
	table addcolumn
	table addrow
	table adddataset
	table addens
	table addmolfile
	table addreaction
	table addretrieval
	table append
	table assign
	table blockloop
	table cast
	table celldata
	table clear
	table clone
	table clonecolumns
	table cluster
	table compare
	table copy
	table copycolumns
	table copyrows
	table create
	table data
	table dataset
	table defined
	table delcolumns
	table delete
	table delrows
	table dget
	table dictblockloop
	table dictloop
	table dup
	table dupcolumns
	table editcolumn
	table ens
	table exists
	table expr
	table fill
	table filter
	table find
	table flatten
	table get
	table getcell
	table getcolumn
	table getparam
	table getrows
	table getrow1
	table getparam
	table hierarchy
	table index
	table innerjoin
	table jget
	table jnew
	table jshow
	table leftjoin
	table list
	table listblockloop
	table listloop
	table lock
	table loop
	table merge
	table metadata
	table move
	table movecolumns
	table moverows
	table mutex
	table need
	table new
	table nget
	table nnew
	table normalize
	table outerjoin
	table pack
	table poploop
	table poprow
	table properties
	table purge
	table randomize
	table rank
	table reactions
	table read
	table readblob
	table recalc
	table ref
	table rename
	table replot
	table rewind
	table rightjoin
	table rownamedictloop
	table rownamelistloop
	table scan
	table select
	table set
	table setcell
	table setcolumn
	table setparam
	table setrow
	table show
	table sort
	table split
	table splitcolumn
	table sqldget
	table sqlfind
	table sqlget
	table sqlnew
	table sqlselect
	table sqlshow
	table string
	table subcommands
	table transfer
	table transfercolumn
	table trim
	table unlock
	table unpack
	table valid
	table varexport
	table varimport
	table verify
	table wait
	table write
	table yield

	The vertex Command
	vertex append
	vertex children
	vertex connections
	vertex create
	vertex defined
	vertex delete
	vertex dget
	vertex exists
	vertex filter
	vertex get
	vertex index
	vertex jget
	vertex jnew
	vertex jshow
	vertex neighbors
	vertex network
	vertex new
	vertex nget
	vertex parents
	vertex paths
	vertex ref
	vertex set
	vertex show
	vertex sqldget
	vertex sqlget
	vertex sqlnew
	vertex sqlshow
	vertex subcommands
	vertex vertex

	Substructure Match Commands
	The match command
	-align
	-allowmissingstereo
	-anchor
	-atomenvproperty
	-atomhighlight
	-atomlistcomparison
	-atommapproperty
	-atommatchcount
	-bondenvproperty
	-bondhighlight
	-bondmapproperty
	-burnmode
	-chain
	-charge
	-clearatomhighlight
	-clearbondhighlight
	-cmpflags
	-cmpflags2
	-command
	-creategroup
	-daylightaromaticity
	-excludeenvironment
	-excludeflags_ss
	-excludeflags_st
	-excludelabels_ss
	-excludelabels_st
	-excludelabels_st_root
	-excludestructures
	-exclude_ss_h
	-exclude_st_h
	-fixedframework
	-forceringmatch
	-formula
	-fuzz
	-generalize
	-heavyatoms
	-implicit_is_singlaro
	-includeflags_ss
	-includeflags_st
	-includelabels_ss
	-includelabels_st
	-isotope
	-kekule
	-limit
	-mapanchor
	-maxopenlinks
	-mode
	-multihighlight
	-noaliphaticonaro
	-noarobondfg
	-nochainonaro
	-nochainonring
	-nodoubleonaro
	-noheterofg
	-nomultibondfg
	-nosingleonaro
	-nosuperatommultilink
	-nosuperatomonh
	-omitrecursion
	-openhcount
	-overlap
	-pionaro
	-queryatomexpansion
	-remembercomplexmatches
	-restrictsubstitution
	-rotateterminals
	-spinachformula
	-stereo
	-strictexclusion
	-strictsmarts
	-superatomexpansion
	-superatommapproperty
	-tautomers
	-terminal
	-timeout
	-transferstereo
	-useatomtree
	-useatomtype
	-usebondorder
	-usebondtree
	-varbondglobal
	-varbondlocal
	-wedge
	Maximum Common Substructure Matching
	Reaction Substructure Matching

	Commands for Structure-unrelated Objects
	The cmdx Command
	cmdx defined
	cmdx exists
	cmdx get
	cmdx list
	cmdx load
	cmdx subcommands
	cmdx unload

	The dbase Command
	dbase close
	dbase columnquery
	dbase connect
	dbase create
	dbase disconnect
	dbase dup
	dbase exec
	dbase exists
	dbase flush
	dbase get
	dbase itemquery
	dbase list
	dbase query
	dbase queryloop
	dbase read
	dbase ref
	dbase rowquery
	dbase set
	dbase tablequery
	dbase subcommands

	The dbx Command
	dbx defined
	dbx exists
	dbx get
	dbx list
	dbx load
	dbx ref
	dbx subcommands

	The filex Command
	filex defined
	filex exists
	filex get
	filex list
	filex load
	filex modules
	filex ref
	filex reload
	filex set
	filex subcommands
	filex unload

	The filter Command
	filter create
	filter defined
	filter exists
	filter delete
	filter get
	filter list
	filter load
	filter query
	filter read
	filter readblob
	filter ref
	filter set
	filter string
	filter subcommands
	filter write

	The json Command
	json append
	json create
	json delete
	json error
	json get
	json list
	json parse
	json read
	json ref
	json request
	json respond
	json send
	json set
	json subcommands

	The keyx Command
	The knode Command
	knode addparam
	knode addport
	knode bglisten
	knode bgunlisten
	knode clearparameters
	knode clearports
	knode compile
	knode configure
	knode create
	knode delete
	knode execute
	knode exists
	knode get
	knode list
	knode listen
	knode log
	knode parameter
	knode port
	knode read
	knode readblob
	knode reset
	knode resetlog
	knode set
	knode subcommands
	knode write
	knode writeconfig
	knode writedoc
	knode writescript
	knode writetest

	The lhasa Command
	lhasa append
	lhasa assign
	lhasa classify
	lhasa collection
	lhasa create
	lhasa dataset
	lhasa defined
	lhasa delete
	lhasa dget
	lhasa exists
	lhasa filter
	lhasa get
	lhasa getparam
	lhasa jget
	lhasa jnew
	lhasa jshow
	lhasa list
	lhasa metadata
	lhasa move
	lhasa mutex
	lhasa need
	lhasa new
	lhasa nget
	lhasa nnew
	lhasa properties
	lhasa purge
	lhasa react
	lhasa read
	lhasa ref
	lhasa rename
	lhasa reset
	lhasa score
	lhasa scorematch
	lhasa set
	lhasa setparam
	lhasa show
	lhasa sqldget
	lhasa sqlget
	lhasa sqlnew
	lhasa sqlshow
	lhasa transfer
	lhasa valid
	lhasa verify
	lhasa write

	The netx Command
	netx defined
	netx exists
	netx get
	netx list
	netx ref
	netx subcommands

	The prop Command
	prop addparameterdict
	prop alias
	prop cast
	prop compare
	prop configure
	prop create
	prop defined
	prop delete
	prop dup
	prop exists
	prop get
	prop getparameter
	prop getparameterdict
	prop isdefault
	prop ismagic
	prop isnull
	prop list
	prop query
	prop read
	prop readblob
	prop ref
	prop reload
	prop set
	prop setparameterdict
	prop setparameter
	prop sqldecode
	prop sqlencode
	prop string
	prop subcommands
	prop test
	prop unalias
	prop use
	prop verify
	prop write
	prop xcreate

	The repx Command
	The report Command
	report create
	report delete
	report extract
	report get
	report list
	report read
	report ref
	report set
	report subcommands
	report write

	The soap Command
	soap append
	soap create
	soap delete
	soap error
	soap find
	soap get
	soap list
	soap parse
	soap read
	soap ref
	soap reformat
	soap request
	soap respond
	soap set
	soap subcommands

	The tablex Command
	tablex defined
	tablex exists
	tablex get
	tablex list
	tablex load
	tablex modules
	tablex ref
	tablex reload
	tablex subcommands
	tablex set
	tablex unload

	The typex Command
	typex defined
	typex exists
	typex get
	typex list
	typex load
	typex ref
	typex subcommands
	typex unload

	The ldap Module
	ldap add
	ldap addrdn
	ldap bind
	ldap close
	ldap delete
	ldap get
	ldap list
	ldap ref
	ldap replace
	ldap replacerdn
	ldap search
	ldap set
	ldap unbind
	ldap verify

	The gdbm Module
	gdbm add
	gdbm append
	gdbm close
	gdbm count
	gdbm create
	gdbm delete
	gdbm dump
	gdbm exists
	gdbm first
	gdbm get
	gdbm incr
	gdbm index
	gdbm insert
	gdbm keys
	gdbm linkvar
	gdbm list
	gdbm loop
	gdbm match
	gdbm new
	gdbm next
	gdbm open
	gdbm ref
	gdbm reorganize
	gdbm replace
	gdbm restore
	gdbm set
	gdbm sync
	gdbm unlinkvar

	The tc Module
	tc add
	tc append
	tc close
	tc count
	tc create
	tc delete
	tc dump
	tc exists
	tc first
	tc get
	tc incr
	tc index
	tc insert
	tc keys
	tc linkvar
	tc list
	tc loop
	tc match
	tc new
	tc next
	tc open
	tc ref
	tc reorganize
	tc replace
	tc restore
	tc set
	tc sync
	tc unlinkvar

	The memcache Command Extension
	memcache append
	memcache create
	memcache delete
	memcache get
	memcache list
	memcache put
	memcache ref
	memcache remove
	memcache start
	memcache status
	memcache stop
	memcache valid

	The netcache Command Extension
	netcache create
	netcache delete
	netcache get
	netcache list
	netcache put
	netcache remove
	netcache valid

	The pubchem Command Extension
	pubchem cigs
	pubchem dump
	pubchem fetchblob
	pubchem fetchens
	pubchem setdbhosts
	pubchem sidlist
	pubchem sids
	pubchem synonyms
	pubchem subcommands

	The stat Command Extension
	Auxiliary Tcl and Python Commands
	Mathematical expression enhancements
	avg
	bitvector
	bread
	bwrite
	cleanup
	color
	creverse
	daemonize
	decode
	encode
	fcgi
	fetch
	filecheck
	insidepolygon
	ldelete
	lineintersect
	lsearch
	lsum
	lvardelete
	mail
	mailcap
	parse
	passwd
	post
	prod
	python
	quote
	random
	rpc
	screen
	sqsum
	stddev
	sum
	tmpdir
	tmpname
	uncgi
	unzip
	upload
	vec
	zip

	Tcl and Python Environments
	Standard Filters
	Standard Filter Table

	System Tables
	The PSE table
	The Superatom table
	The SMARTS Macro table

	SMILES and SMARTS dialects
	Attribute ranges
	Match count prefixes
	Strict interpretation suffix
	Additional atom attributes
	Operator-chained matches
	Eli Lilly extended SMARTS
	Extended hydrogen handling

